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This paper deals with unidirectional fiber reinforced composites with rhombic fiber
arrangements. It is assumed, that there is a periodic structure on micro level, which can
be taken by homogenization as a representative volume element (RVE) for the composite,
where the composite phases have isotropic or transversely isotropic material characteriza-
tions. A special procedure is developed to handle the primary non-rectangular periodicity
with common numerical homogenization techniques based on FE-models. Due to appro-
priate boundary conditions applied to the RVE elastic effective macroscopic coefficients
are derived. Results are listed and compared with other publications and good agreements
are shown. Furthermore new results are presented, which exhibit the special orthotropic
behavior of such composites caused by the rhombic fiber arrangement.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Fiber reinforced materials are widely-used in the industry. Due to weight reducing and strengthening such composites
can be found for instance in naval architecture, aviation, automotive engineering and civil engineering. For designing such
structures the knowledge of effective material properties is of great importance.

There has been done a lot of research in that issue during the last decades. Two of the first pioneers in that topic are Reuss
(1929) and Voigt (1910), who derive average procedures for polycrystals. They assume uniform stress or strain states to the
specimen. Hill (1952) shows that these methods define upper and lower bounds for elastic moduli of polycrystals. More
accurate bounds are given by Hashin and Shtrikman (1962a, 1962b). These are derived from variational principles. In Hashin
and Shtrikman (1962b) the consideration of ‘‘polycrystal – cubical element’’ is similar to a representative volume element
(RVE) taken from a random or periodic heterogeneous unlimited elastic composite. In case of periodicity Suquet (1987)
shows that uniform stresses or strain states at the boundaries are not an adequate choice for this type of RVE. Uniform
strains overestimate the material properties and uniform stresses underestimate them. Better results are achieved by apply-
ing certain periodicity conditions to the representative volume element. Using the concept of the RVE combined with the
finite element method (FEM), as for instance in Xia, Zhang, and Ellyin (2003), Berger et al. (2005) and Kari, Berger, Rodrí-
guez-Ramos, and Gabbert (2007), is a powerful technique. A more complex microstructure given by several inclusions
and different shapes is considerable. Even random distribution of inclusions can be taken into account.

In this paper unidirectional fibrous composites are considered, which consist of a rhombic fiber arrangement. Square
(Rodríguez-Ramos, Sabina, Guinovart-Díaz, & Bravo-Castillero, 2001) and hexagonal fiber arrangements (Guinovart-Díaz,
Bravo-Castillero, Rodríguez-Ramos, & Sabina, 2001) are special cases of such considerations, where the rhombic fiber distri-
bution angle is defined as 90� and 60�, respectively. Considering arbitrary rhombic angles a wider spectrum of composites
. All rights reserved.
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can be investigated, which have on macro scale orthotropic material properties. The investigation on such composites is
done by a numerical homogenization technique related to Berger et al. (2005) and Kari et al. (2007). Here a RVE is examined
by using the finite element method in connection with the software package ANSYS. The calculated effective coefficients are
checked against values reported by Jiang, Xu, Cheung, and Lo (2004) and Guinovart-Díaz et al. (2011). They present effective
out-of-plane shear coefficients for several rhombic fiber arrangements by using analytical methods on periodic media. In the
case of Jiang et al. (2004) a method using Eshelby’s equivalent inclusion concept integrated with results from doubly quasi-
periodic Riemann boundary value problems is developed. The other paper is related to the asymptotic homogenization
method (AHM), which is based on so-called local problems. Further comparisons presented here are done to Rodríguez-Ra-
mos et al. (2011) and Golovchan and Nikityuk (1981), which also deal with analytical methods considering a rhomb and a
parallelogram as periodic microstructure. These methods are the previously mentioned AHM, an eigenfunction expansion-
variational method (EEVM) developed in Yan and Jiang (2010) and a method (Golovchan & Nikityuk, 1981) for the solution of
the problem on the shear of a regular fibrous medium underlying, which is the exact solution of the Laplace equation in a
strip with an infinite number of circular holes. Since the previous mentioned analytical methods only consider out-of-plane
shear coefficients, further comparisons are made to Hashin (1979) in the case of hexagonal symmetry and transversely iso-
tropic material behavior of the fibers. Hashin presents formulas and bounds for effective material constants, where the com-
posite consists of transverse isotropic constituents on micro level. At the end engineering constants are derived for several
fiber volume fractions and plotted against the angle, which characterizes the rhombic fiber arrangement. It is to say, that up
to now, there are not any comparable results found with respect to rhombic fiber arrangements except the previously men-
tioned out-of-plane shear coefficients.

2. Numerical homogenization

2.1. Basics

As mentioned before we want to consider composites with fibers, which are unidirectional embedded in a matrix phase
(see Fig. 1). In addition a periodic microstructure underlies the composite. The constitutive equation according to each mate-
rial phase is given by HOOKE’s law using the Einstein summation convention
rij ¼ Cijklekl; i; j; k; l ¼ 1;2;3: ð1Þ
The quantities rij, ekl and Cijkl are the coefficients of the stress tensor, the linear strain tensor and the stiffness tensor, respec-
tively, according to the chosen Cartesian axes x1, x2 and x3, which are denoted as global coordinate system. These coefficients
fulfill the usual symmetry conditions according to linear elasticity (Torquato, 2002). The stiffness coefficients are assumed to
be constant in each phase and can be characterized by isotropic or transversely isotropic material behavior. The connectivity
between the constituents is considered as perfect. This means, that the stresses and displacements are continuous on the
phase interface.

By homogenization techniques it is assumed, that linear (homogeneous) displacement loads on macroscopic scale are ap-
plied. It is sufficient to consider a periodic microstructure Vrve, which forms the RVE, where the following problem
@
@xj

rijðxÞ ¼ 0; x 2 Vrve;

uiðxÞ � e0
ijxj; periodic on @Vrve

(
ð2Þ
has to be solved. Here e0
ij are the given coefficients of the macroscopic strain tensor, u is the displacement field in the micro-

structure and @Vrve is the boundary of the RVE. The periodicity condition in formulation (2) ensures on one hand, that exten-
sions of displacements on adjoining cells keep being continuous. On the other hand applied loads on the microstructure
realized by constraint equations can be derived. They have the form
x1

x2

x1

x2

Fig. 1. Square cell arrangement and picked RVE.
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u
Xþ

j

i � u
X�j
i ¼ e0

ij x
Xþ

j

j � x
X�j
j

� �
: ð3Þ
The values u
Xþj
i and u

X�j
i are the ith displacement components on the boundary surfaces of the cell, which are perpendicular to

the xj-axis (‘+’ for a positive normal direction, ‘�’ for a negative normal direction). The locations, in which the values are cal-
culated, are characterized by an offset in xj-direction. The effective homogenized coefficients of the stiffness tensor, which
represent the macroscopic behavior of the composite material, are calculated by
hriji ¼ Ceff
ijklhekli; ð4Þ
where the quantities
hriji ¼
1
jVrvej

Z
Vrve

rijðxÞdx; ð5Þ

hekli ¼
1
jVrvej

Z
Vrve

eklðxÞdx ð6Þ
are the related stress and strain coefficients on macro scale. Since e0
kl is the given macro strain tensor the following equation

holds
hekli ¼
1
jVrvej

Z
Vrve

eklðxÞdx ¼ e0
kl: ð7Þ
In order to prevent rigid body motions one structural point of the cell is fixed to a constant value. The fixed value and the
location in the cell can be arbitrarily chosen. They do not influence the effective stiffness coefficients. In order to calculate the
stiffness coefficients Ceff

ijkl different states of macro strains are considered. They are classified into six states, three pure normal
strain states
e0
11 0 0
0 0 0
0 0 0

0
B@

1
CA;

0 0 0
0 e0

22 0
0 0 0

0
B@

1
CA;

0 0 0
0 0 0
0 0 e0

33

0
B@

1
CA ð8Þ
and three pure sliding states
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0 0 e0
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0
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CA;

0 0 e0
13

0 0 0
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0
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CA: ð9Þ
2.2. RVE for rhombic fiber arrangements

In this section the derivation of an appropriate RVE for the rhombic fiber arrangement is explained. Normally the rhombic
pattern of the structure leads to a RVE, where the periodicity is characterized by an oblique coordinate system x1, x2 shown
in Fig. 2. But this makes the handling of the cell in order to apply appropriate boundary conditions very difficult. That’s why a
new periodic micro cell is created by rotating the global coordinates into coordinates, whose axes coincide with the diago-
nals of the rhombic cell (see Fig. 3). The new rotated system given by x01; x02, and x03, is denoted as local. This coordinate sys-
tem coincides with the principle axes of an orthotropic material.

Assuming unit edge length of the rhomb the rectangular RVE shown in Fig. 3 has edge lengths
l1 ¼ 2 cos
a
2
;

l2 ¼ 2 sin
a
2
;

ð10Þ
x1

x2

ω1

ω2

Fig. 2. Rhombic cell arrangement and rhombic RVE.



Fig. 3. New RVE with rectangle shape by rotation.
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where l1 and l2 are the width and the height of the cell. The quantity a is the smaller angle of the periodic rhomb. For varying
the fiber volume fraction an appropriate abortion for the restriction of the fiber radius
rf > min
l2

2
;0:5

� �
ð11Þ
has to be formulated for the geometric generation. This guarantees non-overlapping of the fibers.
2.3. Numerical model and algorithm

In order to evaluate the effective coefficients the software package ANSYS is used. Here algorithms are written in APDL
(ANSYS Programming Design Language), which is delivered by the software and it makes the handling much more comfort-
able. The model of the micro cell (see Fig. 4) consists of three-dimensional SOLID226-elements. These elements are charac-
terized by twenty nodes and quadratic shape functions.

Symmetry planes are used in order to generate and mesh the model in such a way, that the boundary conditions from Eq.
(3) can be applied, which are realized by defining constraint equations in ANSYS. Because of finite element discretization the
integrals in Eqs. (5) and (6) are changed to
hriji ¼
1
jVrvej

X
e

re
ijjVej; ð12Þ

hekli ¼
1
jVrvej

X
e

ee
kljVej: ð13Þ
The quantities re
ij; ee

kl are averaged element values for the corresponding coefficients of the stress and strain tensor and |Ve| is
the volume of the finite element. Since the symmetry conditions of linear elasticity are fulfilled and a special boundary con-
dition is applied (fixed k and l), the coefficients Ceff

ijkl from Eq. (4) are calculated with respect to the local coordinate system by
Ceff
ijkl ¼

hriji
hekli

i; j; k; l ¼ 1;2;3
k ¼ l

; Ceff
ijkl ¼

hriji
2hekli

i; j; k; l ¼ 1;2;3
k – l

; ð14Þ
where only six of nine calculated coefficients are independent in the case of total anisotropy of the homogenized material.
With the tensor transformation rule (Torquato, 2002)
Ceff ;global
pqrs ¼ apiaqjakraslC

eff ;local
ijkl ; ð15Þ
where aij, i, j = 1, 2, 3 are the direction cosines, the stiffness tensor related to the global coordinates can be derived, which is
implemented in a MATLAB-routine.
Fig. 4. Meshed RVE for 0.4 fiber volume fraction and 45� fiber arrangement.
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3. Results and comparisons

Here an overview about the calculated effective coefficients of the stiffness tensor for rhombic fiber arrangements is gi-
ven. At first results are compared with values from Jiang et al. (2004), Guinovart-Díaz et al. (2011), Golovchan and Nikityuk
(1981) and Rodríguez-Ramos et al. (2011) to evaluate the numerical algorithm. Only a few papers can be found, which pres-
ent results for effective material values of composites with rhombic fiber arrangements. Furthermore they are limited in cal-
culating only out-of-plane shear coefficients Ceff

2323 and Ceff
1313. That’s why in the next step a comparison to Hashin (1979) is

presented, where in the case of hexagonal fiber arrangement effective material constants are verified. In addition a more
realistic material behavior of the fibers is assumed here (transversely isotropic). At the end effective material constants in
dependence of the rhombic angle and the fiber volume fraction are plotted.

As in Jiang et al. (2004) and Guinovart-Díaz et al. (2011) a RVE is considered, where the rhombic structure is characterized
by an angle of 45�, 60� and 90�. The volume fraction of the fiber is varying from 0.1 to 0.6. The material properties are taken
from Jiang, where he has only given the ratio of the shear moduli
Table 1
Normal

Vol.

Ceff ;60�
2323
Gm

Ceff ;90�
2323
Gm

Table 2
Normal

Vol.

Ceff
2323
Gm

Ceff
1313
Gm
Gf

Gm ¼ 120: ð16Þ
The quantities are the shear modulus of the fiber (index ‘f’) and the matrix (index ‘m’) phase. For an analysis in ANSYS a full
material description is necessary. Thus in addition a Poisson’s ratio of 0.3, which characterizes both material phases, is cho-
sen and the shear modulus of one phase is fixed to an appropriate value. It is mentioned here, that the Poisson’s ratio can be
arbitrarily chosen, since shear deformation states are considered. For each out-of-plane shear state six independent effective
coefficients can be calculated, where because of the local coordinate system only Ceff

2323 and Ceff
1313 are not equal to zero. Related

results, which are normalized by the shear modulus of the matrix phase, are listed in Tables 1 and 2 for 60�, 90� and 45�,
respectively. From literature (Jiang et al., 2004) it is known, that in Table 1 the considered cases provide equality of the val-
ues Ceff

2323 and Ceff
1313 .There is a good agreement with the compared values from Jiang et al. (2004). In Tables 2 and 3 values for

a rhombic fiber arrangement of 45� are listed. As written before the effective stiffness coefficients are calculated related to
local coordinates, which can be seen in Table 2. Hence Ceff

2323 and Ceff
1313 are the only non-zero values. Due to rotation into glo-

bal axes the coefficients change to the values listed in Table 3 and Ceff
2313 becomes non-zero. In this table also result given by

AHM (Guinovart-Díaz et al., 2011) are presented. These values seems to be coincident with values received by Jiang et al.
(2004), which implies also coincidence of values with respect to the local coordinates. At all values (FEM, Jiang, AHM) there
is a good agreement in all coefficients.

Also in Rodríguez-Ramos et al. (2011) and Golovchan and Nikityuk (1981) results for effective out-of-plane shear coeffi-
cients are presented. These coefficients are derived by analytical methods. In these papers rhombs and parallelograms are
considered as periodic microstructure. Here only rhombs are of interest, more precisely a rhomb with an angle a = ar-
cos(1/4), which is about 75�. For the microscopic material behavior shear ratios (see Eq. (16)) of 20 and 120 are used. The
fiber volume fraction varies from 0.3 to 0.7 with an increment of 0.2. The calculated coefficients are rounded to the second
decimal place. The obtained results with respect to the global axes and the results of the methods given by Rodríguez-Ramos
et al. (2011) (AHM and EEVM) and Golovchan and Nikityuk (1981) (G&N) can be seen in Table 4. As in the previous tables a
good coincidence with the compared values can be achieved.

In the next step results for a full set of effective material constants using a more realistic composite structure consisting of
epoxy with embedded graphite fibers are presented. The material parameters for each phase are taken from Hashin (1979),
listed below in Table 5, where results are published for the special case of hexagonal fiber arrangement. The matrix phase has
ized effective coefficients for 60� and 90�.

fraction 0.1 0.2 0.3 0.4 0.5 0.6

¼ Ceff ;60�
1313
Gm

FEM 1.21833 1.49016 1.83776 2.29902 2.94139 3.90591
Jiang 1.21815 1.48971 1.83711 2.29764 2.93931 3.90319

¼ Ceff ;90�
1313
Gm

FEM 1.21835 1.49047 1.84098 2.31489 3.01174 4.18919
Jiang 1.21816 1.49000 1.83990 2.31343 3.00863 4.18637

ized effective coefficients for 45� in local coordinates.

fraction 0.1 0.2 0.3 0.4 0.5

FEM 1.22532 1.52645 1.95185 2.60760 3.81020
Jiang 1.22501 1.52595 1.95099 2.60663 3.80354

FEM 1.21200 1.45898 1.75184 2.10768 2.55697
Jiang 1.21170 1.45854 1.75116 2.10682 2.55497



Table 3
Normalized effective coefficients for 45� in global coordinates.

Vol. fraction 0.1 0.2 0.3 0.4 0.5

Ceff
2323
Gm

FEM 1.22337 1.51657 1.92256 2.53439 3.62667
Jiang 1.22306 1.51608 1.92172 2.53344 3.62069
AHM 1.22306 1.51608 1.92172 2.53343 3.62069

Ceff
2313
Gm

FEM �0.00471 �0.02385 �0.07071 �0.17675 �0.44308
Jiang �0.00471 �0.02383 �0.07065 �0.17671 �0.44144
AHM �0.00471 �0.02383 �0.07065 �0.17671 �0.44144

Ceff
1313
Gm

FEM 1.21395 1.46886 1.78113 2.18089 2.74050
Jiang 1.21365 1.46841 1.78042 2.18002 2.73782
AHM 1.21365 1.46841 1.78042 2.18002 2.73782

Table 4
Normalized effective coefficients with respect to a = arcos(1/4).

Vol. fraction Shear ratio

20 120

0.3 0.5 0.7 0.3 0.5 0.7

Ceff
2323
Gm

FEM 1.74 2.67 4.83 1.84 2.96 6.16
G&N 1.74 2.66 4.83 1.83 2.96 6.16
AHM 1.74 2.66 4.83 1.83 2.96 6.16
EEVM 1.74 2.66 4.83 1.83 2.96 6.16

Ceff
2313
Gm

FEM 0.02 0.08 0.34 0.02 0.11 0.60
G&N 0.02 0.08 0.34 0.02 0.11 0.60
AHM 0.02 0.08 0.34 0.02 0.11 0.60
EEVM 0.02 0.08 0.34 0.02 0.11 0.60

Ceff
1313
Gm

FEM 1.75 2.71 5.01 1.85 3.01 6.47
G&N 1.75 2.70 5.00 1.84 3.01 6.47
AHM 1.75 2.70 5.00 1.84 3.01 6.47
EEVM 1.75 2.70 5.00 1.84 3.01 6.47
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isotropic and the fiber transversely isotropic material behavior. E denotes the Young’s modulus in GPa, G the shear modulus
in GPa and m the Poisson’s ratio. In the case of transverse isotropy the indices a and t characterize axial and transverse param-
eters, respectively. The results for the hexagonal fiber arrangement can be seen in Figs. 5–10. They are compared to data re-
ceived by analytical closed-form expressions for the effective constants Eeff

a ; Geff
a ; meff

a and bounds for Eeff
t ; Geff

t and meff
t

(Hashin, 1979). The calculated values are given in GPa and are plotted against the fiber volume fraction vf. In the cases of
axial direction the elastic constants fit well with the analytical values. Considering the transverse case the values are close
to the lower bound and the higher the fiber volume fraction the closer the results are approaching the upper bound. Alto-
gether there is a good agreement with the compared data.

Afterwards Figs. 11–14 show effective elastic quantities in dependence of the rhombic fiber arrangement given by the
angle a using same material properties as in Table 5. These are the in-plane Young’s moduli Eeff

1 ; Eeff
2 , the out-of-plane shear

moduli Geff
23 ; Geff

13 , the in-plane and out-of-plane Poisson’s ratios meff
12 ; meff

21 ; meff
32 , meff

31 related to the local coordinate axes for a
fiber volume fraction of 0.1, 0.3, 0.5 and 0.7. Due to avoiding geometric overlapping (see Eq. (11)), the ranges of the angle
differ for the plotted cases. A good numerical coincidence of values for the cases of 60� and 90� can be observed, which is
caused by certain symmetry properties of the effective stiffness tensors (Guinovart-Díaz et al., 2001; Rodríguez-Ramos
et al., 2001). It is mentioned here, that there are no comparable results found except the out-of-plane coefficients listed be-
fore in the tables.

For some effective quantities, as for instance E2 and G12, there is a range of value over all considered rhombic arrange-
ments, where the minimum and maximum differ up to 10%. A list of such discrepancy for chosen material constants can
be seen in Table 6.
Table 5
Material phase properties.

Epoxy Graphite

E m Ea ma Et mt Ga Gt

3.45 0.35 345 0.2 9.66 0.3 2.07 3.72
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Table 6
Difference between maximum and minimum in % with respect to local coordinates.

Vol. fraction E1 E2 G12

0.4 5.7 11.2 9.3
0.7 3.6 6.9 7.2
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4. Conclusion

A technique to evaluate effective material properties related to unidirectional fiber reinforced composites having rhombic
and periodic microstructures has been presented. One primary aspect of it is the development of an appropriate micro cell
model for a FE-analysis in ANSYS with periodic boundary conditions. The constituents of the considered composites have
isotropic and transversely isotropic material behavior.

The calculated effective values presented in Tables 1–4 are in a good agreement compared to Jiang et al. (2004), AHM,
EEVM and G&N. Since these comparisons are restricted to out-of-plane shear coefficients, further results (Figs. 5–10) are
shown for a complete material description in case of hexagonal fiber arrangements and compared to values given by Hashin
(1979). These comparisons to literature demonstrate the validity of the technique at least for the considered cases. Finally
results (Figs. 11–14) plotted against the rhombic angle are presented, where for some of them an appreciable change of value
can be observed.
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