

Competency-based Learning Object Sequencing using Particle Swarms

L. de-Marcos, C. Pages, J.J. Martínez, J.A. Gutiérrez
Computer Science Department. University of Alcalá.
Ctra. Barcelona km 33.6, Alcalá de Henares, Spain

{luis.demarcos, carmina.pages, josej.martinez, jantonio.gutierrez}@uah.es

Abstract

In e-learning initiatives, sequencing problem concerns
arranging a particular set of learning units in a suitable
succession for a particular learner. Sequencing is usually
performed by instructors, who create general and ordered
series rather than learner personalized sequences. This
paper proposes an innovative intelligent technique for
learning object automated sequencing using particle
swarms. E-learning standards are promoted in order to
ensure interoperability. Competencies are used to define
relations between learning objects within a sequence, so
that the sequencing problem turns into a permutation
problem and AI techniques can be used to solve it.
Particle Swarm Optimization (PSO) is one of such
techniques and it has proven with good performance
solving a wide variety of problems. An implementation of
the PSO, for learning object sequencing, is presented and
its performance in a real scenario is discussed.

1. Introduction

Brusilovsky [1] envisages Web-based adaptive courses
and systems as being able to achieve some important
features including the ability to substitute teachers and
other students support, and the ability to adapt (and so be
used in) to different environments by different users
(learners). These systems may use a wide variety of
techniques and methods. Among them, curriculum
sequencing technology “is to provide the students with the
most suitable individually planned sequence of
knowledge units to learn and sequence the learning tasks
… to work with”. These methods derive from adaptive
hypermedia field [2] and rely on complex conceptual
models, usually driven by sequencing rules [3, 4]. E-
learning traditional approaches and paradigms, that
promote reusability and interoperability, are generally
ignored, thus resulting in (adaptive) proprietary systems
(such as AHA! [5]) and non-portable courseware.

In this paper an innovative sequencing technique is
proposed. E-learning standards and learning object
paradigm are used in order to promote and ensure
interoperability. Learning units’ sequences are defined in

terms of competencies in such a way that sequencing
problem can be modeled like a classical Constraint
Satisfaction Problem (CSP). And Particle Swarm
Optimization (PSO) is used to find a suitable sequence
within the solution space respecting the constraints. In
section 2, the problem model for competency-based
learning object sequencing is presented. Section 3
describes the particle swarm optimization approach for
solving the problem. Section 4 presents the results
obtained from implementing and testing the intelligent
algorithm in a real world situation (course sequencing in
an online Master in Engineering program). And finally
Section 5 depicts conclusions and future research lines.

2. Learning Objects and Sequencing

Within e-learning, the learning object paradigm drives
almost all initiatives. This paradigm encourages the
creation of small reusable learning units called Learning
Objects (LOs). These LOs are then assembled and/or
aggregated in order to create greater units of instruction
(lessons, courses, etc) [6].

LOs must be arranged in a suitable sequence
previously to its delivery to learners. Currently,
sequencing is performed by instructors who do not create
a personalized sequence for each learner, but instead
create generic courses, targeting generic learner profiles.
These sequences are then coded using a standard
specification to ensure interoperability. Most commonly
used specification is SCORM [7]. Courseware that
conforms SCORM´s Content Aggregation Model [8] is
virtually portable between a wide variety of Learning
Management Systems (LMSs). Though, SCORM usage
hinders the automatic LO sequencing due to its system-
centered vision. Other metadata-driven approaches offer
better possibilities. Just LO metadata will enable
automatic sequencing process to be performed. And the
appropriate combination of metadata and competencies
will enable adaptive and automatic content sequencing.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357549073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.1. Competencies for interoperable Learning
Object Sequencing

Competencies can be formally described as

“multidimensional, comprised of knowledge, skills and
psychological factors that are brought together in complex
behavioral responses to environmental cues” [9]. Some e-
learning trends are trying to standardize competency
definitions so that they could be interchanged and
processed by machines. It is worth quoting the following
specifications:

• IMS "Reusable Definition of Competency or
Educational Objective” (RDCEO) specification
[10],

• IEEE Learning Technology Standards Committee
(LTSC) “Draft Standard for Learning Technology
- Standard for Reusable Competency Definitions "
specification (currently an approved draft) [11],

• and HR-XML Consortium "Competencies
(Measurable Characteristics) Recommendation"
[12].

According to RDCEO and IEEE nomenclature, a
competency record is called ‘Reusable Competency
Definition’ (RCD). RCDs can be attached to LOs in order
to define their prerequisites and their learning outcomes.
We have used this approach to model LO sequences. By
defining a competency (or a set of competencies) as a LO
outcome, and by defining the same competency as the
prerequisite for another LO (fig 1), a constraint between
the two LOs is established so that the first one must
precede the second LO in a valid sequence.

Fig 1. LO sequencing through competencies

Metadata (MD) definitions are attached to LOs, and

within those definitions references to competencies
(prerequisites and learning outcomes) are included. LOM
[13] records have been used for specifying LO metadata.
LOM element 9, ‘Classification’, is used to include
competency references as recommended in [14, 15]. So,
LOM element 9.1, ‘Purpose’, is set to ‘prerequisite’ or
‘educational objective’ from among the permitted
vocabulary for this element; and LOM element 9.2
‘Taxon Path’, including its sub-elements, is used to
reference the competency (note that more than one
Classification element can be included in one single LO

in order to specify more than one prerequisite and/or
learning outcome).

Simple metadata (i.e LOM records) is enough to model
LOs’ sequences in a similar way. So, why use
competencies? Competency usage is encouraged, besides
its usefulness for modeling prerequisites and learning
outcomes, because competencies are also useful for
modeling user current knowledge and learning initiatives’
expected outcomes (future learner knowledge).We are
proposing a wider framework (see Section 5) in which
learner (user) modeling is done in terms of competencies,
and these competencies are also used to define the
expected learning outcomes from a learning program.

3. Particle Swarm Optimization in Learning
Object Sequencing

Given a random LOs’ sequence modeled as described
above, the question of finding a correct sequence can be
envisaged as a classical artificial intelligent Constraint
Satisfaction Problem (CSP). In this manner, the solution
space comprises all possible sequences (n! will be its size,
total number of states, for n LOs), and a (feasible)
solution is a sequence that satisfies all established
constraints. LO permutations inside the sequence are the
operations that define transitions between states. So we
face a permutation problem, which is a special kind of
CSP.

Particle Swarm Optimization (PSO) is an evolutionary
computing optimization algorithm. PSO mimics the
behavior of social insects like bees. A random initialized
particles’ population (states) flies through the solution
space sharing the information they gather. Particles use
this information to dynamically adjust their velocity and
cooperate towards finding a solution. Best solution found:
(1) by a particle is called pbest, (2) within a set of
neighbor particles is called nbest, (3) and within the
whole swarm is called gbest. PSO have been used to solve
a wide variety of problems [16].

Original PSO [17, 18] is intended to work on
continuous spaces. A discrete binary version was
presented in [19]. This version uses the concept of
velocity as a probability of changing a bit state from zero
to one or vice versa. A version that deals with
permutation problems was introduced in [20]. In this
latter version, velocity is computed for each element in
the sequence, and this velocity is also used as a
probability of changing the element, but in this case, the
element is swapped establishing its value to the value in
the same position in nbest. The mutation concept was also
introduced in the permutPSO version; after updating each
particle´s velocity, if the current particle is equal to nbest
then two randomly selected positions from the particle
sequence are swapped. In [20] is demonstrated that
permutation PSO outperforms genetic algorithms for the

N-Queens problem. So we decided to try PSO, before any
other technique, for LO sequencing problem.

Figure 2 presents the basic PSO procedure for LO
sequencing.

initialize the population
do {
 for each particle {
 calculate fitness value
 if (new fitness < gBest)
 set gbest = currentValue
 if (new fitness < pBest)
 set pbest = currentValue
 Calculate new velocity as

 V w V c1 rand P X

 c2 rand P X
 Normalize Velocity as

 V V / max V

 Update particle value
 for each v[i] in V {
 if(rand() < v[i])
 swap currentValue[i] for
 indexOf(currentValue, gBest[i])
 }
 Check Mutation
 if (currentValue = gBest) swap two
 random positions from currentValue
 }
} until termination criterion is met

Fig 2. PSO Procedure for LO Sequencing

For an adequate PSO implementation fitness function

and parameters should also be carefully selected.

Fitness Function. It is critical to choose a function that
accurately represents the goodness of a solution [21]. The
following function is suggested:

(1)

Where s is the LO sequence, n is the number of LOs in
s, s[i] is the i-th LO in the sequence, and prn is the
number of prerequisites in a LO not delivered by their
predecessors in the sequence. prn is computed using a
function that recursively process all outcomes delivered
by previous LOs in the sequence, checking for each
prerequisite accomplishment. The fitness value of a
feasible solution should be zero, so PSO tries to minimize
this function. When a solution fitness function call returns
0, the operation of the algorithm is stopped returning the
current state (solution).

PSO Parameters. One important advantage of PSO is
that it uses a relative small number of parameters
compared with other techniques like genetic algorithms.
However, much literature on PSO parameter subject has
been written. Among it, Xiaohui et. al. [20] established
the set of parameters so that PSO works properly for
solving permutation problems. So we decided to take their
recommendations, and parameters were set as follows:

Learning rates (c1, c2) are set to 1.49445 and the inertial
weight (w) is computed according to the following
equation:

w = 0.5 + (rand() / 2) (2)
Population size was set to 20 particles and the fully

informed version of PSO was used. The number of
iterations was also defined as an input parameter. It was
used as a measurement of the number of calls to the
fitness function that were allowed to find a solution. It
should be noted that some problems may not have a
solution, so number of iterations setting can avoid infinite
computing

Proposed improvements. During the initial agent
development we find that in some situations the algorithm
got stuck in a local minimum, and it was not able to find a
feasible solution. For that reason, two enhancements were
envisaged in order to improve algorithm performance for
LO sequencing. First improvement is to change pbest and
gbest values when an equal or best fitness value is found
by a particle. In other words all particle`s comparisons
concerning pbest and gbest against the actual state were
set to less or equal (<=). Original algorithm determines
that pbest and gbest only change if a better state is found
(comparisons <). Second improvement is to randomly
decide whether the permutation of a particle’s position
was performed from gbest or from pbest (p=0.5). In the
original version all permutations are done regarding gbest.
Figure 3 presents these improvements. Changes
respecting the basic procedure are showed in boldface.

initialize the population
do {
 for each particle {
 calculate fitness value
 if (new fitness <= gBest)
 set gbest = currentValue
 if (new fitness <= pBest)
 set pbest = currentValue
 Calculate new velocity as

 V w V c1 rand P X

 c2 rand P X
 Normalize Velocity as

 V V / max V

 Update particle value
 for each v[i] in V {
 if(rand() < v[i])
 if(rand() < 0.5)
 swap currentValue[i] for
 indexOf(currentValue, pBest[i])
 else
 swap currentValue[i] for
 indexOf(currentValue, gBest[i])
 }
 Check Mutation
 if (currentValue = gBest) swap two
 random positions from currentValue
 }
} until termination criterion is met

Fig 3. Improvements on PSO Procedure

These changes resemble to be quite logical ways for
increasing particles’ mobility and for avoiding quick
convergence to local minimums. These improvements
were tested later in the results phase.

4. Results

The PSO algorithm for LOs sequencing described
above was implemented using Microsoft Visual Studio
C#. We wanted to test its performance in a real scenario
so a problem concerning course sequencing for a Master
in Engineering (M.Eng.) program in our institution was
chosen for testing. The (web engineering) M.Eng,
program comprises 23 courses (subjects) grouped in:

• Basic courses (7) that must be taken before any
other (course). There may be restrictions between
two basic courses, for example ‘HTML’ course
must precede Javascript course,

• ‘Itinerary’ courses (5) that must be taken in a fixed
ordered sequence.

• Compulsory courses (5). There may be restrictions
between two compulsory courses.

• Elective courses (6). Additional constraints
regarding any other course may be set.

All courses have a (expected) learning time that range
from 30 to 50 hours. They are delivered online using a
LMS and they have their metadata records. Competency
records were created to specify LOs’ restrictions, and
LOs’ metadata records were updated to reflect
prerequisite and learning outcome competencies as
detailed in section 2. A feasible sequence must have 23
LOs satisfying all constraints. The graph showing all LOs
and constraints is very complex, and so it is to calculate
the exact number of feasible solutions. Just estimations
have been used. We have estimated that the relation
between feasible solutions and total solutions order is
8,9x1012. This number reflects the number of states (non-
feasible solutions) for each feasible solution.

Once the problem was established, PSO agent
parameters were set to test four different configurations
that reflect all possibilities concerning proposed
improvements introduced in Section 3. These
configurations are:

• Configuration 1. Permutation of the particle
position is randomly selected from gbest or from
pbest. Comparison for changing particle pbest and
gbest values is set to less o equal (<=).

• Configuration 2. Permutations from gbest/pbest.
Comparison set to strictly less (<).

• Configuration 3. All permutations are performed
from gbest. Comparison set to less or equal (<=)

• Configuration 4. Permutations from gbest.
Comparison set to strictly less (<).

Figure 4 shows the results for the four configurations.
Each configuration was run 1000 times and the results

represent the succeed ratio. From the results, it can be
seen that all configurations converge to a feasible
solution, but configuration 4 (original settings)
outperform all others.

Fig 4. PSO Configurations Comparison

Figure 4 also shows that original settings need less
fitness evaluations. This argument is supported by table 1
results, where it is showed the mean number of evaluation
function calls required for each configuration to find a
solution (1000 runs).

Table 1. Mean number of fitness evaluations
 Fitness Evaluations
Configuration 1 1412
Configuration 2 1817
Configuration 3 1237
Configuration 4 1158

The tested scenario may seem to have many feasible

solutions that would make doubtful PSO performance in
challenging scenarios, so PSO agent was tested in ‘more
difficult’ situations. Test sequences of 20 (1018 solutions)
and 26 (1036 solutions) LOs, where there was only one
feasible solution, were designed. The agent succeeded in
finding the solution if 200 and 500 iterations were set,
respectively, in each test (100% success in 1000 runs).

5. Conclusions and Future Work

The purpose of the study was to design, develop and
test a PSO agent that performs automatic LO sequencing
through competencies. The PSO for permutation problem
have been extended to LO sequencing problem. Testing
two envisaged improvements was also performed. Results
show that: (1) PSO succeeds in solving the problem, and
(2) the original configuration is the best one.

Further implications arise from the model proposal
(Section 2): (1) E-learning standards are promoted. XML
records and bindings are used, so elements will be easily

interchanged and processed by compliant systems. (2)
Instructor’s role is automated, with reduced costs.
Sequencing process works even in complex scenarios
were humans face difficulties. And (3), the model can be
extended to an automated intelligent system for building
personalized e-learning experiences. But this third
implication is more appertained to future work. This
model has been envisaged and is depicted in figure 5.
Sequencing process can be complemented with gap
analysis process and competency learner modeling
techniques to build personalized courses. This courses
could also be SCORM [7] compliant, so they could be
imported to current LMSs.

Fig 5. Competency-driven content generation model

Finally, other intelligent sequencing techniques should

be analyzed. Particularly, ant colony optimization (ACO)
[22, 23] and genetic algorithms have proven optimal
results regarding CSP solving. We plan to design and
build intelligent sequencing agents using these techniques
and check its results against PSO implementation
performance.

6. Acknowledgments

This research is co-funded by: (1) the FPI research
staff education program of the University of Alcalá, (2)
the Spanish Ministry of Industry PROFIT program
(SNOA project under contract FIT-350200-2007-6), and
by (3) research groups’ support program from the
University of Alcalá (grant CCG06-UAH/TIC-0732).

Authors also want to acknowledge support from the
TIFyC research group.

7. References

[1] P. Brusilovsky, "Adaptive and Intelligent
Technologies for Web-based Education," Künstliche
Intelligenz, Special Issue on Intelligent Systems and
Teleteaching, vol. 4, pp. 19-25, 1999.
[2] P. Brusilovsky, "Methods and techniques of adaptive
hypermedia," User Modeling and User-Adapted
Interaction, vol. 6, pp. 87-129, 1996.
[3] P. De Bra, G.-J. Houben, and H. Wu, "AHAM: a
Dexter-based reference model for adaptive hypermedia,"
in Proceedings of the tenth ACM Conference on
Hypertext and hypermedia Darmstadt, Germany: ACM
Press, 1999.
[4] P. Karampiperis, "Automatic LO Selection and
Sequencing in Web-Based Intelligent Learning Systems,"
in Web-Based Intelligent E-Learning Systems:
Technologies and Applications, M. Zongmin, Ed.
London. UK.: Idea Group, 2006.
[5] P. De Bra, A. Aerts, B. Berden, B. d. Lange, B.
Rousseau, T. Santic, D. Smits, and N. Stash, "AHA! The
adaptive hypermedia architecture," in Proceedings of the
fourteenth ACM conference on Hypertext and hypermedia
Nottingham, UK: ACM Press, 2003.
[6] D. A. Wiley, "Connecting LOs to instructional design
theory: A definition, a metaphor, and a taxonomy," in The
Instructional Use of LOs, D. A. Wiley, Ed., 2000.
[7] ADL, "Shareable Content Object Reference Model
(SCORM). The SCORM 2004 Overview," Advanced
Distributed Learning (ADL) Initiative, 2004.
[8] ADL, "Shareable Content Object Reference Model
(SCORM). The SCORM 2004 Content Aggregation
Model." vol. 2005: Advanced Distributed Learning
(ADL) Initiative, 2004.
[9] J. Wilkinson, "A matter of life or death: re-
engineering competency-based education through the use
of a multimedia CD-ROM," in IEEE International
Conference on Advanced Learning Technologies, 2001.
Proceedings, 2001, pp. 205-208.
[10] IMS, "Reusable Definition of Competency or
Educational Objective - Information Model," IMS Global
Learning Consortium, 2002.
[11] IEEE, "Learning Technology Standards Committee
(LTSC). Draft Standard for Learning Technology - Data
Model for Reusable Competency Definitions," IEEE,
2007.
[12] HR-XML, "Competencies (Measurable
Characteristics) Recommendation," HR-XML
Consortium, 2006.
[13] IEEE, "Learning Technology Standards Committee
(LTSC). LO Metadata (LOM). 1484.12.1," IEEE, 2002.

[14] IEEE, "Learning Technology Standards Committee
(LTSC). Standard for Learning Technology—Extensible
Markup Language (XML) Schema Definition Language
Binding for LO Metadata. 1484.12.3.," IEEE, 2005.
[15] IMS, "Reusable Definition of Competency or
Educational Objective - Best Practice and Implementation
Guide," IMS Global Learning Consortium, 2002.
[16] M. G. Hinchey, R. Sterritt, and C. Rouff, "Swarms
and Swarm Intelligence," Computer, vol. 40, pp. 111-113,
2007.
[17] R. Eberhart and J. Kennedy, "A new optimizer using
particle swarm theory," in Proceedings of the Sixth
International Symposium on Micro Machine and Human
Science. MHS '95., Nagoya, Japan, 1995, pp. 39-43.
[18] J. Kennedy and R. Eberhart, "Particle swarm
optimization," in Proceedings., IEEE International
Conference on Neural Networks., Perth, WA, Australia,
1995, pp. 1942-1948 vol.4.
[19] J. Kennedy and R. C. Eberhart, "A discrete binary
version of the particle swarm algorithm," in 1997 IEEE
International Conference on Systems, Man, and
Cybernetics. 'Computational Cybernetics and Simulation'.
1997, pp. 4104-4108 vol.5.
[20] H. Xiaohui, R. C. Eberhart, and S. Yuhui, "Swarm
intelligence for permutation optimization: a case study of
n-queens problem," in Proceedings of the 2003 IEEE
Swarm Intelligence Symposium, 2003. SIS '03. , 2003, pp.
243-246.
[21] J. Robinson and Y. Rahmat-Samii, "Particle swarm
optimization in electromagnetics," Antennas and
Propagation, IEEE Transactions on, vol. 52, pp. 397-407,
2004.
[22] M. Dorigo and G. D. Caro, "The Ant Colony
Optimization meta-heuristic," in New Ideas in
Optimization, D. Corne, M. Dorigo, and F. Glover, Eds.
London, UK: McGraw Hill, 1999, pp. 11-32.
[23] M. Dorigo, G. D. Caro, and L. M. Gambardella, "Ant
algorithms for discrete optimization," Artificial Life, vol.
5, pp. 137-172, 1999.

