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Abstract 
 

In e-learning initiatives, sequencing problem concerns 
arranging a particular set of learning units in a suitable 
succession for a particular learner. Sequencing is usually 
performed by instructors, who create general and ordered 
series rather than learner personalized sequences. This 
paper proposes an innovative intelligent technique for 
learning object automated sequencing using particle 
swarms. E-learning standards are promoted in order to 
ensure interoperability. Competencies are used to define 
relations between learning objects within a sequence, so 
that the sequencing problem turns into a permutation 
problem and AI techniques can be used to solve it. 
Particle Swarm Optimization (PSO) is one of such 
techniques and it has proven with good performance 
solving a wide variety of problems. An implementation of 
the PSO, for learning object sequencing, is presented and 
its performance in a real scenario is discussed. 
 
1. Introduction 
 

Brusilovsky [1] envisages Web-based adaptive courses 
and systems as being able to achieve some important 
features including the ability to substitute teachers and 
other students support, and the ability to adapt (and so be 
used in) to different environments by different users 
(learners). These systems may use a wide variety of 
techniques and methods. Among them, curriculum 
sequencing technology “is to provide the students with the 
most suitable individually planned sequence of 
knowledge units to learn and sequence the learning tasks 
… to work with”. These methods derive from adaptive 
hypermedia field [2] and rely on complex conceptual 
models, usually driven by sequencing rules [3, 4]. E-
learning traditional approaches and paradigms, that 
promote reusability and interoperability, are generally 
ignored, thus resulting in (adaptive) proprietary systems 
(such as AHA! [5]) and non-portable courseware. 

In this paper an innovative sequencing technique is 
proposed. E-learning standards and learning object 
paradigm are used in order to promote and ensure 
interoperability. Learning units’ sequences are defined in 

terms of competencies in such a way that sequencing 
problem can be modeled like a classical Constraint 
Satisfaction Problem (CSP). And Particle Swarm 
Optimization (PSO) is used to find a suitable sequence 
within the solution space respecting the constraints. In 
section 2, the problem model for competency-based 
learning object sequencing is presented. Section 3 
describes the particle swarm optimization approach for 
solving the problem. Section 4 presents the results 
obtained from implementing and testing the intelligent 
algorithm in a real world situation (course sequencing in 
an online Master in Engineering program). And finally 
Section 5 depicts conclusions and future research lines. 
 
2. Learning Objects and Sequencing 
 

Within e-learning, the learning object paradigm drives 
almost all initiatives. This paradigm encourages the 
creation of small reusable learning units called Learning 
Objects (LOs). These LOs are then assembled and/or 
aggregated in order to create greater units of instruction 
(lessons, courses, etc) [6].  

LOs must be arranged in a suitable sequence 
previously to its delivery to learners. Currently, 
sequencing is performed by instructors who do not create 
a personalized sequence for each learner, but instead 
create generic courses, targeting generic learner profiles. 
These sequences are then coded using a standard 
specification to ensure interoperability. Most commonly 
used specification is SCORM [7]. Courseware that 
conforms SCORM´s Content Aggregation Model [8] is 
virtually portable between a wide variety of Learning 
Management Systems (LMSs). Though, SCORM usage 
hinders the automatic LO sequencing due to its system-
centered vision. Other metadata-driven approaches offer 
better possibilities. Just LO metadata will enable 
automatic sequencing process to be performed. And the 
appropriate combination of metadata and competencies 
will enable adaptive and automatic content sequencing. 
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2.1. Competencies for interoperable Learning 
Object Sequencing 

 
Competencies can be formally described as 

“multidimensional, comprised of knowledge, skills and 
psychological factors that are brought together in complex 
behavioral responses to environmental cues” [9]. Some e-
learning trends are trying to standardize competency 
definitions so that they could be interchanged and 
processed by machines. It is worth quoting the following 
specifications: 

• IMS "Reusable Definition of Competency or 
Educational Objective” (RDCEO) specification 
[10], 

• IEEE Learning Technology Standards Committee 
(LTSC) “Draft Standard for Learning Technology 
- Standard for Reusable Competency Definitions " 
specification (currently an approved draft) [11], 

• and HR-XML Consortium "Competencies 
(Measurable Characteristics) Recommendation" 
[12]. 

According to RDCEO and IEEE nomenclature, a 
competency record is called ‘Reusable Competency 
Definition’ (RCD). RCDs can be attached to LOs in order 
to define their prerequisites and their learning outcomes. 
We have used this approach to model LO sequences. By 
defining a competency (or a set of competencies) as a LO 
outcome, and by defining the same competency as the 
prerequisite for another LO (fig 1), a constraint between 
the two LOs is established so that the first one must 
precede the second LO in a valid sequence. 

 

 
Fig 1. LO sequencing through competencies 

 
Metadata (MD) definitions are attached to LOs, and 

within those definitions references to competencies 
(prerequisites and learning outcomes) are included. LOM 
[13] records have been used for specifying LO metadata. 
LOM element 9, ‘Classification’, is used to include 
competency references as recommended in [14, 15]. So, 
LOM element 9.1, ‘Purpose’, is set to ‘prerequisite’ or 
‘educational objective’ from among the permitted 
vocabulary for this element; and LOM element 9.2 
‘Taxon Path’, including its sub-elements, is used to 
reference the competency (note that more than one 
Classification element can be included in one single LO 

in order to specify more than one prerequisite and/or 
learning outcome). 

Simple metadata (i.e LOM records) is enough to model 
LOs’ sequences in a similar way. So, why use 
competencies? Competency usage is encouraged, besides 
its usefulness for modeling prerequisites and learning 
outcomes, because competencies are also useful for 
modeling user current knowledge and learning initiatives’ 
expected outcomes (future learner knowledge).We are 
proposing a wider framework (see Section 5) in which 
learner (user) modeling is done in terms of competencies, 
and these competencies are also used to define the 
expected learning outcomes from a learning program. 

 
3. Particle Swarm Optimization in Learning 
Object Sequencing 
 

Given a random LOs’ sequence modeled as described 
above, the question of finding a correct sequence can be 
envisaged as a classical artificial intelligent Constraint 
Satisfaction Problem (CSP). In this manner, the solution 
space comprises all possible sequences (n! will be its size, 
total number of states, for n LOs), and a (feasible) 
solution is a sequence that satisfies all established 
constraints. LO permutations inside the sequence are the 
operations that define transitions between states. So we 
face a permutation problem, which is a special kind of 
CSP. 

Particle Swarm Optimization (PSO) is an evolutionary 
computing optimization algorithm. PSO mimics the 
behavior of social insects like bees. A random initialized 
particles’ population (states) flies through the solution 
space sharing the information they gather. Particles use 
this information to dynamically adjust their velocity and 
cooperate towards finding a solution. Best solution found: 
(1) by a particle is called pbest, (2) within a set of 
neighbor particles is called nbest, (3) and within the 
whole swarm is called gbest. PSO have been used to solve 
a wide variety of problems [16].  

Original PSO [17, 18] is intended to work on 
continuous spaces. A discrete binary version was 
presented in [19]. This version uses the concept of 
velocity as a probability of changing a bit state from zero 
to one or vice versa. A version that deals with 
permutation problems was introduced in [20]. In this 
latter version, velocity is computed for each element in 
the sequence, and this velocity is also used as a 
probability of changing the element, but in this case, the 
element is swapped establishing its value to the value in 
the same position in nbest. The mutation concept was also 
introduced in the permutPSO version; after updating each 
particle´s velocity, if the current particle is equal to nbest 
then two randomly selected positions from the particle 
sequence are swapped. In [20] is demonstrated that 
permutation PSO outperforms genetic algorithms for the 



N-Queens problem. So we decided to try PSO, before any 
other technique, for LO sequencing problem. 

Figure 2 presents the basic PSO procedure for LO 
sequencing.  

 
initialize the population 
do { 
  for each particle { 
    calculate fitness value 
    if (new fitness < gBest) 
      set gbest = currentValue 
    if (new fitness < pBest) 
      set pbest = currentValue 
    Calculate new velocity as 

       V   w V  c1  rand     P X  

              c2  rand     P X  
    Normalize Velocity as 

      V   V  / max V  

    Update particle value 
      for each v[i] in  V  { 
        if(rand() < v[i]) 
          swap currentValue[i] for  
            indexOf(currentValue, gBest[i]) 
      } 
    Check Mutation 
      if (currentValue = gBest) swap two  
        random positions from currentValue 
  } 
} until termination criterion is met 

Fig 2. PSO Procedure for LO Sequencing 
 
For an adequate PSO implementation fitness function 

and parameters should also be carefully selected. 
 

Fitness Function. It is critical to choose a function that 
accurately represents the goodness of a solution [21]. The 
following function is suggested: 
 

 
(1) 

Where s is the LO sequence, n is the number of LOs in 
s, s[i] is the i-th LO in the sequence, and prn is the 
number of prerequisites in a LO not delivered by their 
predecessors in the sequence. prn is computed using a 
function that recursively process all outcomes delivered 
by previous LOs in the sequence, checking for each 
prerequisite accomplishment. The fitness value of a 
feasible solution should be zero, so PSO tries to minimize 
this function. When a solution fitness function call returns 
0, the operation of the algorithm is stopped returning the 
current state (solution). 

 
PSO Parameters. One important advantage of PSO is 
that it uses a relative small number of parameters 
compared with other techniques like genetic algorithms. 
However, much literature on PSO parameter subject has 
been written. Among it, Xiaohui et. al. [20] established 
the set of parameters so that PSO works properly for 
solving permutation problems. So we decided to take their 
recommendations, and parameters were set as follows: 

Learning rates (c1, c2) are set to 1.49445 and the inertial 
weight (w) is computed according to the following 
equation: 

w = 0.5 + (rand() / 2)     (2) 
Population size was set to 20 particles and the fully 

informed version of PSO was used. The number of 
iterations was also defined as an input parameter. It was 
used as a measurement of the number of calls to the 
fitness function that were allowed to find a solution. It 
should be noted that some problems may not have a 
solution, so number of iterations setting can avoid infinite 
computing 
 
Proposed improvements. During the initial agent 
development we find that in some situations the algorithm 
got stuck in a local minimum, and it was not able to find a 
feasible solution. For that reason, two enhancements were 
envisaged in order to improve algorithm performance for 
LO sequencing. First improvement is to change pbest and 
gbest values when an equal or best fitness value is found 
by a particle. In other words all particle`s comparisons 
concerning pbest and gbest against the actual state were 
set to less or equal (<=). Original algorithm determines 
that pbest and gbest only change if a better state is found 
(comparisons <). Second improvement is to randomly 
decide whether the permutation of a particle’s position 
was performed from gbest or from pbest (p=0.5). In the 
original version all permutations are done regarding gbest. 
Figure 3 presents these improvements. Changes 
respecting the basic procedure are showed in boldface. 

 
initialize the population 
do { 
  for each particle { 
    calculate fitness value 
    if (new fitness <= gBest) 
      set gbest = currentValue 
    if (new fitness <= pBest) 
      set pbest = currentValue 
    Calculate new velocity as 

       V   w V  c1  rand     P X  

              c2  rand     P X  
    Normalize Velocity as 

      V   V  / max V  

    Update particle value 
      for each v[i] in  V  { 
        if(rand() < v[i]) 
          if(rand() < 0.5) 
            swap currentValue[i] for  
              indexOf(currentValue, pBest[i]) 
          else 
            swap currentValue[i] for  
              indexOf(currentValue, gBest[i]) 
      } 
    Check Mutation 
      if (currentValue = gBest) swap two  
        random positions from currentValue 
  } 
} until termination criterion is met 

Fig 3. Improvements on PSO Procedure 



These changes resemble to be quite logical ways for 
increasing particles’ mobility and for avoiding quick 
convergence to local minimums. These improvements 
were tested later in the results phase.  
 
4. Results 
 

The PSO algorithm for LOs sequencing described 
above was implemented using Microsoft Visual Studio 
C#. We wanted to test its performance in a real scenario 
so a problem concerning course sequencing for a Master 
in Engineering (M.Eng.) program in our institution was 
chosen for testing. The (web engineering) M.Eng, 
program comprises 23 courses (subjects) grouped in: 

• Basic courses (7) that must be taken before any 
other (course). There may be restrictions between 
two basic courses, for example ‘HTML’ course 
must precede Javascript course, 

• ‘Itinerary’ courses (5) that must be taken in a fixed 
ordered sequence. 

• Compulsory courses (5). There may be restrictions 
between two compulsory courses. 

• Elective courses (6). Additional constraints 
regarding any other course may be set. 

All courses have a (expected) learning time that range 
from 30 to 50 hours. They are delivered online using a 
LMS and they have their metadata records. Competency 
records were created to specify LOs’ restrictions, and 
LOs’ metadata records were updated to reflect 
prerequisite and learning outcome competencies as 
detailed in section 2. A feasible sequence must have 23 
LOs satisfying all constraints. The graph showing all LOs 
and constraints is very complex, and so it is to calculate 
the exact number of feasible solutions. Just estimations 
have been used. We have estimated that the relation 
between feasible solutions and total solutions order is 
8,9x1012. This number reflects the number of states (non-
feasible solutions) for each feasible solution. 

Once the problem was established, PSO agent 
parameters were set to test four different configurations 
that reflect all possibilities concerning proposed 
improvements introduced in Section 3. These 
configurations are: 

• Configuration 1. Permutation of the particle 
position is randomly selected from gbest or from 
pbest. Comparison for changing particle pbest and 
gbest values is set to less o equal (<=). 

• Configuration 2. Permutations from gbest/pbest. 
Comparison set to strictly less (<). 

• Configuration 3. All permutations are performed 
from gbest. Comparison set to less or equal (<=) 

• Configuration 4. Permutations from gbest. 
Comparison set to strictly less (<). 

Figure 4 shows the results for the four configurations. 
Each configuration was run 1000 times and the results 

represent the succeed ratio. From the results, it can be 
seen that all configurations converge to a feasible 
solution, but configuration 4 (original settings) 
outperform all others. 
 

 
 

Fig 4. PSO Configurations Comparison 
 

Figure 4 also shows that original settings need less 
fitness evaluations. This argument is supported by table 1 
results, where it is showed the mean number of evaluation 
function calls required for each configuration to find a 
solution (1000 runs). 
 

Table 1. Mean number of fitness evaluations 
 Fitness Evaluations 
Configuration 1 1412 
Configuration 2 1817 
Configuration 3 1237 
Configuration 4 1158 

 
The tested scenario may seem to have many feasible 

solutions that would make doubtful PSO performance in 
challenging scenarios, so PSO agent was tested in ‘more 
difficult’ situations. Test sequences of 20 (1018 solutions) 
and 26 (1036 solutions) LOs, where there was only one 
feasible solution, were designed. The agent succeeded in 
finding the solution if 200 and 500 iterations were set, 
respectively, in each test (100% success in 1000 runs). 
 
5. Conclusions and Future Work 
 

The purpose of the study was to design, develop and 
test a PSO agent that performs automatic LO sequencing 
through competencies. The PSO for permutation problem 
have been extended to LO sequencing problem. Testing 
two envisaged improvements was also performed. Results 
show that: (1) PSO succeeds in solving the problem, and 
(2) the original configuration is the best one. 

Further implications arise from the model proposal 
(Section 2): (1) E-learning standards are promoted. XML 
records and bindings are used, so elements will be easily 



interchanged and processed by compliant systems. (2) 
Instructor’s role is automated, with reduced costs. 
Sequencing process works even in complex scenarios 
were humans face difficulties. And (3), the model can be 
extended to an automated intelligent system for building 
personalized e-learning experiences. But this third 
implication is more appertained to future work. This 
model has been envisaged and is depicted in figure 5. 
Sequencing process can be complemented with gap 
analysis process and competency learner modeling 
techniques to build personalized courses. This courses 
could also be SCORM [7] compliant, so they could be 
imported to current LMSs. 

 

 
Fig 5. Competency-driven content generation model 

 
Finally, other intelligent sequencing techniques should 

be analyzed. Particularly, ant colony optimization (ACO) 
[22, 23] and genetic algorithms have proven optimal 
results regarding CSP solving. We plan to design and 
build intelligent sequencing agents using these techniques 
and check its results against PSO implementation 
performance. 
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