
Real Time Business Performance Monitoring and Analysis Using Metric Network

Pu Huang, Hui Lei, Lipyeow Lim
IBM T. J. Watson Research Center

Yorktown Heights, NY, 10598

Abstract-Monitoring and analyzing business performance in

a continuous manner nowadays is crucial for enterprises to
achieve operational excellence, and to better align daily
operations with long-term business strategies. To do so,
performance measures need to be collected from daily
operations and aggregated to construct higher-level Key
Performance Indicators (KPIs) in nearly real time. We propose
a system called metric network for enterprise-wide business
performance monitoring and analysis. A metric network
consists of metrics, metric repositories, aggregation agents, and
knowledge agents. We describe in details the generic procedure
patterns of these metric network entities and their
communication pattern. Our loosely coupled design makes it
easy to enhance features by adding more metrics and agents.
The proposed approach is examined using real metrics on a
fictitious scenario.

I. INTRODUCTION

It is an often-quoted axiom of business that “you cannot
manage what you cannot measure.” Nowadays, enterprises
have realized that monitoring and analyzing business
performance in a continuous manner is crucial to achieve
operational excellence, and to better align daily operations
with long-term business strategies.

An enterprise executes various business processes in its
every day operations. These processes often span several
functional units; sometimes even extend to link with its
partners’ processes. They usually involve many different
roles, assets, and resources; they may be supported by IT
systems, or be executed in ad hoc manner manually. To
monitor enterprise-wide business performance, one has to
continuously collect metric data from these processes,
aggregate the lower-level operational metrics to build higher-
level Key Performance Indicators (KPIs).

In this paper, we present a system called metric network
for enterprise-wide business performance monitoring and
analysis. A metric network consists of metrics, metric
repositories, aggregation agents, and knowledge agents.
Metric repositories store metric values. These repositories are
usually distributed, close to the business processes they are
collecting data from. Aggregation agents automatically
aggregate lower-level metrics to create higher-level KPIs in
real time. This ensures that every day operational measures
are reflected in the KPIs in a timely fashion, which is
essential to make prompt executive decisions. Agents and
metric repositories communicate through message passing,
which makes the whole system loosely coupled, and ensures
that it is easy to enhance features by adding more metrics and
agents.

Metric measurements collected are not just for
presentation. Our metric network also supports generic what-
if analysis. In a what-if analysis, a user submits a hypothetical
business scenario to a knowledge agent, which in turn

responds with the estimated outcome of this scenario. What-if
analysis is widely used in business to identify root causes,
predict future performance, and evaluate strategy/operation
changes. A key feature of our metric network is that it
supports learning knowledge agents, which automatically
build up learning models that are used to answer what-if
queries.

Using a metric network, management at different level of
an enterprise hierarchy can address their local concerns: they
can use their own aggregation agents to build metrics to
measure local performance; they can use their own
knowledge agents to analyze business scenarios of their
interest. They can do all these in a single metric network
without interference with each other. However, since all share
the same metric network, all this localized knowledge about
how business is operated in a daily basis is integrated in the
metric network through knowledge agents. This knowledge
can be shared by the whole enterprise. Higher management
can reuse the local metrics to monitor enterprise-wide
performance, to do deeper what-if analysis by chaining up
knowledge agents deployed at local level. In this sense, our
metric network is an enterprise-wide knowledge integration
tool.

II. RELATED WORK

Real time business process monitoring and data mining,
and sensor network applications often generate a large
amount of data continuously. These applications call for a
new kind of data management system to persist, retrieve and
query continuous data streams. Stream data management has
drawn considerable attention in the past few years. Many
issues that are unique to stream management have been
addressed, including extending SQL to accommodate time-
based and order-based operators, approximately answering
queries, and accommodating long-run queries, etc. [2, 3, 9].
Many experimental systems have been built [1, 4, 5, 8, 7].
Although commercial systems are limited at the current stage,
we expect many will be available in the near future as the
technology and the market grow mature. Our metric network
builds on top of stream management systems and relies on
them to manage metric streams. A metric network is not an
approach to manage stream metric data per se, but an
approach to dynamically build meaningful relations between
these streams.

One kind of emerging business applications that prompt
stream management is real time business intelligence (BI).
The promise of real time BI is to extract vital business
information in nearly real time from streams of operational
data generated by enterprises’ daily operations. This requires
real time stream management and real time (online) learning
capabilities. Online learning algorithms are not necessarily
different from offline algorithms. What matters is the

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on March 22,2010 at 17:24:49 EDT from IEEE Xplore. Restrictions apply.

frequency an algorithm’s internal learning model is updated.
In the extreme case, it can be updated every time a new piece
of training data is available. Doing so may not be necessary
and may hurt performance. How frequent and under what
conditions a learning model needs to be updated is
application specific. Our metric network leaves this decision
to the application designer. From a real time BI perspective,
our metric network can be viewed as framework to build real
time BI systems. Knowledge agents incorporate learning
capabilities, and they interact with metric repositories (stream
data managers) to enable real time BI.

,

III. METRIC AND METRIC REPOSITORY

We use the term “monitored object” to refer to any
business entity/process whose performance is of the concern
and thus is measured. A monitored object is usually measured
by multiple metrics with each measuring a specific aspect of
the object. Metrics directly measuring a monitored object are
primitive metrics; metrics that are computed from lower-level
metrics (primitive or derived) are derived metrics.

A metric network consists of metrics, metric repositories
and agents. Each metric (primitive or derived) has a single
repository, which is the place where all the historical metric
values are stored. Each metric repository hosts a single
metric. This one-to-one relation between metrics and metric
repositories is adopted to make sure that the whole metric
network design is conceptually simple. It is not an
implementation requirement. For example, a traditional
relational database can be used to host multiple metrics as
long as it provides a metric repository interface for each
metrics.

There are two kinds of agents: aggregation agents combine
lower-level metrics to create higher-level metrics; knowledge
agents maintain the knowledge about the metrics for business
analysis. Figure 1 shows an example metric network with 12

metric repositories (R1-R12) and 5 aggregation agents (AA1-
AA5). Repositories R1-R6 store primitive metrics; they are
generated by some external measure devices. Repositories
R7-R12 store derived metrics; they are generated by
aggregation agents. For example, metric M9 (corresponding
to repository R9) is generated based on metrics M5 and M6
by agent AA3.

Table 1: Contextual information of a metric.

Table 2: Structure of metric data instances

Any metric (primitive or derived) can be viewed as a
stream of data generated by a measurement device: a
primitive metric stream is generated by an external device; a
derived metric stream is generated by an aggregation agent. A
metric data stream consists of many metric instances; each
instance represents the measurement result obtained from a
single measurement activity. A metric repository is the place
where the whole data stream is persisted.

Instance data need to be organized for easy access and
query. Contextual information (meta-data) of a metric
describes how its data instances are organized. A metric
context consists of many slots; each slot contains an attribute
of the metric. When designing a metric, one needs to decide
what attributes need to be included, and put each attribute
into a context slot. Any metric must have at least one attribute
called Name; it represents the metric’s name. Each metric
should have a unique name (ID) within the whole metric
network. Table 1 shows the contextual information of an
example metric called “Daily Sales Revenue” with two
attributes “Store ID” and “Customer ID”. Metric contextual
information is stored in a central meta-data store to facilitate
system administration, see Section VI.

 Instance
1

Instance
2

Value …

Time …
Store

ID
 …

…

 …

Metric
Data

Stream
Structure

Attribu

tes
Custom

er ID
 …

 Context Slot Attribute

Name Daily Sales
Revenue

Slot 1 Store ID

...

Metric Context

Structure

Slot N Customer ID

 AA1 AA3 AA2

 AA4 AA5

R7 R8 R9

R12

M5 M6

M9

R10 R11

 R2 R3 R4 R5 R6 R1

Figure 1: An example metric network.

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on March 22,2010 at 17:24:49 EDT from IEEE Xplore. Restrictions apply.

Each metric instance within a metric data stream contains
three fields: Value, Time and Attributes. The Value field
contains the measurement value of this instance; the Time
field contains a timestamp of this instance, usually used to
temporally correlate multiple metric instances; and the
Attributes field contains the values of user-defined attributes
in the context slots. These attributes are used to capture
correlation information between metric instances. The values
of all three fields (Value, Time and Attributes) in a metric
instance will be assigned by an aggregation agent when
generating this instance. (For primitive metric instances,
those values are assigned by the external devices that
generate them.) Table 2 shows the data stream structure of
metric “Daily Sales Revenues” defined above.

In a metric network, metric repositories get metric
instances generated by aggregation agents and store them;
agents get metric instances from repositories to generate
instances of high-level metrics (aggregation agents) or build
metric relationship models (knowledge agents). All the
repositories and agents follow a few well-defined procedures
to communicate with each other.

Before entering into further discussion about these
procedures, we first describe how entities (repositories and
agents) in a metric network communicate with each other. If
an agent wants to receive new instances from a metric
repository, it needs to first register with this repository. Every
time a new instance is received by the repository; it forwards
the instance to all the agents in its registry list 1. The same
thing can be done for an aggregation agent, which may create
new instances for multiple higher-level metrics; and each of
these metric repositories needs to register with this
aggregation agent. This communication pattern is called
publication/subscription pattern. There are many pub/sub
systems available, refer to Section VI for further discussion.

Here is the atomic procedure a metric repository executes
after receiving a new metric instance.

IV. AGGREGATION AGENT

Aggregation agents take metric instances from multiple
lower-level metrics as input and generate one instance for

1 This can be implemented by sending a notification message
instead of the actual new instance to the subscribers, and then
the subscribers decide whether to retrieve the new instance at
their own discretion. For conceptual simplicity, we describe
the procedures as if all new instances are always forwarded.
It should be clear that actually implementation may vary.

each of its output metrics. They are long-living and
autonomous entities. When there is no work to do, they go to
sleep. Incoming messages wake them up to generate an
output.

Two types of messages may wake up an aggregation agent:
incoming new metric instances or time events. An incoming
new metric instance may trigger the agent to generate an
outgoing new instance. The agent has its own internal logic to
decide whether a new instance will actually be generated or
not. For example, agent AA3 in Figure 1 may create a new
instance of metric M9 after receiving three instances of
metric M5.

This implies that aggregation agents are long-living state
machines. They are not simple stateless Web Services; they
maintain their own internal states in responding to external
events.

An aggregation agent may need to perform computation
asynchronously. To see this, consider this example: a new
instance of metric “Revenue” is generated every time a
customer purchases a product. An agent takes metric
“Revenue” as input and computes metric “Daily revenue”
every day. To do so, the agent needs to set up a clock to wake
up and do the computation.

Here is the generic procedure of aggregation agents.

An aggregation agent can apply the above procedure to
create multiple temporally correlated output metrics. It can do
so by simply marking the Time fields of these instances with
the same timestamp.

By assign the Attributes fields of output metric instances
with proper values, an aggregation agent can also correlate
them according to an arbitrary user-defined logic. Further
more, if the values in the Attributes fields of the output metric
instances are assigned based on those of the incoming
instances, an agent can also correlate the output metrics with
input metrics.

Metric repository: store and forward an incoming new
metric instance

1. Store the received new instance into the
repository.

2. Forward this new instance to all the agents in
the registry.

Aggregation agent: check an incoming message and
execute

1. Check the incoming message to see whether it
is a time event or a new metric instance. If it is
a time event, go to 3; otherwise continue.

2. Check the incoming new metric instance to see
whether new outgoing metric instances should
be created. If yes, continue; otherwise, do some
book keeping (update internal states) and go to
step 6.

3. Get a list of output metrics.
4. Create a new instance for each of these

metrics.
5. Forward each new instance to its

corresponding repository.
6. Check whether there are more incoming

messages, if yes, go to 1; otherwise go to sleep.

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on March 22,2010 at 17:24:49 EDT from IEEE Xplore. Restrictions apply.

Most pub/sub systems guarantee that incoming new metric
instances will be received as the same order as they were sent
out. If this is not the case, the agent may need to cache
incoming new instances and handle them at an appropriate
time later. This can be done in step 2 where the agent
executes the book keeping function.

V. KNOWLEDGE AGENT

Knowledge agents answer what-if queries. A what-if
analysis is an interaction between a user and a knowledge
agent: The user assigns hypothetical values to a group
metrics, and feeds these values into a knowledge agent,
which consequently returns its best estimate about the values
of another group of metrics of interest. Since the output
metric values from knowledge agents are estimates,
sometimes information about how accurate these values are
also attached, which is usually represented by probabilities.
In general, a what-if analysis can be presented by the
following process.

A knowledge agent can be viewed as function)(⋅f

mapping ...},....},,...},...{,{,...},,{{ 2122211211 ii vvvvvvV = to

,...},{ 21 kk wwW = and ,...},{ 21 kk eeE = , i.e.,

)(, VfEW = .

This is synchronized mapping, meaning that given the
inputs, the knowledge agent generates the outputs
immediately. There is no time delay except the computation
time.

There are two different approaches to implement a
knowledge agent. One is to hard code function)(⋅f into the

agent. In this approach, the logic of function)(⋅f needs to
be known in prior; and once coded, this logic stays fixed.
This approach is suitable when the relationship between the
input metric sets }{ iM and the output metric set }{ kY is
known in prior and does not change frequently.

Another approach is to equip the agent with learning
capabilities such that it can discover the function)(⋅f
autonomously. The advantage of this approach is clear: 1)
sometimes the mapping function)(⋅f between input and
output metrics is unknown; and 2) it will allow what-if
queries always being answered based on the most up-to-date
knowledge.

To do so, a knowledge agent maintains a learning module.
This learning module has a very similar structure as an
aggregation agent: they both takes a group of metric as input,
they both register to metric repositories to receive new metric
instances of their interest, and they both are able to receive
time events. The only difference is that instead of generate
new metric instances as the aggregation agent does, the
learning module within a knowledge agent always updates its

internal model)(
~

⋅f , which is the current approximation of

the unknown functional mapping)(⋅f , based on its own
updating logic.

Just like an aggregation agent, the learning module of a
knowledge agent can get training data from metric
repositories either passively or actively. In a passive pattern,
the new metric instances are forwarded to the module once
they are created. In an active pattern, the knowledge agent
retrieves metric instances as it needs. When to retrieve data is
determined by its own internal logic.

A knowledge agent is also a long-living autonomous entity,

it continuously and incrementally update)(
~

⋅f as more
training data become available. It has three basic methods to
control the updating frequency: 1) it can wake up to learn
periodically under the control of a time clock, 2) it can update

)(
~

⋅f every time a new instance of an input metric is
received, or 3) or it can pre-specify a rule and wake up every
time this rule is triggered. The last method provides a great
deal of flexibilities. For example, a knowledge agent can
specify that it will wake up every time when receiving a
metric instance with Value= 123. Just like aggregation agent,
learning knowledge agents are long-living state machines.
They maintain their own logic and states for learning.

When receiving a what-if query, the currently available

approximation function)(
~

⋅f is applied on the incoming
query to generate an answer to it.

)(
~

, VfEW =

What-If analysis

1. The user selects a group of metrics }{ iM .

2. For each metric iM , the user creates multiple

hypothetical instances }{ ijv (assign values to

Value, Time and Attributes fields), where ijv is

the j’th instance of metric iM .

3. Feed all the instances

...},....},,...},...{,{,...},,{{ 2122211211 ii vvvvvv

into a knowledge agent.
4. The knowledge agent produces a group of instance

values ,...},{ 21 kk ww for each metric kY in a

output metric set }{ kY . It may also create a data

set ,...},{ 21 kk ee that indicates how accurate the

output metric values ,...},{ 21 kk ww are for each

kY .

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on March 22,2010 at 17:24:49 EDT from IEEE Xplore. Restrictions apply.

This process of applying the learned function is executed a
separate thread within a knowledge agent to ensure that two
activities: learning the model, and applying the model, can
run in parallel.

To summarize, a knowledge agent receives three types of
messages: what-if queries, time events, and new metric
instances. Here is the generic procedure for knowledge
agents.

VI. DISCUSSION

To facilitate administration and management, we require
all entities in a metric network publish their meta-data in a
single meta-data store.

1. The contextual meta-data of all the metrics should be
published.

2. All metric repositories publish what metric it stores and
data query interface (used to retrieve historical metric
instances).

3. All aggregation agents publish what their input and
output metrics are.

4. All knowledge agents publish the format of the what-if
they answer, the format of the training data they need, and
training data sources.

To add a new entity to a metric network, one must first
publish all the meta-data of this entity into the meta-data
store. A meta-data store can be implemented by different
technologies, including databases, XML files, or even data
files with proprietary formats. Many database products

provide enhancement specifically for meta-data management.
For example, IBM DB2 Cube Views provides an API to
manage and access metadata stored in DB2.

Similarly, many different technologies can be used to
implement metric repositories. Since metric repositories need
to store all the history metric data, database technology is a
preferred choice. As mentioned before, many metric
repositories may physically locate on a single database, as
long as the metric repository interface is provided.

Long-living aggregation agents are usually implemented as
background processes or services that perform a user-
specified aggregation function on the input metric instances.
The complexity of the aggregation agent greatly depends on
the complexity of the user-specified aggregation function, the
number of input and output metrics and their synchronicity
characteristics. Various optimization strategies can be used in
the implementation of an aggregation agent. Existing
techniques from query processing and optimization in data
streams and continuous queries readily apply. A detailed
exposition is beyond the scope of this paper and the reader
should refer to [11] for an overview. The choice of what
processing and optimization techniques to use also depends
on how the real-time requirement is specified. In most
enterprises, refresh rates in the order of seconds can be
considered real-time as compared to daily or weekly extract-
transform-load (ETL) data warehousing processes. In the case
of mission critical KPIs where millisecond refresh rates are
required, then processing techniques from data stream
systems such as Gigascope [10] can be adopted in the
implementation of the Metric Network system.

Knowledge agents are usually implemented as services,
since many users may access the same agent to analyze
different scenarios at the same time. The learning module
within a learning knowledge agent can be implemented as
background processes or services, just like an aggregation
agent. Another implementation decision is the frequency of
model update. Incremental update algorithms exists for many
types of models (e.g. regression, neural networks, statistical
models) and those can be used if the model is expected to
change frequently. In most cases, the model is expected to
change much less frequently than the data in the metric
instances; hence periodic training to update the model is
probably sufficient to meet business requirements and is
probably more efficient.

Many pub/sub middleware products are available to
support communication between metric network entities; for
example, BizTalk, Websphere MQ, JMS, etc.

Temporally correlated metrics are usually generated by a
single aggregation agent so that a single clock is used to mark
the Time fields of these metrics. If one needs to temporally
correlate multiple metrics that are generated by different
aggregation agents, one has to synchronize the clocks of these
agents, the standard approach is to utilize Network Time
Protocol [6]. If only the relative order of these metric
instances, not the absolute time, matters, assigning each
instance a consecutively increasing order number, as an
attribute, can also solve the problem.

VII. A SCENARIO ANALYSIS

Knowledge agent: learning and applying the model

1. Is incoming message a what-if query? If yes,
continue; otherwise, got to 3.

2. Start a new thread,
a. Take the current learning model

)(
~

⋅f ,

b. Output)(
~

, VfEW =

c. Exit this thread and go to step 7.
3. Check the incoming message to see whether it

is a time event or a new metric instance. If it is
a time event, go to 5 (start learning); otherwise
continue.

4. Check the incoming new metric instance to see
whether it is time to generate a new learning
model. If yes, continue; otherwise, do some
book keeping ((update internal states) and go
to step 7.

5. Get all the training data required for learning.

6. Update learning model)(
~

⋅f .

7. Check whether there are more incoming
messages, if yes, go to 1; otherwise go to sleep.

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on March 22,2010 at 17:24:49 EDT from IEEE Xplore. Restrictions apply.

In this section, we use an example scenario to illustrate
how to construct a metric network and use it for serviceability
prediction. Metrics in this scenario are part of the real metrics
a Fortune 500 company measures to monitor its inventory
and sales. In this fictitious scenario, this company wants to
evaluate the risk and benefit of expanding its Web sales
practice. To do so, 5 derived metrics M5-M9 are defined.
The meaning of these metrics is self-explanatory by their
names (see Table 3). These metrics are built on top of 4
primary metrics M1-M4. Each row in the table represents a
metric; each column is an attribute. We mark in the table by
“x” to indicate which metric has which attributes defined.

Every time a customer order arrives, a new instance of
metric “Sales revenue” will be generated. The Value field of
this new instance carries the sales revenue of this order. This
metric has four attributes “Fulfillment region” , “Order ID”,
“Customer sector” and “Sales channel”, which carries
information about where this order will be fulfilled, a unique
order ID, which customer sector this order is from, and which
sales channel it is from (Web is a sales channel).

From metric “Sales revenue”, we can easily aggregate over
appropriate attributes to get metrics “Growth of sales of Web
business”, “Buy frequency” and “Web revenue”. To get
metric “Sales ratio of priority/growing products”, we need to
know what products each customer order contains and what
products are labeled as priority/growing products. We assume
this information is available. Based on it, we can calculate
this metric.

Table 3: A scenario with user-defined metrics and
attributes.

A single customer order may contain multiple products. If
one product runs out of inventory, a new instance of metric
“Stock out” is generated. Once all the products an order
contains are shipped, a new instance of metric “one-time ship
performance” is generated. To compute derived metric
“Customer serviceability”, we take metrics “Sales revenue”
and “One-time ship performance” as the input; correlate them

on attribute “Order ID”; and then aggregate on “Order ID” to
generate a new instance of metric “Customer serviceability”

With this metric network deployed, the company can
monitor its performance in nearly real time. Now suppose the
management wants to do a what-if analysis on metric
“Customer serviceability”, specifically, they would like to
know what this metric looks like in the next month as the
spring sales season is closing. They have developed a good
learning algorithm that can predict “Customer serviceability”
accurately. They have deployed this algorithm as a
knowledge agent and use the historical data of metrics “Sales
revenue” and “Inventory” to train it continuously. Now the
matter of finding out what the “Customer serviceability”
value is for the next month is as simple as providing a set of
hypothetical values of “Sales revenue” and “Inventory”,
which can be either generated randomly by a simulator or
inputted by the user, and then feed them into the knowledge
agent to obtain the predicted performance value.

VIII. CONCLUSION

Business performance monitoring is crucial to all
enterprises. The traditional ETL data warehousing approach
is limited in its ability to provide KPIs in a near real time
fashion. In this paper, we propose a Metric Network System
to manage KPIs and compute them in near real time. Our
system consists of loosely coupled metrics, metrics
repositories, aggregation agents, and knowledge agents that
are easily extensible and can be implemented using any
commercially available Service-Oriented Architecture (SOA)
stack.

REFERENCES

[1] A. Arasu, S. Babu, and J. Widom. “The CQL

ContinuousQuery Language: Semantic Foundations and
Query Execution”. Technical Report 2003-67, Stanford
University, 2003.

[2] P. Bonnet, J. Gehrke, P. Seshadri. “Towards Sensor

Database Systems”. In Proc. 2nd Int. Conf. on Mobile
Data Management. pp3-14. pages 3-14. 2001.

[3] D. Carney, U. Cetinternel, M. Cherniack, C. Convey, S.

Lee, G. Seidman, M. Stonebraker, N. Tatbul, S. Zdonik.
“Monitoring streams|, A New Class of Data Management
Applications”. In Proc. 28th Int. Conf. on Very Large
Data Bases, pp. 215-226. 2002.

[4] S. Chandrasekaran and M. J. Franklin. “PSoup: a system

for streaming queries over streaming data”. In VLDB
Journal, August 2003.

 [5] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.

Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, M. Shah.
“TelegraphCQ: Continuous Data flow Processing for an
Uncertain World”. In Proc. 1st Biennial Conf. on
Innovative Data Syst. Res, pp. 269-280. 2003.

 Fulfillment
region
(A1)

Order ID
(A2)

Product
ID
(A3)

Customer
sector
(A4)

Sales
channel
(A5)

M1 Sales revenue x x x x
M2 Inventory x x
M3 Stock-out x x
M4 On-time ship

performance x x x

M5 Sales ratio of
priority/growi
ng products

 x

M6 Growth of
sales of Web
business

 x

M7 Buying
frequency

 x x

M8 Web revenue x x
M9 Customer

serviceability x x x

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on March 22,2010 at 17:24:49 EDT from IEEE Xplore. Restrictions apply.

[6] D. L. Mills. “Network Time Protocol (Version 3)
Specification, Implementation and Analysis”. Rfc-1305,
1992.

[7] A. Lerner, D. Shasha. “AQuery: Query Language for

Ordered Data, Optimization Techniques, and
Experiments”.Technical Report 2003-836, New York
University, March 2003.

[8] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,

M. Datar, G. Manku, C. Olston, J. Rosenstein, R. Varma.
“Query Processing, Approximation, and Resource
Management in a Data Stream Management System”. In
Proc. 1st Biennial Conf. on Innovative Data Syst. Res,
pp. 245-256. 2003.

[9] Y. Zhu and D. Shasha, "Statstream: Statistical monitoring

of thousands of data streams in real time". In
Proceedings of the 28th ACM VLDB International Conf.
on Vary Large Data Bases, pp. 358-369, 2002.

[10] C. Cranor, T. Johnson, O. Spatscheck, and V.

Shkapenyuk. Gigascope: A stream database for network
applications. In Proc. ACM SIGMOD, pp. 262, 2002.

[11] B. Babcock, S. Babu, M. Datar, R. Motwani, and J.

Widom. Models and Issues in Data Stream Systems.
In Proc. of PODS 2002, June 2002

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on March 22,2010 at 17:24:49 EDT from IEEE Xplore. Restrictions apply.

