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ABSTRACT 
Homogenization is a formal mathematical two-scale 

averaging process that can be applied to roughness problems 
and can replace previous heuristic averaging procedures which 
have sometimes led to ambiguous results. This procedure was 
previously mathematically developed and applied to 
compressible flow problems. The purpose of this paper is the 
development of a special form of Reynolds equation for such 
homogenized conditions applied to the incompressible 
Newtonian case. The equation allows the calculation of the 
operating characteristics of a contact by taking into account the 
local geometry of surfaces, while making a substantial 
improvement in computing time. The method allows for the 
study of rough surfaces, but requires considerably fewer 
calculated points than for traditional deterministic discretization 
methods.  

 
INTRODUCTION 

An understanding of the influence of roughness on the 
surface of machine elements during lubrication can contribute 
to an improvement of the performance of the device and an 
increase in the lifespan of the mechanism. In turn, proper 
prediction of the performance of a lubricated contact depends 
on a rigorous characterization of the involved surfaces and on a 
sufficiently accurate representation of the lubricant flow 
behavior. When the operating conditions are severe, i.e., the 
fluid films are very thin, the effect of roughness is all the more 
significant.   

As is well-known, the development of the theory of 
lubrication for thin films first appeared in 1886 with the 
mathematical model established by Reynolds. The governing 
equation, which can be written in various forms, is a second 
order elliptic partial differential equation for the pressure, with 
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the surface film shape entering as part of known variable 
coefficients. Reynolds equation does not usually admit to 
analytical solutions, and the complexity of surfaces due to 
roughness is one of many complications which require 
numerical approaches.  

In this study, our contribution is to set up a new model 
which takes into account the surface roughness phenomena by 
using a new technique of calculation known as homogenization,
which will be explained shortly. Taking into account the 
roughness of surfaces in the study of lubrication can be done 
considering the statistical parameters of roughness. There are a 
number of papers in the literature which could be characterized 
as using stochastic analysis [1-14] (considering some sort of 
averaged surface properties), and another group which uses 
deterministic analysis of a specific surface description [15-20]. 
For our concerns, we introduce a third methodology called 
homogenized analysis [21-23] which amounts to dividing the 
problem into two parts: a local problem (i.e., the roughness) 
and a homogenized problem for the global properties. This 
approach will be discussed to illustrate its advantages as well as 
its disadvantages compared to the others.  

HOMOGENIZATION ANALYSIS 
The approach of homogenization amounts to rewriting the 

problem as two others: a local problem and a homogenized 
problem. The coefficients of the homogenized problem depend 
on the solution of the local problem. The difficulty of this 
technique lies in the decoupling of the two problems, starting 
from the homogenized problem because of the presence of 
nonlinearities. The coefficients of the homogenized problem 
can be calculated only after treatment of the former. 
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In 2000, this technique was developed and was applied to 
the compressible Reynolds equation by Buscaglia and Jaї [21]. 
It was further revealed that this method is well adapted to the 
problems with an anisotropic roughness [22-23]. It is also a 
technique which does not require a very fine grid account for 
the effect of roughness. Roughness is taken into account during 
the calculation of the local problem, where less computing time 
is required compared to deterministic techniques. To see the 
advantages of this approach, Fig.1 is shown, based on the 
compressible flow analysis of Jaї and Bou-Saїd [23].  

 
Roughness 

Stochastic Analysis 

Deterministic Analysis 

Homogenized Analysis 

Figure 1. Comparison of roughness methodologies – 
 dimensionless pressure 
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From this figure we can observe that the stochastic analysis 
does not capture the directional aspect of the roughness, i.e., the 
pressure is symmetric about the mid-plane. As for the 
deterministic analysis, it accurately portrays the pressure shape, 
but requires a very high number of discretization points to do 
so. On the other hand, the results obtained from homogenized 
analysis accurately capture the shape and magnitude of the 
pressure field but with considerably less numerical effort.   

In the following section, this technique will be applied to a 
Newtonian incompressible flow analysis to obtain the 
homogenized Reynolds equation. 

 

HOMOGENIZED REYNOLDS EQUATION  
We begin with the incompressible Reynolds equation:   
 

( )3

1

hh p
x
∂

∇⋅ ∇ = Λ
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where p(x, y) is the pressure, h(x, y) the film thickness, the 

viscosity is µ, sliding occurs only in the x- direction at speed V,
and 6 VµΛ = . The coordinates of the Cartesian reference 

system are 1 2 3, ,x x y x z x= = = , and the domain is 
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Figure 2. Schematic of film coordinates 

We introduce the concept of local coordinates by writing:   

1 2
1 2 0 1 2( , ) ( , ) ( , )x xh x x h x x δ

ε ε
= +  (2) 

The symbol h0 denotes the global film thickness and δ is 
the roughness contribution. The latter is a periodic function of 
period 1 rnε = , where nr is the “roughness number” or the 
number of roughness cycles across the contact (in an order-of-
magnitude sense) .   

Let us introduce the concept of local variables setting 

( ) ( )1 2 1 2, ,x xξ ξ ε ε= and make an asymptotic 
development of the pressure by writing:  

2
1 2 0 1 2 1 1 2 1 2 2 1 2 1 2( , ) ( , ) ( , , , ) ( , , , ) ...p x x p x x p x x p x xε ξ ξ ε ξ ξ= + + +

(3) 
where ,..., 21 pp are periodic functions of the variables 

( )1 2,ξ ξ .
We use the following rule of differentiation:   
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and substitute Eq. (3) in Eq. (1). We then gather terms of 
power of ε and obtain the following equations for powers ε0,
ε1, and ε2, respectively.  
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( )3
1 0x xh p∇ ⋅ ∇ = (7) 

With x∇ and ξ∇ , respectively, equivalent  to 

( )21 /,/ xx ∂∂∂∂ and ( )1 2/ , /ξ ξ∂ ∂ ∂ ∂

To uncouple 0p and 1p the following local problems are 
considered in terms of the roughness coordinates and the 
auxiliary variables w1, w2, and w3.
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(8) 

 
The boundary conditions for the local problems are that w1,

w2, and w3 equal zero on the boundary and are periodic 
functions. The following relation is postulated to exist between 
p1 w1, w2, and w3 and the partial derivatives of p0:

0 0
1 1 2 3 1 2

1 2

( , )p pp w w w C x x
x x
∂ ∂

= + + +
∂ ∂

 (9) 

 
By substituting this expression in Eq. (5) and integrating 

with respect to ξ, we obtain the homogenized Reynolds 
equation: 

[ ]( ) [ ]0A p θ−∇⋅ ∇ =∇⋅ in the domain Ω, p0 = 0

on  ∂ Ω (10) 
with 
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The notation of Eq. (11) is that we integrate the roughness 

variables ( )1 2,ξ ξ over their domain Ξ. Thus, one obtains the 
local problems [Eqs. (8)-(9)] and the homogenized problem 
[Eqs. (10)-(11)].  

These problems do not have analytical solutions, thus it is 
necessary to use numerical techniques.  

 

GEOMETRY OF THE CONTACT  
Before carrying out the calculation of the homogenized 

pressure, it is necessary to define the geometry of the contact.  
The height of film can be written as :  

 

( ) ( )0 1 1 2,h h x δ ξ ξ= +  (12) 
 
In turn, for demonstration, we use a parabolic cylinder 

contact 
2

0 min 2
xh h
R

= +  (13) 

 
This film shape is the parabolic cylinder approximation to 

a highly loaded journal bearing contact.  All the characteristics 
of the contact have been non-dimensionalized and we use the 
following parameter values: minh = 1, µ = 1, V= 1, R = 1,

min0.3hα = roughness amplitude, x yL L = 1 (the 
“unwrapped” contact is rectangular). The roughness 
configurations have been obtained using the following 
roughness description: 

1 2sin sin2 2x y x y
r

x y x y

L L L x L y
n

L L L L
δ α α

ξ ξ
π π=

   + +
=      + +   

(14) 

In Eq. (14) above, Lx = 1 and Ly = 0 represents transverse 
roughness, Lx = 0 and Ly = 1 represents longitudinal roughness, 
with anisotropic roughness being characterized by intermediate 
values. 

global film thickness 
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film thickness roughness 

Figure 3. Geometry of global film 
thickness and roughness 

RESULTS  
Roughness number 10rn =

Roughness number 40rn =

Roughness number 60rn =

Figure 4. Dimensionless pressure profile 

variation with roughness number
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We can see in Fig. 4 that the deterministic solution 
becomes erratic when the number of roughness cycles becomes 
significant. This is due to numerical error. Thus to have a well 
behaved deterministic solution, it is necessary to increase the 
number of discretization points.  However, we notice that the 
homogenized solution remains insensitive to this variation in 
roughness number.   

 
Roughness amplitude min0.5hα =

Roughness amplitude min0.25hα =

Roughness amplitude min0.025hα =

Figure 5. Dimensionless pressure profile 
variation with roughness 

amplitude

We notice that for low roughness number, the deterministic 
solution remains far away from the homogenized solution, see 
Fig. 5. A reduction in the height of roughness peaks allows the 
two solutions to converge. Thus, this makes it possible to 
validate the model in the case of low amplitudes of roughness.  
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Pressure (homogenized) 

Pressure (deterministic) 

Figure 6.  Dimensionless pressure field – 
homogenized and deterministic calculations 

We observe the three-dimensional pressure field for 
40rn = and min0.3hα = in the homogenized and 

deterministic cases.  We note that the direction of roughness is 
evident in the homogenized pressure field, i.e., the pressure 
field is skewed due to the roughness orientation, which is 
expected in a physical sense.  

 

CONCLUSIONS 
After analysis of the various results, we can draw several 

conclusions on this method of calculation. Homogenization 
makes it possible to obtain pressure fields for rough surfaces, 
using far fewer calculation points than for deterministic 
methods, while capturing important non-symmetric features 
oftern missed by heuristic averaging.  We note that the higher 
the period of roughness, the more the deterministic solution 
approaches the homogenized solution, which makes it possible 
to validate the model under the conditions where the number of 
roughness cycles is large. 

For small roughness amplitude (compared to the minimum 
height of the film) and a significant number of roughness peaks, 
the homogenized analysis remains effective regardless of the 
type of roughness. Under these conditions this technique gives 
a good physical insight as to the distribution of pressure on the 
surface of contact.  For anisotropic roughness, the technique of 
the homogenization is essential to give realistic information on 
the amplitude and the direction of roughness, contrary to the 
traditional (stochastic) approaches which prove to be defective 
in this case. 
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