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Abstract-Monitoring and analyzing business performance in 

a continuous manner nowadays is crucial for enterprises to 
achieve operational excellence, and to better align daily 
operations with long-term business strategies. To do so, 
performance measures need to be collected from daily 
operations and aggregated to construct higher-level Key 
Performance Indicators (KPIs) in nearly real time.  We propose 
a system called metric network for enterprise-wide business 
performance monitoring and analysis. A metric network 
consists of metrics, metric repositories, aggregation agents, and 
knowledge agents. We describe in details the generic procedure 
patterns of these metric network entities and their 
communication pattern. Our loosely coupled design makes it  
easy to enhance features by adding more metrics and agents. 
The proposed approach is examined using real metrics on a 
fictitious scenario.  

I. INTRODUCTION 

It is an often-quoted axiom of business that “you cannot 
manage what you cannot measure.” Nowadays, enterprises 
have realized that monitoring and analyzing business 
performance in a continuous manner is crucial to achieve 
operational excellence, and to better align daily operations 
with long-term business strategies.  

An enterprise executes various business processes in its 
every day operations. These processes often span several 
functional units; sometimes even extend to link with its 
partners’ processes. They usually involve many different 
roles, assets, and resources; they may be supported by IT 
systems, or be executed in ad hoc manner manually.  To 
monitor enterprise-wide business performance, one has to 
continuously collect metric data from these processes, 
aggregate the lower-level operational metrics to build higher-
level Key Performance Indicators (KPIs).  

In this paper, we present a system called metric network 
for enterprise-wide business performance monitoring and 
analysis. A metric network consists of metrics, metric 
repositories, aggregation agents, and knowledge agents. 
Metric repositories store metric values. These repositories are 
usually distributed, close to the business processes they are 
collecting data from. Aggregation agents automatically 
aggregate lower-level metrics to create higher-level KPIs in 
real time.  This ensures that every day operational measures 
are reflected in the KPIs in a timely fashion, which is 
essential to make prompt executive decisions. Agents and 
metric repositories communicate through message passing, 
which makes the whole system loosely coupled, and ensures 
that it is easy to enhance features by adding more metrics and 
agents.  

Metric measurements collected are not just for 
presentation. Our metric network also supports generic what-
if analysis. In a what-if analysis, a user submits a hypothetical 
business scenario to a knowledge agent, which in turn 

responds with the estimated outcome of this scenario. What-if 
analysis is widely used in business to identify root causes, 
predict future performance, and evaluate strategy/operation 
changes. A key feature of our metric network is that it 
supports learning knowledge agents, which automatically 
build up learning models that are used to answer what-if 
queries. 

Using a metric network, management at different level of 
an enterprise hierarchy can address their local concerns: they 
can use their own aggregation agents to build metrics to 
measure local performance; they can use their own 
knowledge agents to analyze business scenarios of their 
interest. They can do all these in a single metric network 
without interference with each other. However, since all share 
the same metric network, all this localized knowledge about 
how business is operated in a daily basis is integrated in the 
metric network through knowledge agents. This knowledge 
can be shared by the whole enterprise. Higher management 
can reuse the local metrics to monitor enterprise-wide 
performance, to do deeper what-if analysis by chaining up 
knowledge agents deployed at local level. In this sense, our 
metric network is an enterprise-wide knowledge integration 
tool. 

II. RELATED WORK 

Real time business process monitoring and data mining, 
and sensor network applications often generate a large 
amount of data continuously. These applications call for a 
new kind of data management system to persist, retrieve and 
query continuous data streams. Stream data management has 
drawn considerable attention in the past few years. Many 
issues that are unique to stream management have been 
addressed, including extending SQL to accommodate time-
based and order-based operators, approximately answering 
queries, and accommodating long-run queries, etc. [2, 3, 9]. 
Many experimental systems have been built [1, 4, 5, 8, 7]. 
Although commercial systems are limited at the current stage, 
we expect many will be available in the near future as the 
technology and the market grow mature. Our metric network 
builds on top of stream management systems and relies on 
them to manage metric streams. A metric network is not an 
approach to manage stream metric data per se, but an 
approach to dynamically build meaningful relations between 
these streams. 

One kind of emerging business applications that prompt 
stream management is real time business intelligence (BI). 
The promise of real time BI is to extract vital business 
information in nearly real time from streams of operational 
data generated by enterprises’ daily operations. This requires 
real time stream management and real time (online) learning 
capabilities. Online learning algorithms are not necessarily 
different from offline algorithms. What matters is the 
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frequency an algorithm’s internal learning model is updated. 
In the extreme case, it can be updated every time a new piece 
of training data is available. Doing so may not be necessary 
and may hurt performance. How frequent and under what 
conditions a learning model needs to be updated is 
application specific. Our metric network leaves this decision 
to the application designer. From a real time BI perspective, 
our metric network can be viewed as framework to build real 
time BI systems. Knowledge agents incorporate learning 
capabilities, and they interact with metric repositories (stream 
data managers) to enable real time BI.  

,  

III. METRIC AND METRIC REPOSITORY 

We use the term “monitored object” to refer to any 
business entity/process whose performance is of the concern 
and thus is measured. A monitored object is usually measured 
by multiple metrics with each measuring a specific aspect of 
the object. Metrics directly measuring a monitored object are 
primitive metrics; metrics that are computed from lower-level 
metrics (primitive or derived) are derived metrics.  

A metric network consists of metrics, metric repositories 
and agents. Each metric (primitive or derived) has a single 
repository, which is the place where all the historical metric 
values are stored. Each metric repository hosts a single 
metric. This one-to-one relation between metrics and metric 
repositories is adopted to make sure that the whole metric 
network design is conceptually simple. It is not an 
implementation requirement. For example, a traditional 
relational database can be used to host multiple metrics as 
long as it provides a metric repository interface for each 
metrics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are two kinds of agents: aggregation agents combine 
lower-level metrics to create higher-level metrics; knowledge 
agents maintain the knowledge about the metrics for business 
analysis. Figure 1 shows an example metric network with 12 

metric repositories (R1-R12) and 5 aggregation agents (AA1-
AA5). Repositories R1-R6 store primitive metrics; they are 
generated by some external measure devices. Repositories 
R7-R12 store derived metrics; they are generated by 
aggregation agents. For example, metric M9 (corresponding 
to repository R9) is generated based on metrics M5 and M6 
by agent AA3.  

Table 1: Contextual information of a metric. 

 

 

Table 2: Structure of metric data instances 

 

Any metric (primitive or derived) can be viewed as a 
stream of data generated by a measurement device: a 
primitive metric stream is generated by an external device; a 
derived metric stream is generated by an aggregation agent. A 
metric data stream consists of many metric instances; each 
instance represents the measurement result obtained from a 
single measurement activity. A metric repository is the place 
where the whole data stream is persisted.  

Instance data need to be organized for easy access and 
query. Contextual information (meta-data) of a metric 
describes how its data instances are organized. A metric 
context consists of many slots; each slot contains an attribute 
of the metric. When designing a metric, one needs to decide 
what attributes need to be included, and put each attribute 
into a context slot. Any metric must have at least one attribute 
called Name; it represents the metric’s name. Each metric 
should have a unique name (ID) within the whole metric 
network.  Table 1 shows the contextual information of an 
example metric called “Daily Sales Revenue” with two 
attributes “Store ID” and “Customer ID”. Metric contextual 
information is stored in a central meta-data store to facilitate 
system administration, see Section VI.  
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Figure 1: An example metric network. 
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Each metric instance within a metric data stream contains 
three fields: Value, Time and Attributes.  The Value field 
contains the measurement value of this instance; the Time 
field contains a timestamp of this instance, usually used to 
temporally correlate multiple metric instances; and the 
Attributes field contains the values of user-defined attributes 
in the context slots.  These attributes are used to capture 
correlation information between metric instances. The values 
of all three fields (Value, Time and Attributes) in a metric 
instance will be assigned by an aggregation agent when 
generating this instance.  (For primitive metric instances, 
those values are assigned by the external devices that 
generate them.)  Table 2 shows the data stream structure of 
metric “Daily Sales Revenues” defined above. 

In a metric network, metric repositories get metric 
instances generated by aggregation agents and store them; 
agents get metric instances from repositories to generate 
instances of high-level metrics (aggregation agents) or build 
metric relationship models (knowledge agents).  All the 
repositories and agents follow a few well-defined procedures 
to communicate with each other.  

Before entering into further discussion about these 
procedures, we first describe how entities (repositories and 
agents) in a metric network communicate with each other. If 
an agent wants to receive new instances from a metric 
repository, it needs to first register with this repository. Every 
time a new instance is received by the repository; it forwards 
the instance to all the agents in its registry list 1. The same 
thing can be done for an aggregation agent, which may create 
new instances for multiple higher-level metrics; and each of 
these metric repositories needs to register with this 
aggregation agent. This communication pattern is called 
publication/subscription pattern. There are many pub/sub 
systems available, refer to Section VI for further discussion. 

Here is the atomic procedure a metric repository executes 
after receiving a new metric instance. 

 

 

 

 

 

 

 

IV. AGGREGATION AGENT 

Aggregation agents take metric instances from multiple 
lower-level metrics as input and generate one instance for 
                                                           
1 This can be implemented by sending a notification message 
instead of the actual new instance to the subscribers, and then 
the subscribers decide whether to retrieve the new instance at 
their own discretion. For conceptual simplicity, we describe 
the procedures as if all new instances are always forwarded. 
It should be clear that actually implementation may vary.  
 

each of its output metrics. They are long-living and 
autonomous entities. When there is no work to do, they go to 
sleep. Incoming messages wake them up to generate an 
output. 

Two types of messages may wake up an aggregation agent: 
incoming new metric instances or time events. An incoming 
new metric instance may trigger the agent to generate an 
outgoing new instance. The agent has its own internal logic to 
decide whether a new instance will actually be generated or 
not. For example, agent AA3 in Figure 1 may create a new 
instance of metric M9 after receiving three instances of 
metric M5.  

This implies that aggregation agents are long-living state 
machines. They are not simple stateless Web Services; they 
maintain their own internal states in responding to external 
events.  

An aggregation agent may need to perform computation 
asynchronously. To see this, consider this example: a new 
instance of metric “Revenue” is generated every time a 
customer purchases a product.  An agent takes metric 
“Revenue” as input and computes metric “Daily revenue” 
every day. To do so, the agent needs to set up a clock to wake 
up and do the computation.   

Here is the generic procedure of aggregation agents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An aggregation agent can apply the above procedure to 
create multiple temporally correlated output metrics. It can do 
so by simply marking the Time fields of these instances with 
the same timestamp. 

By assign the Attributes fields of output metric instances 
with proper values, an aggregation agent can also correlate 
them according to an arbitrary user-defined logic. Further 
more, if the values in the Attributes fields of the output metric 
instances are assigned based on those of the incoming 
instances, an agent can also correlate the output metrics with 
input metrics.  

Metric repository: store and forward an incoming new 
metric instance 
 

1. Store the received new instance into the 
repository. 

2. Forward this new instance to all the agents in 
the registry.  

 

Aggregation agent: check an incoming message and 
execute  
 

1. Check the incoming message to see whether it 
is a time event or a new metric instance. If it is 
a time event, go to 3; otherwise continue. 

2. Check the incoming new metric instance to see 
whether new outgoing metric instances should 
be created. If yes, continue; otherwise, do some 
book keeping (update internal states) and go to 
step 6. 

3. Get a list of output metrics. 
4. Create a new instance for each of these 

metrics.  
5. Forward each new instance to its 

corresponding repository.  
6. Check whether there are more incoming 

messages, if yes, go to 1; otherwise go to sleep. 
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Most pub/sub systems guarantee that incoming new metric 
instances will be received as the same order as they were sent 
out. If this is not the case, the agent may need to cache 
incoming new instances and handle them at an appropriate 
time later. This can be done in step 2 where the agent 
executes the book keeping function.  

V. KNOWLEDGE AGENT 

Knowledge agents answer what-if queries. A what-if 
analysis is an interaction between a user and a knowledge 
agent: The user assigns hypothetical values to a group 
metrics, and feeds these values into a knowledge agent, 
which consequently returns its best estimate about the values 
of another group of metrics of interest.  Since the output 
metric values from knowledge agents are estimates, 
sometimes information about how accurate these values are 
also attached, which is usually represented by probabilities. 
In general, a what-if analysis can be presented by the 
following process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A knowledge agent can be viewed as function )(⋅f  

mapping  ...},....},,...},...{,{,...},,{{ 2122211211 ii vvvvvvV =  to 

,...},{ 21 kk wwW = and ,...},{ 21 kk eeE = , i.e., 

 
                               )(, VfEW =  . 

This is synchronized mapping, meaning that given the 
inputs, the knowledge agent generates the outputs 
immediately. There is no time delay except the computation 
time.  

There are two different approaches to implement a 
knowledge agent. One is to hard code function )(⋅f  into the 

agent. In this approach, the logic of function )(⋅f   needs to 
be known in prior; and once coded, this logic stays fixed. 
This approach is suitable when the relationship between the 
input metric sets }{ iM   and the output metric set  }{ kY  is 
known in prior and does not change frequently.  

 

Another approach is to equip the agent with learning 
capabilities such that it can discover the function )(⋅f  
autonomously. The advantage of this approach is clear: 1) 
sometimes the mapping function )(⋅f  between input and 
output metrics is unknown; and 2) it will allow what-if 
queries always being answered based on the most up-to-date 
knowledge.  

To do so, a knowledge agent maintains a learning module. 
This learning module has a very similar structure as an 
aggregation agent: they both takes a group of metric as input, 
they both register to metric repositories to receive new metric 
instances of their interest, and they both are able to receive 
time events. The only difference is that instead of generate 
new metric instances as the aggregation agent does, the 
learning module within a knowledge agent always updates its 

internal model )(
~

⋅f , which is the current approximation of 

the unknown functional mapping )(⋅f , based on its own 
updating logic.  

Just like an aggregation agent, the learning module of a 
knowledge agent can get training data from metric 
repositories either passively or actively. In a passive pattern, 
the new metric instances are forwarded to the module once 
they are created. In an active pattern, the knowledge agent 
retrieves metric instances as it needs. When to retrieve data is 
determined by its own internal logic.  

A knowledge agent is also a long-living autonomous entity, 

it continuously and incrementally update )(
~

⋅f   as more 
training data become available.  It has three basic methods to 
control the updating frequency: 1) it can wake up to learn 
periodically under the control of a time clock, 2) it can update   

)(
~

⋅f  every time a new instance of an input metric is 
received, or 3) or it can pre-specify a rule and wake up every 
time this rule is triggered. The last method provides a great 
deal of flexibilities. For example, a knowledge agent can 
specify that it will wake up every time when receiving a 
metric instance with Value= 123. Just like aggregation agent, 
learning knowledge agents are long-living state machines. 
They maintain their own logic and states for learning. 

When receiving a what-if query, the currently available 

approximation function )(
~

⋅f  is applied on the incoming 
query to generate an answer to it.  

)(
~

, VfEW =                               

What-If analysis 
 

1. The user selects a group of metrics }{ iM . 

2. For each metric iM , the user creates multiple 

hypothetical instances }{ ijv  (assign values to 

Value, Time and Attributes fields), where ijv  is 

the j’th instance of metric iM . 

3. Feed all the instances 

...},....},,...},...{,{,...},,{{ 2122211211 ii vvvvvv  

into a knowledge agent. 
4. The knowledge agent produces a group of instance 

values ,...},{ 21 kk ww  for each metric kY  in a 

output metric set }{ kY . It may also create a data 

set ,...},{ 21 kk ee  that indicates how accurate the 

output metric values ,...},{ 21 kk ww are for each 

kY .  
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This process of applying the learned function is executed a 
separate thread within a knowledge agent to ensure that two 
activities: learning the model, and applying the model, can 
run in parallel. 

To summarize, a knowledge agent receives three types of 
messages: what-if queries, time events, and new metric 
instances.  Here is the generic procedure for knowledge 
agents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. DISCUSSION  

To facilitate administration and management, we require 
all entities in a metric network publish their meta-data in a 
single meta-data store.  

1. The contextual meta-data of all the metrics should be 
published. 

2. All metric repositories publish what metric it stores and 
data query interface (used to retrieve historical metric 
instances). 

3. All aggregation agents publish what their input and 
output metrics are.  

4. All knowledge agents publish the format of the what-if 
they answer, the format of the training data they need, and 
training data sources. 

To add a new entity to a metric network, one must first 
publish all the meta-data of this entity into the meta-data 
store.  A meta-data store can be implemented by different 
technologies, including databases, XML files, or even data 
files with proprietary formats. Many database products 

provide enhancement specifically for meta-data management. 
For example, IBM DB2 Cube Views provides an API to 
manage and access metadata stored in DB2.  

Similarly, many different technologies can be used to 
implement metric repositories. Since metric repositories need 
to store all the history metric data, database technology is a 
preferred choice. As mentioned before, many metric 
repositories may physically locate on a single database, as 
long as the metric repository interface is provided.  

Long-living aggregation agents are usually implemented as 
background processes or services that perform a user-
specified aggregation function on the input metric instances. 
The complexity of the aggregation agent greatly depends on 
the complexity of the user-specified aggregation function, the 
number of input and output metrics and their synchronicity 
characteristics. Various optimization strategies can be used in 
the implementation of an aggregation agent. Existing 
techniques from query processing and optimization in data 
streams and continuous queries readily apply. A detailed 
exposition is beyond the scope of this paper and the reader 
should refer to [11] for an overview. The choice of what 
processing and optimization techniques to use also depends 
on how the real-time requirement is specified. In most 
enterprises, refresh rates in the order of seconds can be 
considered real-time as compared to daily or weekly extract-
transform-load (ETL) data warehousing processes. In the case 
of mission critical  KPIs where millisecond refresh rates are 
required, then processing techniques from data stream 
systems such as Gigascope [10] can be adopted in the 
implementation of the Metric Network system. 

Knowledge agents are usually implemented as services, 
since many users may access the same agent to analyze 
different scenarios at the same time. The learning module 
within a learning knowledge agent can be implemented as 
background processes or services, just like an aggregation 
agent. Another implementation decision is the frequency of 
model update. Incremental update algorithms exists for many 
types of models (e.g. regression, neural networks, statistical 
models) and those can be used if the model is expected to 
change frequently. In most cases, the model is expected to 
change much less frequently than the data in the metric 
instances; hence periodic training to update the model is 
probably sufficient to meet business requirements and is 
probably more efficient. 

Many pub/sub middleware products are available to 
support communication between metric network entities; for 
example, BizTalk, Websphere MQ, JMS, etc. 

Temporally correlated metrics are usually generated by a 
single aggregation agent so that a single clock is used to mark 
the Time fields of these metrics. If one needs to temporally 
correlate multiple metrics that are generated by different 
aggregation agents, one has to synchronize the clocks of these 
agents, the standard approach is to utilize Network Time 
Protocol [6].  If only the relative order of these metric 
instances, not the absolute time, matters, assigning each 
instance a consecutively increasing order number, as an 
attribute, can also solve the problem. 

VII. A SCENARIO ANALYSIS 

Knowledge agent: learning and applying the  model  
 

1. Is incoming message a what-if query? If yes, 
continue; otherwise, got to 3.  

2. Start a new thread,  
a. Take the current learning model 

)(
~

⋅f ,  

b. Output )(
~

, VfEW =  

c. Exit this thread and go to step 7. 
3. Check the incoming message to see whether it 

is a time event or a new metric instance. If it is 
a time event, go to 5 (start learning); otherwise 
continue. 

4. Check the incoming new metric instance to see 
whether it is time to generate a new learning 
model. If yes, continue; otherwise, do some 
book keeping ((update internal states) and go 
to step 7. 

5. Get all the training data required for learning.  

6. Update learning model )(
~

⋅f .  

7. Check whether there are more incoming 
messages, if yes, go to 1; otherwise go to sleep. 
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In this section, we use an example scenario to illustrate 
how to construct a metric network and use it for serviceability 
prediction. Metrics in this scenario are part of the real metrics 
a Fortune 500 company measures to monitor its inventory 
and sales. In this fictitious scenario, this company wants to 
evaluate the risk and benefit of expanding its Web sales 
practice.  To do so, 5 derived metrics M5-M9 are defined. 
The meaning of these metrics is self-explanatory by their 
names (see Table 3). These metrics are built on top of 4 
primary metrics M1-M4. Each row in the table represents a 
metric; each column is an attribute. We mark in the table by 
“x” to indicate which metric has which attributes defined.  

Every time a customer order arrives, a new instance of 
metric “Sales revenue” will be generated. The Value field of 
this new instance carries the sales revenue of this order. This 
metric has four attributes “Fulfillment region” , “Order ID”, 
“Customer sector” and “Sales channel”, which carries 
information about where this order will be fulfilled, a unique 
order ID, which customer sector this order is from, and which 
sales channel it is from (Web is a sales channel).  

From metric “Sales revenue”, we can easily aggregate over 
appropriate attributes to get metrics “Growth of sales of Web 
business”, “Buy frequency” and “Web revenue”. To get 
metric “Sales ratio of priority/growing products”, we need to 
know what products each customer order contains and what 
products are labeled as priority/growing products. We assume 
this information is available. Based on it, we can calculate 
this metric. 

Table 3: A scenario with user-defined metrics and 
attributes. 

  

A single customer order may contain multiple products. If 
one product runs out of inventory, a new instance of metric 
“Stock out” is generated. Once all the products an order 
contains are shipped, a new instance of metric “one-time ship 
performance” is generated. To compute derived metric 
“Customer serviceability”, we take metrics “Sales revenue” 
and “One-time ship performance” as the input; correlate them 

on attribute “Order ID”; and then aggregate on “Order ID” to 
generate a new instance of metric “Customer serviceability” 

With this metric network deployed, the company can 
monitor its performance in nearly real time. Now suppose the 
management wants to do a what-if analysis on metric 
“Customer serviceability”, specifically, they would like to 
know what this metric looks like in the next month as the 
spring sales season is closing. They have developed a good 
learning algorithm that can predict “Customer serviceability” 
accurately. They have deployed this algorithm as a 
knowledge agent and use the historical data of metrics “Sales 
revenue” and “Inventory” to train it continuously. Now the 
matter of finding out what the “Customer serviceability” 
value is for the next month is as simple as providing a set of 
hypothetical values of “Sales revenue” and “Inventory”, 
which can be either generated randomly by a simulator or 
inputted by the user,  and then feed them into the knowledge 
agent to obtain the predicted performance value.  

 

VIII. CONCLUSION 

Business performance monitoring is crucial to all 
enterprises. The traditional ETL data warehousing approach 
is limited in its ability to provide KPIs in a near real time 
fashion. In this paper, we propose a Metric Network System 
to manage KPIs and compute them in near real time. Our 
system consists of loosely coupled metrics, metrics 
repositories, aggregation agents, and knowledge agents that  
are easily extensible and can be implemented using any 
commercially available Service-Oriented Architecture (SOA) 
stack.   
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