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a b s t r a c t

This paper aims to deal with the practical shortages of nearest neighbor classifier. We define a
quantitative criterion of embedding quality assessment for nearest neighbor classification, and present
a method called NNMap to construct a good embedding. Furthermore, an efficient distance is obtained in
the embedded vector space, which could speed up nearest neighbor classification. The quantitative
quality criterion is proposed as a local structure descriptor of sample data distribution. Embedding
quality corresponds to the quality of the local structure. In the framework of NNMap, one-dimension
embeddings act as weak classifiers with pseudo-losses defined on the amount of the local structure
preserved by the embedding. Based on this property, the NNMap method reduces the problem of
embedding construction to the classical boosting problem. An important property of NNMap is that the
embedding optimization criterion is appropriate for both vector and non-vector data, and equally valid
in both metric and non-metric spaces. The effectiveness of the new method is demonstrated by
experiments conducted on the MNIST handwritten dataset, the CMU PIE face images dataset and the
datasets from UCI machine learning repository.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The nearest neighbor (NN) classification is a basic task of learning
problems [1,2]. It classifies a query object into the category as its
most nearest example. The k nearest neighbor (k-NN) classifier
extends this idea by taking k nearest points and assigning the sign of
the majority. Since the k-NN contains the NN as its special case with
k¼1, we do not distinguish the two terms in this paper. Since its
simplicity and efficiency in practical applications, NN classifier has
attracted many researchers to make efforts [3], and is applied in
various domains [4–6]. However, there are still following two main
problems to limit the usage of NN classifier:

1. The efficiency of NN classification heavily depends on the type
of distance measure, especially in a large-scale and high-
dimensional database. In some applications, such as hand-
written digit recognition, DNA sequence analysis, and time
series matching, the data structure is so complicated that the
corresponding distance measure is computationally expen-
sive [7,8]. NN classifier has to compare it with all the other

examples in the database for each query. It may become
impractical for a huge database and frequent queries.

2. Embedding learning is one of the commonly used strategies to
solve the first issue. Here, a natural question is which type of
embedding is good for NN classifier. There are few quantitative
criterions to measure the quality of embedding. Embedding
quality evaluation relies more on intuitive observation for low-
dimensional (e.g., 2-D and 3-D) data visualization and classifier
performance evaluation (e.g., accuracy) for pattern classification.
A quantitative direct quality measure of embedding is necessary
for learning an embedding to construct an efficient distance.

To overcome the above limitations of NN classification, in this
work, we propose a new method called as NNMap, which speeds
up NN classifier through data embedding. The proposed method
makes three key contributions to the current state of the art [9–14].
The first contribution is that the proposed method obtains an
efficient distance metric to take place of the original expensive
distance. The NN classification is performed in the embedded vector
space, rather than the original space, with the cheap distance metric
obtained. This will bring several benefits. Firstly, the proposed
method leads to a significant improvement for the time cost of
distance computations. The main part of NN classification cost lies
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on distance computation. In the paper, a resulted distance metric is
vector-based and easy to be computed. In addition, the experiments
show that the intrinsic discriminant structure is preserved in the
embedded vector space.

The second contribution is defining a new quantitative criter-
ion of embedding quality for NN classification. By using this
criterion, one can evaluate quantitatively the embedding methods
for NN classification. In the past, more attentions were focused on
how to design a complicated objective function of a classifier,
rather than the formal assessment of embedding quality for
classification. Embedding quality evaluation relies more on intui-
tive observation, such as linear discriminant analysis [15], locality
preserving projection [12] and graph embedding [16] do. We
believe that the quantitative criterions of embedding quality
would be various with respect to diverse application environ-
ments. With classification problems to be considered, it should be
defined based on the classifier used. This paper proposes a formal
quantitative criterion of embedding quality, which is designed
specially for NN classification. It directly measures how well the
embedding improves the purity degree of class label in the
neighborhood of each training object. The larger local purity leads
to the better performance of NN classification. So, under this
definition, an embedding with good quality is expected to be good
for NN classification.

The third contribution is a supervised embedding optimization
method (NNMap) under the ensemble learning framework with
the proposed quantitative criterion. The learning procedure fol-
lows the idea of the work of Athitsos et al. [18], which constructs a
multi-dimensional embedding through the boosting framework.
However, different from Athitsos's work, we give a theorem to
guarantee the good quality of the proposed embedding method.
Additionally, classification problems are concerned here rather
than retrieval application in [18]. In the proposed method, any
one-dimensional sub-embedding defines a binary classifier that
predicts whether the quality condition is satisfied. Under the basic
idea that the linear combination of multiple weak classifiers leads
to a strong classifier in the ensemble learning procedure, here the
problem of constructing multidimensional embedding is reduced
to the classical boosting problem of combining many sub-
embeddings into an optimal final embedding. Following the
boosting framework, the combination is easy to be implemented.
The key question is how to design sub-embeddings which corre-
spond to weak classifiers.

The rest of this paper is organized as follows. In Section 2, we
place our work in the context of other related studies. The basic
definitions used in this work are described in Section 3. The proposed
embedding method is presented in Section 4. In Section 5, the bound
of embedding quality is analyzed. In Section 6, experimental results
are provided to illustrate the performance of the NNMap method.
Finally, conclusions are given in Section 7.

2. Related work

In order to handle the above-mentioned limitations of nearest
neighbor classifier, various techniques have been developed,
including traditional fast NN classifications (e.g., tree-based NN
and hashing-based NN), explicit embedding learning (e.g., sub-
space learning and manifold learning) and implicit embedding
learning (e.g., distance learning). In this section, we provide a brief
review on these related techniques for NN classifier. Furthermore,
our proposed method is constructed under the boosting frame-
work. So the boosting-related algorithms are also introduced in
this section. Finally, at the end of this section, we shall compare
our proposed method to these related techniques in order to place
our method in a clear background context.

The NN classification is initially proposed by Cover and Hart [1],
which can be viewed as the extreme case of prototype-based
classification with all training data to be prototypes. The NN
classifier has been widely extended. For example, it has been
extended for uncertain data under the belief function framework
[19,20]. However, as the first limitation summarized above, the NN
classifier will become sensitive and inefficient when the size of
database is larger, the used distance measure is more complicated
or the feature dimensionality is higher. Then, various techniques
have been explored to speed up the NN classifier. To make the
nearest neighbor search more efficient, various tree-based algo-
rithms have been employed, such as VP-tree [9], KD-tree [10], BBD
tree [21], R-tree variations [22,23], and Cover tree [24]. With the
benefit of the tree-structured organization of data, they can reduce
the number of search candidates. However, they also suffer from
the high time cost and space cost for such tree construction when
the dataset is large-scale and high-dimensional [25]. To achieve
more efficiencies in time and space, several approximate nearest
neighbor search algorithms have been proposed, which compro-
mise the accuracy. The typical examples are hashing-based algo-
rithms, such as locality-sensitive hashing [26], and spectral
hashing [27], and coherency sensitive hashing [28]. These hashing
algorithms first project data onto low-dimensional subspaces and
search for approximate nearest neighbors in projected subspaces
through hash tables to reduce search space significantly. However,
these techniques need additional high cost to be implemented for
the exact nearest neighbor search.

Another large group of techniques to expedite NN classifier
especially in high-dimensional feature space, which is closely
related to our method, is embedding learning. They embed objects
into another space with a better structure, and can be summarized
into two categories: explicit embedding and implicit embedding.
The first category aims to obtain the explicit features in objective
space with Euclidean or pseudo-Euclidean distance. This category
includes a large amount of work, such as subspace learning and
manifold learning. The other category directly learns an optimal
distance measure without constructing explicit objective features,
i.e., distance learning. The NNMap combines these two sides,
which not only gives the explicit feature vectors in embedded
space but also leads to an efficient distance metric.

Subspace learning is a class of early and most common
embedding methods, which is applied in many domains such as
face recognition [29]. Principal Component Analysis (PCA) seeks a
set of orthogonal bases in low-dimension space to approximate
original data in L2 norm sense [11]. Non-negative Matrix Factor-
ization (NMF) follows this approximation idea with additional
non-negativity constraints [30]. The NMF method is often
improved by adding supervised information for pattern recogni-
tion tasks. The most famous one of subspace methods is Linear
Discriminant Analysis (LDA). It builds transformation matrix to
separate the inter-class scatter and compress the intra-class
scatter simultaneously. The PCA, NMF, and LDA are all linear
methods. To handle nonlinear structures in data space, the kernel
trick is introduced. The kernel-based algorithms map original data
into a linear space in higher dimensionality inexplicitly, and apply
linear subspace learning methods in projected space. All linear
subspace methods mentioned above can be modified into their
kernel versions, such as Kernel PCA [31], Kernel NMF [32], and
Kernel LDA [33]. It needs to note that kernel methods have no
explicit embeddings [34]. Our method pursues explicit feature
vectors, which are necessary for NN Classifier.

For dimensionality reduction and data visualization, manifold
learning is proposed. Locally Linear Embedding [35], Isomap [36]
and Laplacian eigenmap [37] aim to construct low-dimension data
embeddings, and meanwhile preserve the intrinsic data structure
locally. These methods learn objective features in a low-dimension
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manifold. However, there is no explicit projection model for
mapping a query object into the low-dimension manifold. It is
the most limitation for the usage of these methods. To overcome
this problem, Locality Preserving Projection (LPP) constructs an
explicit linear transformation following the manifold embedding
idea. Recently, Yan et al. summarized most of previous dimension-
ality reduction algorithms to propose a general uniform frame-
work, named Graph Embedding (GE) [16,17]. Although the NNMap
has no transformation matrix, it is easy to compute the embedding
vector for a query object.

Distance learning starts from the work of Xing et al. The NNMap
also results in an efficient distance metric when multi-dimension
feature vectors are obtained. Many earlier distance learning
algorithms, like Xing's method [13], Relevant Component Analysis
(RCA) [38], Discriminative Component Analysis (DCA) [39], and
their kernel versions, learn general Euclidean distance with global
constraints. Recently, many methods focus on the local structure,
such as Discriminant Adaptive Nearest Neighbor [40], Neighbor-
hood Components Analysis (NCA) [14], Large Margin Nearest
Neighbor (LMNN) [41], and many other studies [42,43]. The NNMap
is designed for NN classification, and it focuses on the local
structure. Furthermore, it requires no additional side constraints
except for original sample data and corresponding labels.

The final related techniques to our proposed method are Boosting-
based algorithms. Boosting [44] and Bagging [45] are the two of the
commonly used techniques for ensemble learning. Compared with
Bagging, Boosting performs better in most cases [46]. AdaBoost [47]
is one of the most popular Boosting-based algorithms, which has
been widely applied to many pattern recognition fields, such as face
recognition. AdaBoost creates a collection of weak learners, and
corrects the misclassifications of weak classifiers alternatively by
adjusting their corresponding weights adaptively: increase the
weights of the samples which are misclassified by current weak
learner and decrease the weights of the samples which are correctly
classified. Many other classifiers, such as nearest neighbor classifier,
decision trees [48], and neural networks [49], have been used as weak
learners for AdaBoost. Originally, AdaBoost was developed for binary
classification problems. Later, it was extended to multi-class cases,
which are called as AdaBoosl.M1 and AdaBoost.M2 [47]. Except for
classification applications, some variations of AdaBoost have been
proposed for regression problems by projecting regression problems
into classification problems, for example, AdaBoost.R [47] and Ada-
Boost.R2 [50]. In this work, we extend the application of AdaBoost to
embedding learning.

Neither subspace learning nor manifold learning pays little
attention on defining a quantitative criterion for embedding
quality. For example, LDA characterizes the intra-class compact-
ness and inter-class separability, simultaneously. However, its
embedding quality is just measured in the intuitive sense, rather
than by a formal criterion. In this paper, we define a quantitative
criterion. The embedding method is designed based on this
quantitative criterion. Most of previous studies for embedding
quality, in particular, Lipschitz embeddings [51], FastMap [52],
MetricMap [53], and SparseMap [54], address embedding optimi-
zation from a global geometric perspective. In contrast, our
method constructs optimal embedding preserving local discrimi-
nant relations. For exploring the local structures of the data, there
are many works, for example, [55,56]. However, those presented
local structures are not designed for embedding quality evaluation.

Finally, the need for being able to handle novel data types is
becoming ever more important in modern pattern recognition
application. Non-vector and non-metric problem require more
attention. Most of methods above mentioned can only address
vector or tensor data. Typical subspace learning methods such as
PCA, LDA and NMF, manifold learning algorithms such as LLE, LPP,
and GE, distance learning approaches such as RCA, DCA, NCA and

LMNN, embedding optimization such as FastMap, MetricMap and
SparseMap are all based on Euclidean distance metric, and appro-
priate only for vector or tensor data. Our proposed method can be
applied in both metric and non-metric space, and suitable both for
vector and non-vector data.

3. Background and notation

We first introduce two basic local descriptors of data distribu-
tion structure, the positive ratio and the negative ratio. Later, we
give a formal definition of good embeddings. This definition is also
a reasonable measure for the discriminative capability of the
embedded data distribution structure. Particularly, a good one-
dimension embedding is defined as a special case of Definition 1.
Boosting two types of famous one-dimension embeddings —

reference object embedding and line project embedding — the
NNMap method constructs a final multi-dimension embedding.
Finally, we note that the quality of the final embedding is
consistent with the definition of a good embedding, which is
guaranteed by Theorem 1.

3.1. Embedding quality

We are given access to a database U of labeled examples ðx; lðxÞÞ
drawn from some distribution P over X � f1;2;…;mg, where X is
an instance space, l(x) denotes the class label of x, and
U ¼ fðx1; lðx1ÞÞ; ðx2; lðx2ÞÞ;…; ðxN ; lðxNÞÞg. f is an embedding f : X-E,
where E is the embedded space. In this work, E is only considered
as a real number vector space. Here, f is called as 1-dimension
(1-D) embedding if E¼ R1, and called as d-dimension (d-D)
embedding if E¼ Rd. We consider the d-D embedding F formulated
as ½F1; F2;…; Fd�, where Fi is a 1-D embedding. An object xAU is
projected as eiAR1 by FiðxÞ; i¼ 1;…; d. So if d-D embedding F is
applied on x, we have

FðxÞ ¼ ½F1ðxÞ; F2ðxÞ;…; FdðxÞ� ¼ ½e1; e2;…; ed�: ð1Þ

Definition 1. For E¼ Rd, given an example eAE, the positive ratio
rþ ðeÞ of x is defined as

rþ ðeÞ ¼

1
k
jfe0 lðeÞ ¼ lðe0Þ; e0ANNðe; E; kÞ
�� �j when eAR

∑
d

i ¼ 1
αir

þ ðeiÞ; where e¼ ½e1; e2;…; ed� when eARd

8>>><
>>>:

ð2Þ

Meanwhile, its negative ratio is

r� ðeÞ ¼

1
k
j�e0jlðeÞa lðe0Þ; e0ANNðe; E; kÞgj wheneAR

∑
d

i ¼ 1
αir

� ðeiÞ;where e¼ ½e1; e2;…; ed� when eARd

8>>><
>>>:

ð3Þ

where jf�gj is the number of elements in the set f�g, NN(e, E, k)
denotes the set of k nearest neighbors of the example eAE, and
αi's are corresponding weight coefficients, which would be deter-
mined though the embedding construction procedure later.

These two concepts are actually the descriptors of the local
structure of the sample distribution. rþ ðeÞ measures the purity of
class labels in a neighborhood around the example e. The more
homogeneous label distribution in the neighborhood leads to the
larger value of rþ ðeÞ. In contrast, the less purity of labels leads to
the larger value of r� ðeÞ. Based on these two local structure
descriptors, we introduce the criterion of good embeddings as
Definition 2. Then naturally, we can specialize the above definition
into the 1-D and d-D cases.

Definition 2. For any embedding F : X-E, it is said to be an
ðϵ; γÞ�good embedding for NN classifier, if at least 1�ϵ probability
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mass of training examples x satisfy,

Pr½rþ ðeÞ�r� ðeÞ40�Z1�γ; ð4Þ
where e¼ FðxÞ, 0rγr1.

In particular, we have that if E¼R, the embedding F satisfied
Definition 2 could be called as an ðϵ; γÞ�good 1-D embedding. And
F is ðϵ; γÞ�good d-D embedding if E¼ Rd. This type of the definition
of good embedding quality is much intuitive and direct. This
definition expresses that the examples with the same class label
stand closer than those from the different classes. It is also the
basic assumption for NN classifier. More precisely, we use ϵ as a
pseudo-loss parameter and γ as a margin between the values of rþ

and r� to characterize quality goodness of a embedding.

3.2. Some 1-D embeddings

Given any space X, the distance function D between elements of
X can be extended to the measure between elements of X and
subsets of X. Let xAX and Q � X. Then,

Dðx;Q Þ ¼min
qAQ

Dðx; qÞ: ð5Þ

Given a subset Q of X, a 1-D Lipschitz embedding with respect to Q,
FQ : X-R can be defined as

FQ ðxÞ ¼Dðx;Q Þ: ð6Þ
It is also called a reference object embedding. Vleugels et al.

suggested that Q can consist of a single object q, which is termed
as a reference object or a vantage object [57]. Then the 1-D Lipschitz
embedding with respect to q, Fq : X-R, can be defined as follows:

FqðxÞ ¼Dðx; qÞ ð7Þ
Several such 1-D embeddings are concatenated as a multidimen-
sional Lipschitz embedding.

Faloutsos [52] proposed another simple 1-D embedding, called
line projection embedding. Two objects x1, x2 are selected, referred
to as ‘pivot objects’, and consider the line x1x2 that passes through
them in original space. The 1-D embedding Fx1 ;x2 ðxÞ can be defined
by projecting elements of X onto the line as follows:

Fx1 ;x2 ðxÞ ¼Dðx; x1Þ2þDðx1; x2Þ2�Dðx; x2Þ2
2Dðx1; x2Þ

ð8Þ

For the detailed derivation and intuitive geometric interpreta-
tion of this equation, the reader can refer to the literature [52],
where line projection embeddings are used to construct FastMap
embeddings.

In this work, the above two types of 1-D embeddings are used
to construct the final multi-dimensional embedding. In the
embedding learning procedure, vantage objects and pivot objects
are selected from a subset of X, which called a reference set. For
the d1-D embeddings F1;…; Fd to construct the d-D embedding F,
a half of them are reference object embeddings, and others are line
projection embeddings.

3.3. Overview of basic idea

The basic idea of our method is to boost 1-D weak embeddings
into a multi-dimension strong embedding. A d-D embedding F is
good for projecting original data space into an embedded feature
space with a computationally efficient distance measure, when F
holds the inequality (4) as possible. To construct a good d-D
embedding F, d respective good 1-D embeddings are pursued. A
good 1-D embedding preserves local within-class compression
and between-class scattering, and holds the inequality (4) on one
dimension as possible. The 1-D embeddings are learned and
integrated in the Boosting learning framework. Additionally, a

weighted Manhattan (L1) distance metric is defined in the
embedded feature space with the integrated weights, which is
used as the distance for NN classifier.

4. Embedding learning with NNMap

For NN classifier, the class label of a query object is dependent
on the label distribution of its k nearest neighbors. We can define
the positive ratio rþ and the negative ratio r� as Definition 1. In
practical application, the parameter k in k-NN classifier is usually
an odd number. So, the relationships of rþ and r� can be
summarized into two cases: rþ 4r� or rþ or� . Intuitively, we
can see that the NN classifier would classify the query object into
the correct class, if rþ 4r� . Otherwise, an error occurs.

The boosting framework [47] is an important type of ensemble
learning frameworks. Its basic idea is to boost multiple weak
classifiers to obtain a final strong classifier. In this work, a multi-
dimension embedding ensemble learning scheme is proposed by
following the boosting framework. Here, a 1-D embedding can be
viewed as a weak classifier. The boosting procedure considers the
two respects: the distribution of sample data and the diverse
importance of different classifiers. In this work, we also consider
these two respects in the learning procedure.

4.1. 1-D embeddings as weak classifiers

Considering a d-D embedding F : ðX;DÞ-ðRd;ΔÞ, define F as

FðXÞ ¼ ½F1ðXÞ;…; FdðXÞ�T ð9Þ
As shown above, d1-D embeddings are ensembled to constitute a
d-D embedding. To construct a good d-D embedding, it is required
to find d good 1-D embeddings. If we assign the equal importance
to different 1-D embeddings, there is no flexibility to fit the
applicable sample data, and it is difficult to achieve a high
performance. So, we define the measure Δ in the embedded space
as follows:

ΔðFðX1Þ; FðX2ÞÞ ¼ ∑
d

i ¼ 1
αiΔiðFiðX1Þ; FiðX2ÞÞ; ð10Þ

where Δi is the individual distance that corresponds to embedding
Fi and αi is the assigned weight associate with embedding Fi.

At this point, every sample can be projected as a real number
by an individual 1-D embedding Fi. Then the original sample set is
mapped into a set of one-dimension feature data. For every object,
we can compute its positive ratio rþ and negative ratio r� .
According to Definition 2, it needs a higher probability of
rþ ðeÞ�r� ðeÞ40 in 1-D embedded data space to get a better 1-D
embedding quality, So we could view 1-D embedding as a weak
classifier with ϵ as its pseudo-loss. The higher the accuracy is, the
better the classifier is. Accordingly here, the higher the probability
is, the better the embedding is. For the object e, rþ ðeÞ is larger or
smaller than r� ðeÞ. Intuitively, points with the same class label are
closer with each other than ones with the different class labels. So
we can expect the 1-D embedding with the probability
Pr½rþ ðeÞ�r� ðeÞ40� to behave as a weak classifier, and be better
than random guess. In the later section, we will describe how to
ensemble these 1-D embeddings (weak classifiers) into a d-D
embedding (strong classifier).

4.2. Construct a good embedding using boosting

Our goal is to construct a good embedding for nearest neighbor
classification, i.e., F : ðX;DÞ-ðRd;ΔÞ. A reference set C � U of
candidate references and pivot objects has been prepared. Accord-
ingly, we obtain a large pool of candidate 1-D embeddings. As
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analysis above, every such 1-D embedding is involved a part of
information on the structure of the original space. We expect such
1-D embeddings to behave as weak classifiers. And its pseudo-loss
is defined as

η¼ΣN
i ¼ 1pi �

1
N
� ½rþ ðxiÞ�r� ðxiÞ40�þ ð11Þ

where ½z�þ ¼ 1 when z is true, otherwise ½z�þ ¼ 0. Here, the
pseudo-loss η is a computational implementation of 1�ϵ on a
finite sample set. And pi is a corresponding weight of each sample
point xi. Then our problem of good embedding constructing is
reduced to the problem of learning 1-D embeddings as weak
classifiers and optimizing a weighted linear combination of weak
classifiers. We adopt the ensemble learning framework similar to
AdaBoost to design our learning procedure [47]. The overall
sequence of the proposed scheme is summarized as follows:

Algorithm — NNMap
Input: the sequence of N labeled samples ðx1; y1Þ;…; ðxN ; yNÞ,

yiAY ¼ f1;2;…;mg; the set C � U of candidate reference
objects C and jCj ¼ β; the number of iterations d.

Initialize the weighting vector w1
i ¼

1
N
, for i¼1,…,N.

for the round t ¼ 1;2;…; d do
1. Set

pt ¼ wt

∑N
i ¼ 1w

t
i

(12)

2. For each candidate 1-D embedding Fs, s¼ 1;…;β, set
ηts ¼∑N

i ¼ 1p
t
i � 1N � ½rþ ðxiÞ�r� ðxiÞ40�þ , where ½z�þ ¼ 1 when

z is true, otherwise ½z�þ ¼ 0.
3. WeakLearn: search an optimal projecting direction to

construct a 1-D weak good embedding in terms of the
object function as

ηt’arg max
s ¼ 1;…;β

ηts (13)

If ηto1=2, then set d¼ t�1 and abort loop.
4. Set

αt ¼ log
ηt

1�ηt (14)

5. Update the weight vector by

wtþ1
i ¼wt

i � α½r þ ðxiÞ� r � ðxiÞ40� þ
i

(15)

end

Output:the good d-D embedding and the distance metric:

FðxÞ ¼ ½F1ðxÞ; F2ðxÞ;…; FdðxÞ�T (16)

Δðx; zÞ ¼ ∑
d

t ¼ 1
αt jFtðxÞ�FtðzÞj (17)

Here, let us further explain the meanings of some parameters. ηst

is the specific case of η defined in Eq. (11) and stands for the pseudo-
loss of the s-th 1-D embedding Fs which acts as a weak classifier in
the t-th WeakLearn training cycle. pit is the specific case of pi, which is
a weight of the sample xi, in the t-th WeakLearn training cycle. In this
work, we adopt the two types of 1-D embeddings, i.e., 1-D reference
object embedding and 1-D line projection embedding, which have
been explained in Section 3.2. Therefore, the set of β candidate 1-D
embeddings includes β=2 1-D reference object embeddings and β=2
1-D line projection embeddings. To construct 1-D reference object
embeddings, we first randomly select β=2 objects from the candidate
reference samples C and construct 1-D reference object embeddings

in terms of Eq. (7). Then we randomly select β=2 object pairs from C
to construct β=2 1-D line projection embeddings following Eq. (8).
Finally, β=2 1-D reference object embeddings and β=2 1-D line
projection embeddings constitute the candidate 1-D embedding set.

As shown in this overall sequence, NNMap involves two main
steps: training weak learners and weights update. There are three
significant points that need to be emphasized.

1. The input data could be in the form of numeric vector or other
complex structures, such as sequence strings, graph data, and
time series. No matter how complicated the data space is, it can
be input into NNMap only if the distance measure of the
original data space is defined.

2. In the first step, NNMap substitutes weak 1-D embeddings
learning for weak classifiers learning. In AdaBoost, weak
classifiers are usually learned through adjusting parameters
in classifiers. Here, a large set of candidate 1-D embeddings is
ready for being selected. The training procedure is to search for
the appropriate projecting direction to constitute the 1-D
embedding with positive ratio rþ as high as possible. The
embedding searching process will be explained later in detail.

3. This learning algorithm is suitable for both the binary classifi-
cation and the multi-class case, although AdaBoost is designed
only for the binary problem. When a multi-class problem is
considered, NNMap behaves like AdaBoost.M1 which is the
multi-class extension of AdaBoost [47]. In NNMap embedding
framework, we integrate the two cases in the definitions of rþ

and r� , which are not particular for the binary case or the
multi-class case. In Boosting learning procedure, the require-
ment of η41

2 leads that the quality of a single 1-D embedding
in the multi-class problem is required to be significantly
stronger than that in the binary case. It brings unavoidable
difficulties as the case of AdaBoost.M1. Here, we solve this
problem through using the random-based strategy for the
reference set generation. It provides candidate reference and
pivot objects as many as possible.

Next, we will specify how to prepare a reference set. The
common idea is to select a subset of sample data like FastMap,
Lipschtz embedding and many other embedding methods do.
However, this strategy is limited by the size of sample data.
Particularly, in some application fields, the sample size is small,
and furthermore, new samples are not easy to be generated.
Therefore, it projects original data onto the very limited directions,
which could not provide sufficient flexibility for embedding
learning. In this work, we construct a random reference set. All
reference and pivot objects are generated randomly in the range of
sample data scattered. The significant advantage of this strategy is
that the size of candidate reference set is unlimited. The reference
and pivot objects would be generated with an arbitrary quantity. It
would provide an arbitrary quantity of projecting directions to
weak learning procedure to search for optimal 1-D embeddings.

Another point needed to be explained is the number k0 of
nearest neighbors for computing positive ratio rþ and negative
ratio r� . We suggest that the number k0 is set to be a little larger
than the number k used for the final k-nearest neighbor classifier.
If the distribution of class labels is homogeneous in a larger
neighbor range, it tends to be also homogeneous in a smaller
neighbor range. The contrary may be not true. In this work, we set
k¼1 and k0 ¼ 5.

The direct output of the NNMap learning procedure is a series
of 1-D good embeddings Ft and corresponding weights αt, t¼1,…,
d, while the output of AdaBoost is a strong classifier. Our final goal
is to construct a multi-dimension embedding. To achieve that, we
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define an embedding FðxÞ : X-Rd and a distance metric Δ:

FðxÞ ¼ ½f 1ðxÞ; f 2ðxÞ;…; f dðxÞ�T ð18Þ

Δðx; zÞ ¼ ∑
d

t ¼ 1
αt jf tðxÞ� f tðzÞj ð19Þ

The embedding dimensionality d is the same as the iteration
number T in the boosting learning procedure. Δ is a weighted
Manhattan (L1) distance measure. Δ is a metric, because the training
procedure guarantees that all α's are non-negative. Moreover, the
operators involved in computing a vector-based distance measure
are easy to be implemented. Δ is efficient on computation.

5. Theoretical analysis of NNMap embeddings

In this section, we provide theoretical analysis of NNMap
embeddings. The d-D embedding obtained from the NNMap
procedure is proved to be a good embedding in terms of
Definition 2. Then we give the up bound of the error probability
of the NNMap d-D embedding, which is equivalent to find the low
bound of the NNMap embedding quality.

5.1. Theoretical guarantee for multi-dimension embedding quality

Given d ðϵ; γÞ�good 1-D embeddings, as shown in the following
theorem, a sufficiently good d-D embedding can be learned.

Theorem 1. Given a set of 1-D embeddings Fi; i¼ 1;…; d, where for
any xAX we have FiðxÞ ¼ ei, a direct d-D embedding in the form as

FðxÞ ¼ ½F1ðxÞ; F2ðxÞ;…; FdðxÞ� ¼ ½e1; e2;…; ed� ¼ e ð20Þ
can be constructed. If F1; F2;…; Fd are all ðϵ; γÞ�good 1-D embed-
dings, then d¼ ð4=ð1�2γÞ2Þlnð1=δÞ is sufficient so that with prob-
ability of at least 1�δ the following condition is satisfied:

Pr½rþ ðeÞ�r� ðeÞ40�Z1�ðϵþδÞ ð21Þ

Proof. The proof uses a technique in reference [58]. If F1; F2;…; Fd
are all ðϵ; γÞ�good 1-D embeddings, then for any xAX, by FiðxÞ ¼ ei,
i¼ 1;…; d, with 1�ϵ probability it satisfies the inequality condi-
tion (4). Let M be the set of training examples satisfying the
inequality (4). So, by assumption, Pr½xAM�Z1�ϵ. Now fix any
xAM,

Pr½rþ ðeiÞ�r� ðeiÞ40� ¼ E½Iðrþ ðeiÞ�r� ðeiÞ40Þ�
¼ 1

2 � E½sgnðrþ ðeiÞ�r� ðeiÞÞ�
þ1

2 ð22Þ

where I denotes the indicator function. Using the above equation,
inequality (4) is equivalent to

E½sgnðrþ ðeiÞ�r� ðeiÞÞ�Z1�2γ ð23Þ
Since 0orþ ðeiÞo1 and 0or� ðeiÞo1, by Chernoff bounds over d
random ðϵ; γÞ�good 1-D embeddings noted by C, we have that

PrCðrþ ðeÞ�r� ðeÞr0Þ

¼ PrC
1
c
∑
d

i ¼ 1
sgn½αiðrþ ðeiÞ�r� ðeiÞÞ�r0

 !

re�dð1�2γÞ2=2 ð24Þ
Since the above inequality is true for any xAM, we can take
expectation over all xAM, which implies that

ExAM ½PrCðrþ ðeÞ�r� ðeÞr0Þ�re�dð1�2γÞ2=2 ð25Þ
Thus we have

EC ½PrxAMðrþ ðeÞ�r� ðeÞr0Þ�re�dð1�2γÞ2=2 ð26Þ

Here, we set δ2 ¼ e�dð1�2γÞ2=2. Using Markov's inequality we obtain

PrC ½PrxAMðrþ ðeÞ�r� ðeÞr0ÞZδ�rδ ð27Þ
Adding in the ϵ probability mass of points not in C yields the
theorem. □

The main goal of this work is to construct an embedding for
speed up NN classification and design a strategy to quantitatively
measure the quality of this embedding. Theorem 1 indicates that
the d-D embedding constructed by NNMap is quantitatively indeed
a good embedding. From the above quality criterion, we could
conclude that the embedding quality corresponds to the amount of
the preferable local structure preserved by the embedding. The
larger the amount of the local structure optimized, the better the
embedding quality is. So the quality of local structure is used as a
direct measure of embedding optimization in our proposed method.

5.2. Bound analysis for multi-dimension embedding quality

As the definition of the embedding quality, the index ϵ is a
measure for embedding quality. The smaller the ϵ is, the better the
embedding quality is. So ϵ is respected to be as small as possible
for constructing good embedding. Here, we give the up bound of
the error probability ϵ.

Theorem 2. Suppose the WeakLearn algorithm generates 1-D
embedding F1; F2;…; Fd with pseudo-losses ϵ1; ϵ2;…; ϵd. Then after
NNMap is applied, the final d-D embedding F : ðX;DÞ-ðRd;ΔÞ is
ðϵ; γÞ�good, and ϵ is bounded by

ϵr2d ∏
d

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵið1�ϵiÞ

p
ð28Þ

As analysis above, the indexes ϵ1;…; ϵd and ϵ correspond to the
errors of weak hypotheses and the final hypothesis of AdaBoost,
respectively. So the proof of Theorem 2 can be achieved simply
along the way of error bound analysis of AdaBoost. This theorem
ensures that a good embedding would be constructed following
our proposed NNMap embedding method, if 1-D embeddings
selected are sufficiently good. It is noted that the final d-D
embedding quality depends on all the respective 1-D embedding
qualities. And this quality bound achieves the maximumwhen the
qualities of all the 1-D embeddings are uniform.

6. Experiments

We applied our proposed embedding approach NNMap for
classification and compared it with several alternative methods.
The experiments are performed on the 10 public datasets: the
MNIST for handwritten digit recognition, the CMU PIE for face
recognition, and 8 UCI machine learning datasets. In the hand-
written digit recognition application of MNIST database, the state-
of-the-art distance measure is shape context matching [59], which
measures the similarity between shapes rather than pixel bright-
ness values. It first solves the correspondence problem between
points on the two shapes, then uses the correspondences to
estimate an aligning transform, and finally compute the distance
between the two shapes as the sum of matching errors between
corresponding points, together with a term measuring the magni-
tude of the aligning transformation. In the pattern recognition
applications of CMU PIE database and UCI databases, for these
vector features, as reported in many existing publications, the
Euclidean distance is commonly used and evaluated to be efficient.
So, in our experiment, we use shape context matching as the
original distance for MNIST database, Euclidean distance for CMU
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PIE and UCI databases. For our proposed NNMap, it transform the
problem of original distance into the NN classification with a
weighted Manhattan distance.

6.1. Data sets

6.1.1. Handwritten digit dataset
The MNIST dataset of handwritten digits contains 70,000 digit

images for the 10 numbers from 0 to 9. Each image is cropped and
resized to be 28�28 pixels, with an isolated digit in the center. A
sample image is illustrated in Fig. 1. All methods are evaluated by
using the five-run of 10-fold cross validation. For each run, the
dataset is randomly split into 10 equal partitions. The partition
process ensures each part contains 10 class labels. Nine of 10
partitions are used for learning objective embedding, and the rest
one partition is used for testing. This procedure is iterated until
each partition has been used as a testing set. The averaged results
of the 50 executions are reported. The distance measure used for
brute force method and leaning procedures in embedding meth-
ods is shape context matching. The shape context features are
extracted following reference [59].

6.1.2. Human face dataset
The CMU PIE dataset contains 41,368 images of 68 people, each

person under 13 different poses, 43 different illumination condi-
tions, and 4 different expressions. We use a subset, which only
contains five near frontal poses (C05, C07, C09, C27, C29) and all
the images under different illuminations and expressions. So,
there are 170 images for each individual except for the 38th
individual with 160 images, and 11,550 images in all. The images
are cropped and resized to be 32�32 pixels. A sample image is
illustrated in Fig. 2. Each image is unfolded directly into a 1024-
dimension vector. The five-run of 10-fold cross-validation is
performed on this dataset. The distance measure used is Euclidean
distance which is commonly used for vector pair comparisons.

6.1.3. UCI machine learning dataset
The eight datasets are selected from the UCI Machine Learning

Repository. They are Vehicle, Spambase, Satimage, Adult, Census-
income, Covertype, Poker Hand and KDD Cup 99. A description of
these datasets including the number of instances (♯Instances) and
classes (♯Classes) and the feature space dimensionality (♯Att) is
presented in Table 1. The set of databases covers a wide range of
sizes, which ensures the reliability of experimental conclusions.
The missing values in these datasets are filled by randomly
selected values from the samples belonging to the same class. To
reduce the possible bias of the results, 10-fold cross-validation is
also performed with five-run random partition. These datasets are

constituted by vector objects, so Euclidean distance is adopted as
the distance measure.

6.2. Comparison methods

We compare NNMap with the following alternative methods
for nearest neighbor classification:

1. Brute-force: Firstly, a reference set C with d objects selected
randomly from the whole database is constructed. For each
query object, it is compared with all reference objects by using
the original distance measure (shape context matching for
handwritten digits and Euclidean distance for face images),
and then it is classified into the class of its nearest neighbor.

2. FastMap [52]: We construct a d-D embedding by performing
FastMap with a reference set R. The embedding dimensionality
d is varied. The reference set C used for each dataset is its
corresponding training set.

3. Random object projection (ROP): We first construct a 1-D
Lipschitz embedding by choosing a random reference object p
from the training set. Here, the whole training set is used as the
reference set. Multiple 1-D random Lipschitz embeddings were
concatenated into a multidimensional embedding. After pro-
jected vectors are obtained, Euclidean distance is used to
compare all possible pairs for nearest neighbor classification.

4. Random line projection (RLP): We first construct a 1-D embed-
ding by projecting a considered object onto a line, where pivot
objects are chosen randomly from the training set. Multiple
1-D embeddings were concatenated into a multi-dimension
embedding. And then nearest neighbor classification is per-
formed with Euclidean distance.

5. VP-trees [9]: VP-trees are built to speed up Nearest Neighbor
classification for large size database. However, the application of
VP-trees requires that the sample space has a valid metric, which
specially satisfies the triangle inequality. The distance in the
MNIST experiment is nonmetric (shape context matching), and
particularly, does not satisfy the triangle inequality. We adopt
the modified version of VP-trees as that in [60] for MNIST. In the
modified VP-trees, the triangle inequality is satisfied up to a
constant ζ. To keep a good balance between the accuracy and the
efficiency, we set ζ¼3.5 in our experiments.

6. Locality sensitive hashing (LSH) [26]: It relies on a family of
locality sensitive hashing functions by which sample points are
mapped into hash tables. The number of hashing functions is
denoted as d. For each function, the probability of collision is
much higher for samples which are close to each other than for
those which are far apart. Then, near neighbors could be found
by hashing the query object and retrieving elements stored in
buckets containing that object. There is the same problem as
that of VP-trees. For MNIST, The searching algorithm is mod-
ified so that it guarantees correct neighbors if the triangle
inequality is satisfied up to a constant ζ [61]. Here, ζ¼5 for a
good balance.

Fig. 1. Samples from the MNIST database.

Fig. 2. Samples from the CMU PIE database.

Table 1
Description of UCI datasets.

Dataset ♯Instances ♯Att ♯Classes

Vehicle 846 18 4
Spambase 4597 57 2
Satimage 6435 36 7
Adult 48,842 14 2
Census-income 299,285 39 2
Covertype 581,012 54 7
PokerHand 1,025,010 10 10
KDDCup99 4,898,431 41 23
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Furthermore, the typical 3-NN and 5-NN classifiers, and the
typical Adaboost algorithms with NN classifiers as weak learners
(abbreviated as BoostNN) are also compared with our methods:

1. 3-NN: To enhance the comparison to brute-force methods,
except for the typical 1-NN classifier (denoted as Brute-force),
the performances of 3-NN and 5-NN are also compared. As the
construction of 1-NN, it is performed on the reference set C of d
objects randomly selected from the whole database. For each
query object, it is compared with all reference objects by using
the original distance, and then it is classified by major voting of
its most three nearest neighbors.

2. 5-NN: It is also performed on the reference set C of d objects
randomly selected from the whole database. And it also uses
the original distance measure and each query object is classi-
fied by major voting of its most five nearest neighbors.

3. BoostNN: It is constructed in terms of AdaBoost.M1 with
nearest neighbor classifier as its weak learner [47]. Each weak
learner is performed on a subset randomly selected from the
training set with a 20% size. Finally, d NN weak classifiers result
in a final classifier which output a final decision.

6.3. Results

We performed nearest neighbor classification in the embedded
feature space constructed by the methods — NNMap, Brute-force,
FastMap, ROP, RLP, VP-tree and LSH with various embedding
parameters. In addition, the t-test is performed to evaluate the
statistical significance of the results. Two methods with the same
letter in common exhibit no statistically significant difference with
95% confidence. The corresponding result of NNMap is shown in
bold.

6.3.1. Experiments on the MNIST dataset
The experimental results on MNIST dataset are summarized in

Table 2. Zhang et al. use the discriminative classifier based on one
prototype with shape context distances as a feature vector. From
multiple prototypes, a final classifier is obtained by combining single
classifiers. Zhang's method is also implemented for comparison goal.
For Brute-force, 3-NN and 5-NN, the parameter d corresponds to the
size of its reference set. For FastMap, ROP, RLP and NNMap, d denotes
the selected embedding dimensionality. Both the number of internal
nodes of VP-trees and the number of prototypes in Zhang's method
are also denoted as d. In our experiment, d is selected as 63,000,
2000, 1000, 200 and 50. For the bottom six embedding methods,
there is no sense if their d is set to be 63,000. And the size of the
reference set C of NNmap is set to be 5000.

Overall, NNMAP outperforms other comparable methods, and
is significantly different from others. The performances of ROP and
RLP are comparable with each other, and they both outperform
FastMap and Brute-force. These two simple methods perform
competitively. Zhang's method is comparable with FastMap, and
seems to perform better at the moderate cost (d¼200 and
d¼500). VP-trees achieve the worst trade-off between accuracy
and efficiency compared with other methods. Under d¼50, the
error rate of VP-tree is high to 39.1%. It achieves the comparable
error rate (0.64%) at the cost of 20,000 expensive distance
computations. We note that BoostNN achieves the lowest error
rates when d is relatively smaller. However, since it performs
Brute-force learner in each boosting iteration, the time cost of
BoostNN is significantly larger than NNMap.

The comparison of running time of these methods is reported
in Table 3. This table lists the response time of the compared
methods with d¼1000 and the Brute-force with d¼63,000. We
find that NNMap has a relatively smaller time cost. In particular,
compared with the baseline Brute-force, NNMap is more efficient.
The error rate 0.56% is achieved by NNMap at d¼1000 (63.2 s for
each query). To achieve the comparable recognition rate, Brute-
force costs 64,073 s for each query, which is nearly 64 times as that
of NNMap.

6.3.2. Experiments on the CMU PIE dataset
Table 4 displays the averaged error rates attained on the CMU

PIE dataset. The basic idea of Boosted Discriminant Projections
(BDP) [62] and Learning Discriminant Projections and Prototypes
(LDPP) [63] is also to combine multiple 1-D embeddings to a final
d-D embedding. Particularly, BDP also adopts the Boosting frame-
work in its learning procedure. However, BDP and LDPP could be
applied only for a vector space, rather than for complicated data
structures. In this experiment, a face image is unfolded into a
vector. The k-nearest neighbor classification is also performed by
using k¼1. And the size of the reference set C of NNMap is set to
be 5000. All methods are performed under varied parameters with
d¼11,550, 4760, 3400, 1360, 680 and 204.

The case on this dataset is very similar to that of the MNIST
dataset. The performance is promoted with the increase of the
parameter d. NNMap costs 5000 expensive distance computations
to achieve the lowest error rate 4.1%, while Brute-force is required
11,550 distance computations to reach the comparable result
(5.2%). VP-trees perform still worse under few prototypes com-
pared with other methods. BDP and LDPP are very competitive,
and outperform most of the methods. Particularly, under d¼204,
the recognition rate of LDPP (28.8%) is better than NNMap (30.2%).
BoostNN achieves better error rates when d is relatively smaller.
For other methods, the performances are comparable with each
other under all selected embedding dimensionality.

Table 2
Comparison of averaged error rates (%) 7 standard deviations (%) on MNIST dataset.

Method t-test d¼63,000 d¼20,000 d¼1000 d¼500 d¼200 d¼50

Brute-force A 0.5970.16 0.5770.12 3.0970.24 4.7570.31 9.1471.42 15.3671.06
3-NN A 0.5370.18 0.5670.15 2.9170.21 4.4270.28 8.6570.82 15.3170.93
5-NN A 0.5770.16 0.5670.12 2.6870.26 4.1670.33 8.3170.74 14.7871.10
FastMap [52] B – 0.8270.16 1.1870.22 1.3170.29 1.6270.35 3.5270.46
ROP CF – 0.5770.20 0.6170.15 0.7070.26 0.9770.28 2.9470.37
RLP C – 0.6270.18 0.7370.17 0.8870.30 1.4270.34 2.4170.43
VP-trees [9] D – 0.6470.15 6.0470.24 7.8370.35 13.370.41 19.070.86
LSH [26] E – 0.6170.13 4.3370.21 6.2570.28 11.570.32 16.271.3
Zhang [7] BF – 0.8070.09 1.2570.19 0.7370.23 1.1570.24 2.6470.45
BoostNN G – 0.6270.11 0.5870.20 0.7070.25 0.6770.33 1.3970.41
NNMap G – 0.5570.16 0.5670.17 0.6770.20 0.7270.29 1.6370.38
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6.3.3. Experiments on the UCI machine learning datasets
The experimental results on UCI datasets are summarized in

Table 5. Both the kd-trees [10] and BBD-trees [21] are approximate
nearest neighbor schemes, and expedite nearest neighbor classi-
fication. However, they could only handle vector samples. In this
experiment, these two techniques are also included. The para-
meter d denotes the number of distance computations for each
query. For all comparison methods, the tuning of the parameter d
results in a wide variance of learner performance, and optimal d's
of datasets are various. Generally, the larger d brings the lower
error rates and the slower query respondence. To make a balance
between accuracy and executive time, and simplify the compar-
ison configuration, we set d¼ 0:5 � N uniformly. And here, k¼1 for
nearest neighbor classification.

From Table 5, NNMap achieves the lower error rates on dataset
with various sizes. Particularly, although the size of the KDD Cup 99
dataset is so large and over four million, NNMap obtains the
relatively lower error rates with a small deviation. We find that
BDP and LDPP are also competitive, and they perform similar to
NNMap. It conforms that the parameterized models have more

flexibility for dataset. The indexing-based methods make more
errors in most cases. Although the group of indexing structures
could expedite the NN classifier, its accuracy is heavily limited by the
tree size. When the reference set becomes small, its performance
degrades seriously. It is worth noting that the simple schemes ROP
and RLP achieve acceptable performance. BoostNN achieves worse
error rates than NNMap when the size of datasets is larger.

6.4. Discussion

The parameters to be tuned in the proposed NNMap include d
(the dimension number of the embedding space), β (the size of
reference object set C), and k0 (the number of nearest neighbors for
computing positive ratio rþ and negative ratio r� ). In this work,
all the parameters are tuned through the three-run of five-fold
cross-validation on the training data.

The influence of d to the prediction accuracy is shown in Fig. 3.
We note that the averaged error rates of all the compared methods
are decreasing with the increase of d. In practice, for a large-scale
database, we need to find the balance between the accuracy and
the efficiency. So, we need an appropriate d to achieve acceptable
accuracy and efficiency. Furthermore, we find that for NNMap, the
prediction tends to a stable certain performance when the d is
becoming relatively large. When d is larger than a specific value,
the increase of d brings a little improvement of prediction
accuracy but result in a significant increase of time cost. So, we
suggest that the d can be as small as possible under an acceptable
prediction accuracy. From another point of view, we can set d to be
as large as possible under an acceptable time cost. So we can come
to the guideline that the optimized value of d is determined by
trading off between the computation complexity and prediction

Table 3
Comparison of running time (s) of different methods for each query on MNIST
dataset. 1-NN.

1-
NNa

1-
NNb

FastMap ROP RLP VP-
tree

LSH Zhang BoostNN NNMap

4073 65.3 147.5 63.1 131.8 211.2 115.7 169.3 3978 s 63.2

a The Brute-force with d¼63,000 and 1-NN.
b The Brute-force with d¼1000.

Table 4
Comparison of averaged error rates (%) 7 standard deviations (%) on CMU PIE dataset.

Method t-test d¼11,550 d¼70�68 d¼50�68 d¼20�68 d¼10�68 d¼3�68

Brute-force A 5.2071.2 13.672.3 18.372.5 27.373.0 29.273.6 42.874.5
3-NN A 4.9371.7 13.271.8 17.472.2 26.072.8 28.573.5 41.973.2
5-NN A 4.5271.1 12.772.0 17.771.9 26.872.4 27.673.9 41.374.1
FastMap [52] B – 9.5171.4 14.471.6 24.772.5 23.672.9 34.274.0
ROP C – 8.8071.4 12.570.8 22.172.2 26.473.0 36.374.4
RLP C – 8.3971.8 11.771.3 23.972.6 25.273.5 33.773.8
VP-trees [9] D – 14.171.4 19.171.8 30.672.9 34.773.8 44.174.3
LSH [26] D – 16.871.2 18.771.5 28.273.3 30.973.2 43.574.6
BDP [62] E – 6.7470.7 10.870.9 20.672.1 23.173.3 31.974.0
LDPP [63] F – 5.6070.8 10.571.4 17.272.7 19.572.4 28.873.7
BoostNN G – 4.8471.6 8.5571.8 12.672.9 15.173.1 28.473.8
NNMap H – 4.1371.5 8.2671.2 13.872.4 16.072.7 30.274.1

Table 5
Comparison of averaged error rates (%) 7 standard deviations (%) on UCI machine learning datasets.

Method t-test Vehicle Spambase Satimage Adult Census-inc Covertype PokerHand KDDCup99

Brute-force A 29.673.7 17.271.5 12.871.8 24.972.9 10.572.1 6.2170.3 43.775.6 0.3170.04
3-NN A 28.873.8 17.571.8 13.471.5 24.372.2 10.172.3 5.9871.1 42.274.3 0.2770.09
5-NN A 29.274.2 16.871.5 12.172.1 24.272.6 9.771.8 6.0370.7 40.875.4 0.3070.11
FastMap [52] BC 30.473.2 15.071.2 8.1371.3 23.672.3 8.1771.6 6.4371.4 37.474.2 0.2670.07
ROP C 28.374.1 15.271.4 8.5971.5 24.572.7 8.4271.3 5.0570.8 31.173.7 0.2770.06
RLP B 30.973.5 14.672.1 10.671.7 21.671.9 9.3072.0 5.6270.4 36.573.9 0.1970.03
VP-trees [9] D 32.874.2 19.471.1 17.572.2 27.473.5 14.172.5 8.2471.1 48.274.4 0.3870.05
kd-trees [10] E 35.273.6 22.772.3 19.271.9 37.073.1 13.771.8 9.0471.5 46.774.7 0.4270.10
BBD-trees [21] D 30.972.7 21.0v1.8 18.171.6 25.872.1 13.2v2.2 8.0570.7 45.873.6 0.3970.08
LSH [26] F 33.573.6 19.271.5 17.371.2 23.973.2 12.672.6 7.3770.6 45.073.2 0.3570.70
BDP [62] G 27.973.3 13.771.8 8.0571.4 21.773.0 8.3371.9 4.9470.2 38.373.9 0.2070.02
LDPP [63] G 27.572.8 15.271.4 6.7270.9 21.272.1 7.2571.7 5.2070.6 35.674.1 0.2270.03
BoostNN H 26.273.7 12.572.2 6.1970.9 18.673.0 7.5172.5 3.7270.7 36.573.5 0.2470.08
NNMap I 26.873.4 13.171.7 6.4071.2 19.572.6 7.8372.4 3.1870.5 34.273.8 0.1570.03
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accuracy. In addition, in our experiments, we find that some of the
combination coefficients α0s are zero or near zero, which implies
that the corresponding 1-D embeddings have worse qualities. We
believe that optimal subset extraction from weak 1-D embeddings
is a promising piece of future work.

Naturally, β should be larger than the embedding dimension-
ality number d. The smaller β results in the smaller d. The tuning
of β closely related to the tuning of d. As shown in the experi-
mental results, the accuracy and efficiency of NNMap mainly
depends on d. On the other hand, since the boosting algorithm
requires weak learners just a little better than the random guess,
there is no need to prepare an extraordinarily larger 1-D embed-
ding candidate set. So, in NNMap, we suggest that β is set to be a
little larger than d.

We consider the two neighborhoods, i.e., the parameter k0 for
computing positive ratio and negative ratio, and the parameter k for
final classification. It is necessary to explore the behavior of NNMap
under various (k; k0) pairs. NNMap is performed under various
parameter pairs on the MNIST, CMU PIE, and the largest one of
UCI datasets. Here, d¼20,000 for MNIST, d¼4760 for CMU PIE, and
d¼2,449,215 for KDD Cup 99. The behavior of NNMap is repre-
sented in Fig. 4. Each tiny square corresponds to one (k; k0) pair,
under which the error rate is shown in that tiny square. The
background of the tiny square is gray, if its error rate is less than
the mean error. From Fig. 4, we find that more tiny squares on the

top left of the box are covered by gray color. We could conclude that
NNMap performs better under k04k. This is agreed with our above
neighborhood homogeneous assumption. The local structure of 1-D
embedding should be optimized in a larger neighborhood.

7. Conclusion

In this work, we focus on the quantitative criterion of embed-
ding quality for NN classification. Following the proposed embed-
ding construction algorithm NNMap, a good multi-dimension
embedding could be constructed. And its quality is guaranteed
quantitatively. The NN classifier is performed on the embedded
space with a weighted Manhattan distance. Furthermore, the
embedding construction has no specific requirement for data
structure and distance measure. In particular, for those applica-
tions with non-vector data structure and complicated distance
measure, the NN classifier could be speed up and efficient. The
experimental results suggest that the quality of NNMap embed-
ding outperforms other alternative methods on the 10 datasets.
The trade-off of the quantity of 1-D embeddings and their quality,
and the generation of the reference set are still open problems. For
multi-class problems, as analysis above, the requirement for the
qualities of 1-D embeddings is much stronger than that of binary
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Fig. 3. The effect of d to the compared methods on the MNIST database (a) and the CMU PIE database (b).

Fig. 4. The behavior of NNMap under various (k; k0) pairs.
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cases. The design of the alternative strategy to extend the binary
case to the multi-class case is another possible future work.
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