
Downloa

View 
Proceedings of IMECE2005 
2005 ASME International Mechanical Engineering Congress and Exposition 

November 5-11, 2005, Orlando, Florida USA 

IMECE2005-81757 

FLOW INDUCED DYNAMICS OF A PINNED DROPLET ON THE SURFACE OF CHANNEL  
 
 

Amirreza Golpaygan 
Department of Mechanical and Industrial Engineering 

University of Toronto 
5 King’s College Road 

Toronto, ON Canada M5S 3G8 
golpagan@mie.utoronto.ca 

Nasser Ashgriz 
Department of Mechanical and Industrial Engineering 

University of Toronto 
5 King’s College Road 

Toronto, ON Canada M5S 3G8 
ashgriz@mie.utoronto.ca 

 

Proceedings of IMECE2005 
2005 ASME International Mechanical Engineering Congress and Exposition 

November 5-11, 2005, Orlando, Florida USA 
 
 

IMECE2005-81757 
 
 

brought to you by COREmetadata, citation and similar papers at core.ac.uk

provided by CiteSeerX
 
ABSTRACT 

Dynamic behavior of a droplet adhering to the surface of a 
channel has been modeled under the influence of surrounding 
fluid. The numerical solution is based on solving Navier-Stokes 
equations for Newtonian liquids. The study includes the effect 
of interfacial forces with constant surface tension, also effect of 
adhesion between the wall and droplet accounted by 
implementing contact angle at the wall. The Volume-Of-Fluid 
method is used to numerically determine the deformation of 
free surface. Droplet deformation and final shapes have been 
predicted. A reduction in the surface tension allows the droplet 
to deform much easier. However, an increase in the fluid 
viscosity, although increases the shear force on the droplet, may 
not result in the deformation at high surface tension. It is shown 
that deformation of droplet significantly influences structure of 
channel flow. Effects of liquid droplet and channel fluid 
properties, namely density and viscosity, inlet velocity, surface 
tension and channel geometry on dynamics of the problem have 
been studied. Two different outcomes have been considered: 
the first one droplet with equilibrium shape and the other one 
when breakup of the droplet occurs. The border line between 
the disintegration region and equilibrium region is determined 
for different droplet surface tensions. 

 
Keywords: Free surface flow; Volume-Of-Fluid; Droplet 

dynamics in channel flow; Droplet displacement; Droplet 
breakup;   

 
INTRODUCTION 

Multiphase flow involving droplets sitting on a surface of a 
channel is a common situation encountered in many 
engineering and scientific problems, including distillation 
processes, liquid water droplets in the channels of PEM fuel 
cells etc. Depending on the nature of application, the droplet 
needs to be kept on the surface or removed. In either case, it 
would be of value to know the effects of various parameters 
influencing the critical condition for the droplet. 
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The specific problem of a droplet on a surface surrounded 
by an immiscible fluid undergoing a motion has attracted the 
interest of many researchers and has been the subject of many 
fundamental fluid mechanics studies. In a series of studies by 
Dussan V. [1, 2] the effects of external shear flow over an 
attached droplet has been considered. She determined the yield 
condition for the critical capillary number as a function of 
contact angle hysteresis (the difference between the advancing 
and receding contact angles). The study is based on asymptotic 
theory valid for very small contact angle hysteresis limited to 
weak shear flow using lubrication approximation. In the 
approach by Durbin [3] the wind force needed to displace an 
adhering droplet from solid surface is sought by considering a 
2-dimensional model. By considering the inertia of the 
surrounding fluid the critical force is given based on the Weber 
number as a function of contact angle hysteresis. However this 
study has considered the cases when surrounding fluid is 
inviscid and droplet is at rest. Feng and Basaran [4] studied a 2-
dimensional bubble attached to a slot under shear flow by 
combining finite element analysis and an iterative method for 
velocity field and the shape of free surface. They have 
concluded that the structure of the flow field depends on the 
Weber number We = Re Ca. They observed separation of the 
flow behind the droplet and also an increase in the length of the 
eddy by increasing Reynolds number. Their study has restricted 
to low capillary numbers and had no yield conditions based on 
the capillary numbers. Li and Pozrikidis [5] have studied shear 
flow over an attached three-dimensional droplet using a 
boundary-integral method. They have determined the droplet 
profile by following the dynamic behavior of the interface until 
a steady shape reached. Effects of capillary number, droplet 
volume and the shape of contact line have been examined. 
More deformation for the droplet attached to the wall has been 
observed compare to the identical freely suspended droplet. 
Lower critical capillary number for continuous deformation of 
droplet reported for larger droplet with elliptical contact line. 
Only droplets and fluids with identical densities have been 
considered and data is presented for a very limited range of 
1 Copyright © #### by ASME Copyright © 2005 by ASME
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parameter values. In addition only the case of Stokes fluid has 
been studied. 

In the study of Dimitrakopoulos and Higdon [6] the yield 
condition for a droplet adhering to a plane under shear flow 
considering the influence of contact angle hysteresis has been 
determined, including the effects of gravity. It was shown that 
as gravitational forces increase, the critical Ca for continuous 
deformation of the droplet decreases. Unlike the conclusion by 
Dussan [2] stating the critical capillary number is independent 
of the droplet viscosity, they have demonstrated that the 
behaviors of viscous and inviscid droplet are qualitatively 
different. Increasing the advancing contact angle for viscous 
droplet leads to an increase in the critical capillary number, 
while for inviscid droplets it leads to decrease in the critical 
capillary number. Scheleizer and Bonneacaze [7] considered 
the dynamics behavior and stability of a two-dimensional drop 
between parallel plates in the absence of inertial and 
gravitational forces. In their studies, they allowed the no-slip 
boundary condition to be relaxed in order to examine the 
effects of allowing the droplet to slip. They have presented the 
shape deformation of the interface for a range of capillary 
numbers, droplet to surrounding fluid viscosity ratios, and 
droplet sizes. The deformation of the interface has increased 
with increasing the capillary number, viscosity ratio, and 
droplet size up to a certain critical value, after this critical value 
there is no steady shape exists. In a more recent study, 
Dimitrakopoulos and Higdon [8] expanded their previous 
works by considering the displacement for three-dimensional 
fluid droplets in a pressure –driven flow. Their study attempted 
to obtain the optimal shape of the contact line which yields the 
maximum flow rate for which a droplet adheres to the surface. 
They have observed that when the viscosity of the droplet 
increases, lower flow rates are needed to displace the droplet 
from the surface. Limitations of the applied methodology have 
restricted most of these investigations to the creeping flow 
limit. For example limitations of the commonly used boundary 
integral methods have restricted the problem to follow the 
boundary between two fluids. Nothing is known about the 
surrounding fluid, flow circulation inside the droplet and their 
effects on the dynamics of the droplet. The deformation of 
droplets and their response to shear flow considering the effects 
of inertia has been an open problem in fluid mechanics. The 
study done by Fung and Basaran [4] is the only available 
reference in literature considering the bubble on the surface in 
finite Reynolds numbers. However, they have limited their 
study to the case of a bubble with zero viscosity on the surface 
in a small range of capillary number. The common problem of 
viscous droplets on a surface has never been addressed. 

Our goal is to provide a comprehensive solution for the 
problem of a droplet adhered on a surface to analyze and 
develop insight into the dynamics of droplet deformation and 
the response of the droplet under shear flow at finite Reynolds 
numbers. Our novel numerical approach enables us to consider 
the properties of the droplet and the surrounding fluid which 
correspond to their properties in reality. As an example we are 
able to address the condition have never been approached like 
water liquid droplet on the surface with air as the surrounding 
fluid. 

In this paper, we consider a 2-dimensional droplet pinned 
to the solid surfaces of a channel. The physical consequence of 
a pinned droplet is that the droplet intersects the solid surface at 
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an arbitrary contact angle without causing the migration of the 
contact line. This can be true in reality only when the value of 
the contact line lies in a certain range. This may be achieved in 
practice by choosing solid materials of appropriate 
wettabilities. 

NOMENCLATURE 
L Channel length, m 
H Channel height, m 
R Droplet radius, m 
U Maximum inlet velocity, m/sec 
F Volume fraction 
P Non-dimensional Pressure 
Lc  Droplet characteristic length 
Dmax Droplet surface maximum distance from the center 
Re Reynolds number 
Ca Capillary number 
µ viscosity, kg/m.sec  
ρ density, kg/m3 
α viscosity ratio(droplet liquid over channel fluid) 
λ density ratio(droplet liquid over channel fluid) 
σ surface tension, N/m 

NUMERICAL METHODOLOGY 
We consider an incompressible Newtonian fluid flow in a 

channel with a constant viscosity of µ and density of ρ that is 
flowing past a droplet with viscosity αµ, and density λρ sitting 
on the bottom surface of the channel, as shown in Fig. 2.  The 
interface that separates the droplet and the flowing liquid has a  
constant surface tension σ. The droplet initially has a 
semicircular shape with radius R. The radius and the width of 
the channel are made dimensionless by the length of the 
channel, L. The boundary conditions are set as follows. The top 
and the bottom boundaries are no-slip boundaries. The inlet 
boundary has a parabolic velocity profile with a maximum 
velocity of U. For the outlet boundary, an outflow (no-gradient) 
boundary condition is applied. 

    

             
Fig.1: Schematic diagram of attached droplet in the channel. 
 
We have used unsteady incompressible Navier-Stokes 

equations in two dimensions with fluid interfaces to simulate 
the motion of an attached droplet under a shear force. A 
volume-of-fluid (VOF) method, along with a Piecewise Linear 
Interface Calculation (PLIC) is used to capture the interface 
motion. It is assumed that the fluids are immiscible without 
phase change. The velocity field is continuous across the 
interface, but there is a pressure jump at the interface due to the 
presence of the surface tension. Following the VOF method by 
Hirt and Nichols [9], the advective equation for the volume 
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fraction, F, is used to calculate the droplet deformation. The 
governing equations are (neglecting the gravity): 
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ui’s are the velocity components, and t and xi are time and 

space coordinates, respectively. F is the volume fraction of the 
fluid. It is zero where only fluid 2 exists and it is one where 
only fluid 1 exits. p is the pressure, î  is the unit vector in the ith 
direction, and ρ and µ are the mixture density and viscosity 
defined as:  

 
)( 212 ρρρρ −+= F     (4) 
)( 212 µµµµ −+= F     (5) 

 
where, ρ1 and ρ2, and µ1 and µ2 are densities and viscosities of 
fluids 1 and 2, respectively. 

For the surface tension forces, we use the Continuum 
Surface Stress (CSS) model [10] which is defined as: 
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F

FFFF st

∇
∇⊗∇

−∇⋅∇= Iσ    (6) 

where I is identity matrix. The CSS model reformulates surface 
tension into a volumetric force. To apply this formulation, one 
needs to spread the surface tension force over the fluid in the 
vicinity of the interface. The interface normal vector is 
proportional to the gradient of the volume fraction F. A better 
estimation of this normal vector can be obtained by evaluating 
the gradient using a smoothed volume fraction, F~ , equivalent 
to employing a spatially weighted gradient operator. We have 
used a formulation similar to Bussman et al. [11] for the 
smoothing kernel. If a pressure based numerical method is used 
(as it is the case in this paper), then the Poisson equation should 
be solved. The Poisson equation is obtained by taking the 
divergence of the momentum equation, Eq. (3), and using the 
continuity equation, Eq. (1), to simplify it. 

A modified version of SURFER code [10, 12, 13] is used 
in this work. The details of the numerical method based on 
VOF-PLIC and Chorin’s projection method for a semi-implicit 
Navier-Stokes solver are given in [9] and are not repeated here. 
The adhesion between the wall and the droplet has been 
accounted by implementing a contact angle at the wall. Wall 
adhesion is a surface force acting on the fluid interface at points 
of contact with the wall. This force is calculated for the cells 
within the proximity of the wall, except that a boundary 
condition is applied to the free surface unit normal prior to 
evaluating the force. Details of the implementation of the 
method are given by Kothe et al. [14]. Equations are solved in a 
uniform grid in both x and y directions. A grid dependency 
 3
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study showed that acceptable resolution is obtained by using 25 
cells per radius.  

RESULTS AND DISCUSSION 
When a fluid is forced to pass a stationary droplet, shear 

forces start to deform the   droplet. Inertia and shear forces 
resulting from the surrounding fluid as well as pressure 
difference across the droplet try to deform and move the droplet 
in the direction of the flow. The surface tension forces tend to 
keep the droplet spherical and attached to the surface.  The 
geometry of the system also plays an important role in the 
droplet deformation. A droplet in the channel acts as a barrier 
against the flow. Therefore, the pressure difference across the 
droplet increases as the relative height of the droplet to the 
channel width increases. This pressure difference tends to move 
the droplet in the direction of the incoming flow. A typical 
pressure contour has been shown in Fig.2. Incoming channel 
fluid moves across the droplet, causing a significant pressure 
difference buildup across the droplet due to the droplet 
blockage (a low pressure region at the upstream and a high 
pressure at the downstream). The contour levels shown to the 
right of the Fig.1 represent non-dimensional pressure. 

 
Fig.  2: Pressure contours across a droplet in a channel flow.   
 
For the simulation, a liquid droplet with density of λρ and 

viscosity αµ is used. Density and viscosity of the channel flow 
are scaled based on the properties of liquid water with 
coefficients λ, and α, representing the density ratio, and the 
viscosity ratio, respectively. Initially, droplet radius is a quarter 
of the channel width, which itself is 1/8 of the channel length. 
Contact angle between the droplet and the wall is 90 degrees. A 
parabolic velocity profile with a maximum inlet velocity of 
Umax is implemented for the incoming gas. This velocity ranges 
between 1.5 m/sec to 5 m/sec. Three values for the surface 
tension coefficient have been used during the simulations, 
0.073 N/m, 0.063 N/m, and 0.0073 N/m. 

 Discussed in detail in Golpaygan and Ashgriz [15], 
surface tension considerably influences the final shape of the 
droplet on the surface of a channel. In Fig. 3, the effects of 
surface tension on a droplet equilibrium shape have been 
compared. The deformation of the droplet increases by 
decreasing surface tension. The channel flow has the maximum 
inlet velocity of 1.5 m/sec with λ=1000, and α =1. Streamlines 
in Fig. 3 show that for droplets with small surface tension 
coefficients, streamlines conform to the droplet deformed 
shape. However, at relatively large surface tensions (Fig. 3-a, 
σ= 0.073N/m) a small eddy is formed downstream of the 
droplet. High surface tension forces do not allow the droplet to 
deform. Therefore, the droplet acts as a solid barrier against the 
incoming fluid and the available space for the surrounding fluid 
remains unchanged. We have used a Capillary number, Ca = 
µU/σ, defined based on the channel fluid viscosity, and a 
Reynolds number, Re = ρUD/αµ, defined based on channel 
fluid density but droplet viscosity, to describe the effect of fluid 
3 Copyright © #### by ASME Copyright © 2005 by ASME
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properties and the channel geometry on the droplet 
deformation. The Capillary number represents the ratio of shear 
forces to surface tension forces. On the other hand, the 
Reynolds number represents the ratio of inertia forces to 
viscous forces.  

 

 

 
 

Fig.  3: Channel flow structure passing a pinned droplet with Re=46. 
 
A characteristic length for the droplet is defined as follow 

to keep track of droplet deformation. Figure 4-shows the initial 
and the final equilibrium shapes of a droplet in a channel flow. 
In addition, Fig. 4-b shows the time evolution of the maximum 
distance between the droplet surface and the center of the 
droplet. The largest value of this maximum distance, Dmax, is 
used as a scale for the droplet deformation and its value is used 
for comparison in our case study. The characteristic length for 
the droplet deformation is defined as  

Lc = Dmax/R 
where R is the initial droplet radius. 
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Fig.  4: (a) Initial and equilibrium shapes of a droplet with Max 
distance from the center, (b) changes of Max distance of droplet 

surface with time. 
 

 Increasing the Capillary number by decreasing the surface 
tension increases the characteristic length of the droplet until no 
equilibrium shape can be achieved. Decreasing surface tension 
from 0.073 to 0.0365 and then 0.0073 N/m has increased 
droplet characteristic length from 1.08 to 1.12, and then 1.55 
(Fig. 3).  

(a) 

(b) 

(a) σ =0.073N/m 

(b) σ =0.0365N/m 

(c) σ =0.0073N/m 
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If the flow is strong enough, the distorting stresses 

outweigh the forces due to the presence of surface tension and 
adhesion between the droplet and the wall. Therefore, a steady 
state condition, which requires a balance of forces on the 
interface, can no longer be achieved. Disintegration of the free 
surface is the usual consequence of this imbalance. In this 
situation a droplet may breakup into several fragments as 
shown in Fig. 5.  
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Fig.5: Deformation and disintegration of an attached droplet.  
 
The results shown in Figs. 5 correspond to a droplet pinned 

to the surface of the channel with a density of 1000 kg/m3 and 
viscosity of 0.001 kg/ms. The channel flow has maximum inlet 
velocity of 5 m/sec with λ=20, and α =1. The coefficient of 
surface tension is 0.073N/m. The corresponding Capillary and 
Reynolds numbers are 0.07, 7812.5, respectively.  

 When the flow is not strong enough, a steady state 
condition based on the balance of forces resulting from inertia 
and shear stresses one side and surface tension and pressure 
difference across the droplet in the other side will be reached. 
In Fig. 6 structure of the flow in the channel and deformation of 
the pinned droplet until the point it reaches an equilibrium 
shape has been compared.  As the incoming flow starts 
developing, it encounters the droplet. A pressure difference 
across the droplet builds up as shown in Fig. 6. The droplet 
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starts to deform and its characteristic length increases to 1.367 
and then 1.55 at t=10msec and t=17msec. The forces are in 
equilibrium after this point, therefore no changes in the 
characteristic length can be observed (at t=17msec, Lc=1.55, 
and at t=20msec, Lc=1.55).  

 
Fig.  6: The flow structure and pressure contours for a droplet reaching 

an equilibrium shape.  
In the results shown in Fig. 6 the droplet liquid has a 

density of 1000 kg/m3 and viscosity of 0.001 kg/ms. The 
channel flow has a maximum inlet velocity of 1.5 m/sec with 
λ=200, and α =1. The coefficient of surface tension is 0.01N/m. 

t= 1msec 
Lc=1 

t= 10msec 
Lc=1.367 

t= 17msec 
Lc=1.55 

t= 20msec 
Lc=1.55 
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These corresponding Capillary and Reynolds numbers are 
Ca=0.15 and Re=234.37. 

Droplet deformation and the channel flow structure with 
different viscosities are compared in Fig. 7, for a constant 
surface tension coefficient of σ=0.0073N/m. Recall that α in 
this figure represents the ratio of the viscosity of the droplet to 
that of the channel fluid. The characteristic length of the droplet 
increases with increasing the Capillary number. In Fig. 8-a, the 
channel fluid has a higher viscosity compared to the other 
cases; therefore, the droplet deforms more. Deformation of the 
droplet prevents flow separation in the channel.  Flow 
separation and recirculation eddies are observed when the 
viscosity of the channel fluid is decreased.   
The size of the separated eddy increases with decreasing the 
viscosity of the channel fluid. At small Capillary numbers, the 
streamlines retain their shape around the droplet while the 
droplet is deforming. The shape of the separated eddies are 
similar to the ones that occur in a flow passing around a 
circular obstacle. However, Fig. 7 indicates that the appearance 
of the flow separation and the size of the separated eddy are not 
solely determined by the Re number. For example, in Fig. 7-c, a 
much larger eddy compared to the other cases is observed, 
when Re =46 in all three cases. Therefore droplet deformation 
is an important factor in the generation of eddies. 

 

 
Fig. 7: Effects of channel fluid viscosity on the flow structure.  
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Fig.  8: Effects of channel fluid viscosity on the characteristic length of 

the droplet. 
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The results indicate that the viscosity is an important 
parameter in the droplet deformation. Figure 8 shows the time 
evolution of the droplet characteristic length for viscosities of 
0.001, 0.005 and 0.0002 kg/m.s. As expected, decreasing the 
absolute viscosity decreases the characteristic length. In 
addition, the time to reach the maximum droplet deformation 
decreases when the viscosity is changed from 0.001 to 0.0002 
kg/m.s. In more viscous fluids, the droplet deforms to conform 
to the flow resulting in less flow separation. 

The characteristic length has been used to distinguish 
between the two cases where the droplet reaches an equilibrium 
shape or the one when no-equilibrium shape exists. As shown, 
in the equilibrium shape, the characteristic length of droplet 
increases until the steady state shape of droplet obtained. In the 
non-equilibrium case, the droplet continues to deform until 
disintegration occurs.   

0 10 00 00 20 00 00 30 000 0

Equilibrium shape for droplet

Non-Equilibrium shape for droplet

 
Fig. 9: Changes in droplet characteristic length versus time for droplet 

with equilibrium and Non-equilibrium shape. 
 
As noted earlier, pinned droplets under the influence of a 

channel flow may either breakup or reach an equilibrium shape, 
depending on the properties of droplet and channel flow. The 
border line between these two regions is shown in Fig. 9. A 
liquid water droplet with density of 1000 kg/m3 and viscosity of 
0.001 kg/ms is considered on the surface of a channel. The 
coefficient of surface tension is equal to 0.0365N/m. For a 
specified R/H (droplet radius over channel width), the Reynolds 
number increases until the droplet disintegrate into small 
fragments. The inertia of the channel flow increases by 
decreasing the density ratio, λ. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9: Breakup border line for Ca=0.137. 
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Fig. 10: The flow structure and pressure contours for a droplet 

detaching from the surface. 
 

Droplet and channel flow properties, channel geometry and the 
rate of incoming channel flow also affect the mechanism of 
droplet breakup. Differing from the disintegration effects 
shown in Fig. 5, Fig. 10 shows the channel flow deforming the 
droplet continuously until the detachment of the droplet from 
the surface occurs. The high surface tension of the droplet 
(σ=0.073N/m) in the case corresponding to Fig. 5, prevent 
droplet from initial deformation. However the interfacial 
tension forces can no longer balance the viscous and inertial 

t=1msec
Lc=1.148 

t=2.5msec
Lc=1.6185 

t=5msec
Lc=2.322 

t=7.5msec
Lc=2.51 
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forces, so the deformations become unstable and the droplet 
breakup. Compare to disintegration of the droplet (Fig. 5), the 
density ratio has been increased to λ=80 in Fig. 10. This change 
decreases inertia of the channel flow. The droplet deforms to 
conform to surrounding fluid; however balance of forces still 
does not exist. The breakup involves detachment of the droplet 
from the surface. As shown in Fig. 11, increasing droplet radius 
decreases the Reynolds number at which breakup of the droplet 
occurs. This breakup point moves to higher Reynolds number 
when the surface tension decreases.  As an example, at droplet 
radius over channel width of 0.25 droplet breakup occurs at 
Reynolds number of 625 when the surface tension coefficient is 
0.073 N/m. The breakup of the droplet occurs at Re=1562 when 
the surface tension coefficient decreases to 0.0365 N/m.  
 

 

 

 
 
 
 
 
 
 
 
 

Fig. 11: Effects of the Capillary number on the breakup border line  
 

SUMMARY AND CONCLUSION 
A two-fluid numerical model has been employed to study 

dynamics of a pinned droplet on the surface of channel. To 
keep track of interface deformations and droplet motion 
Volume-Of-Fluid method has been used. Surface tension is 
modeled as a volume force acting in the vicinity of the free 
surfaces. Our novel numerical approach enables us to study 
cases which have never been approached before, including 
pinned droplet on the surface when λ=1000(density ratio of 
droplet over the channel fluid) with surface tension as high as 
0.073N/m. The surface tension effects, as well as the channel 
fluid velocity and viscosity are represented through the 
Capillary number (Ca= µU/σ). Reynolds number is used as 
another parameter to indicate the importance of the inertia of 
flow in the channel and the fluid viscous effects.  
The inertia and shear forces resulting from the moving outer 
flow try to overcome the forces resulting from surface tension 
and the adhesion of the droplet to the surface. Liquid droplet 
and channel fluid properties, namely density and viscosity, inlet 
velocity, surface tension and channel geometry determine 
whether the droplet just deform and remain stationary or 
disintegrate from the surface. A comprehensive study is 
conducted, covering a wide range of viscosity ratios, density 
ratios, surface tension and droplet sizes. It is shown that 
deformation of the droplet significantly influences the structure 
of the flow in the channel. At a constant Reynolds number, the 
size of separated eddies increase with increasing surface 
tension. 
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The characteristic length of the droplet is used to compare 
droplet deformation due to changes in the surface tension, 
viscosity and density ratios. Based on these properties the 
droplet either reaches an equilibrium shape or breakup.  Two 
different breakup mechanisms have been distinguished: 
unstable deformation follow by breaking of droplet into small 
fragments, and the other continuous deformation and 
detachment from the surface.  At a specified Capillary number, 
the border line between breakup and no-breakup regions 
linearly relates to the Reynolds number and the height of the 
droplet in the channel. This breakup border line moves toward 
higher Reynolds number when the surface tension decreases  
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