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Abstract

Numerical solution of multi-dimensional PDEs is a challenging problem with respect to computational cost and memory requirements, as
well as regarding representation of realistic geometries and adaption to solution features. Meshfree methods such as global radial basis
function approximation have been successfully applied to several typesof problems. However, due to the dense linear systems that need to
be solved, the computational cost grows rapidly with dimension. In this paper, we instead propose to use a locally supported RBF collocation
method based on a partition of unity approach to numerically solve time-dependent PDEs. We investigate the stability and accuracy of
the method for convection-diffusion problems in two space dimensions aswell as for an American option pricing problem. The numerical
experiments show that we can achieve both spectral and high-order algebraic convergence for convection-diffusion problems, and that we
can reduce the computational cost for the option pricing problem by adapting the node layout to the problem characteristics.

Key words: collocation method; meshless method; radial basis function; partition of unity; PUM; convection-diffusion equation; American
option.

1 Introduction

Numerical option pricing is steadily gaining in popularitydue to the increasing interest in and demand for complex financial
derivatives. One example is financial contracts based on several underlying assets. Such option prices can be modeled by
higher dimensional generalizations of the original Black–Scholes equation [2,13]. Fasshauer et al. [3] and Pettersson et al. [20]
have shown that mesh-free methods based on radial basis functions (RBFs) may reduce the computational efforts significantly
compared with finite difference methods for problems in one and two assets. Therefore, RBF methods are promising candidates
for solving high-dimensional financial problems efficiently. Option pricing using RBFs was explored in one dimension for
European and American options by Hon et al. [27,8]. Pettersson et al. [20] presented a RBF based method for multi-dimensional
European options, and American options in both one and two dimensions are investigated by Fasshauer et al. [3]. All of these
papers employ global RBF collocation methods.

Partition of unity (PU) schemes have been used for the construction of interpolants for a long time. This type of approach
was taken by Shepard [23], McLain [16], and Franke and Nielson [7]. PU schemes were combined with RBFs for interpo-
lation problems in [26] and [4]. In the last two decades, the partition of unity method (PUM) has gained importance for the
construction of approximations to the solutions of partialdifferential equations (PDEs) due to the early work of Babuška and
Melenk [1]. The main advantages of the PUMs are the flexibility in choosing ansatz spaces and their good approximation
properties. The framework of the PUM allows different ways to adapt the local approximation to the solution. The size of the
partitions can be changed (h-version) and the dimension and character of the function space for the local approximation can
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be varied (p-version). Recently, Larsson and Heryudono [15] introduced a collocation PUM with local RBF approximations
for numerical solution of time-independent PDEs. The RBF–PUM formulation has high (spectral) approximation order locally
and generates sparse coefficient matrices, and is hence wellsuited for multi-dimensional problems [15].

In this paper, we introduce the RBF–PUM as an alternative method for numerical solution of time-dependent PDEs. We
investigate the capability of the method for the two dimensional convection-diffusion equation, and as a second example, we
consider the American multi-asset put option pricing problem.

2 Radial basis function collocation schemes

RBF methods are meshfree and work with data given at scattered node points. GivenN distinct pointsx1, . . . ,xN ∈ R
d and

corresponding scalar function valuesu(x1), . . . ,u(xN), the standard RBF interpolation problem is to find an interpolant of the
form

s(x) =
N

∑
j=1

λ jφ(‖x−x j‖), (2.1)

where‖ · ‖ is the Euclidean norm,λ j ∈ R for j = 1, . . . ,N, andφ is a real-valued function such as the inverse multiquadric
φ(r) = 1√

ε2r2+1
. The coefficientsλ1, . . . ,λN are determined by enforcing the conditionss(xi) = u(xi), i = 1, . . . ,N. Imposing

these conditions leads to a symmetric linear system of equations

Aλ = u, (2.2)

whereAi j = φ(‖xi − x j‖), i, j = 1, . . . ,N, u = [u(x1) . . .u(xN)]
T , andλ = (λ1 . . .λN)

T . Whenλ is known, we can with this
notation evaluate the RBF interpolant at a pointx as

s(x) = φ̄(x)λ , (2.3)

whereφ̄(x) = (φ(‖x−x1‖), . . . ,φ(‖x−xN‖)).

For the error analysis and also for the implementation of boundary conditions discussed later, it is preferable to express the
interpolant in Lagrange form, i.e., using cardinal basis functions. The cardinal basis functions,ψ j(x), j = 1, . . . ,N, have the
property

ψ j(xi) =

{

1 if i = j,

0 if i 6= j,
j = 1, . . . ,N, (2.4)

leading to the alternative formulation for the interpolant

s(x) = ψ̄(x)u, (2.5)

whereψ̄(x) = (ψ1(x), . . . ,ψN(x)). Combining (2.3), (2.5), and (2.2) leads to the following relation between the cardinal basis
and the original radial basis:

s(x) = ψ̄(x)u= φ̄(x)λ = φ̄(x)A−1u ⇒ ψ̄(x) = φ̄A−1. (2.6)
This transformation is valid wheneverA is non-singular. This holds for distinct node pointsx1, . . . ,xN and commonly used
RBFs such as Gaussians, inverse multiquadrics and multiquadrics.

For a linear operatorL , we have

L s(x) =
N

∑
j=1

L ψ j(x)u(x j). (2.7)

To evaluateL s(x) at the node points, i.e., to evaluatesL = (L s(x1), . . . ,L s(xN))
T , we need the differentiation matrixΨL =

{L ψ j(xi)}i, j=1,...,N. Using relation (2.6), this leads to

sL = ΨL u= ΦL A−1u, (2.8)
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whereΦL = {L φ(‖xi −x j‖)}i, j=1,...,N.

When the Lagrangian form of the RBF interpolation method is used in the context of solving a time-dependent PDE problem,
the solutionu(x, t) is approximated by

s(x, t) =
N

∑
j=1

ψ j(x)u j(t), (2.9)

whereu j(t)≈ u(x j , t) are the unknown functions to determine.

3 The radial basis function based PUM

This section defines the RBF–PUM collocation method for time-dependent PDEs in terms of its weight functions and local
RBF approximations.

3.1 The partition of unity weight functions

Let Ω ⊂ R
d be an open set, and let{Ωi}M

i=1 be an open cover ofΩ satisfying a pointwise overlap condition and that

∀x∈ Ω I(x) = { j|x∈ Ω j}, card(I(x))≤ K,

whereK is a constant that does not depend onM. In the RBF–PUM, the global approximation functions(x) in Ω to the solution
functionu(x) is constructed as follow

s(x) =
M

∑
j=1

w j(x)sj(x), (3.1)

wheresj is an RBF approximation ofu(x) on patchΩ j andw j : Ω j →R are compactly supported, nonnegative weight functions
subordinate to the cover. The partition of unity weight functions w j , which also occur under the nameshape functions, are
constructed using Shepard’s method as follows

w j(x) =
ϕ j(x)

∑k∈I(x) ϕk(x)
, j = 1, . . . ,M, (3.2)

whereϕ j(x) are compactly supported functions with support onΩ j . Here, we select compactly supported Wendland functions
[25] such as

ϕ(r) =

{

(1− r)4(4r +1) if 0 ≤ r ≤ 1,

0 if r > 1,
(3.3)

for the construction of the weight functions. Non-negativity and compact support on radially symmetric patchesΩ j are guar-
anteed if the weight functions are constructed using

ϕ j(x) = ϕ
(‖x−x j‖

r j

)

, j = 1, . . . ,M, (3.4)

wherer j is the radius of the patchΩ j , andx j is its center point. It follows from (3.2) that the weight functionsw j(x) satisfy the
partition of unity property

∑
j∈I(x)

w j(x) = 1. (3.5)

Moreover, the equations (3.3)-(3.4) show thatw j(x) = 0, ∀ j /∈ I(x). Therefore, equation (3.1) can be rewritten as

s(x) = ∑
j∈I(x)

w j(x)sj(x). (3.6)
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If the functionssj(x), j = 1, . . . ,M from equation (3.6) are local interpolants withsj(xi) = u(xi) for each node pointxi ∈ Ω j ,
then the global PU approximant inherits the interpolation property of the local interpolants, i.e.

s(xi) = ∑
j∈I(xi)

w j(xi)sj(xi) = u(xi) ∑
j∈I(xi)

w j(xi) = u(xi). (3.7)

The patches can be of any shape: square, circular, etc. The common requirement for all shapes of patches is that they coverthe
domain and the boundary. In this paper, circle and oval shapes of the patches will be investigated. In the case of oval patches,
the functions used for generating the weight functions are adjusted accordingly, since the support and the shape of the patch
must match each other.

When we use these types of patches, the overlap between patches can be regulated, and covering ensured, by adjusting the
radius of the patches. Flexibility in selection of the radius of the patches is another advantage of the local propertiesof the
PUM. Figures 4 and 12 demonstrate the discretization of a square domain with circle and oval patches.

3.2 The RBF–PUM for time-dependent problems

In the RBF–PUM, the solutionu(x, t) for a time-dependent problem is approximated by

s(x, t) =
M

∑
j=1

w j(x)sj(x, t), (3.8)

wheresj(x, t) is an RBF approximant of the type (2.9) onΩ j , i.e.

sj(x, t) = ∑
k∈J(Ω j )

ψk(x)uk(t), (3.9)

whereJ(Ω j) = {k|xk ∈ Ω j} is the set of node points inΩ j .

From the equations (3.8) and (3.9), we can express the globalapproximant as

s(x, t) =
M

∑
j=1

w j(x) ∑
k∈J(Ω j )

ψk(x)uk(t) = ∑
j∈I(x)

w j(x) ∑
k∈J(Ω j )

ψk(x)uk(t)

= ∑
j∈I(x)

∑
k∈J(Ω j )

(

w j(x)ψk(x)
)

uk(t), (3.10)

Note that by interpolating the initial condition we gets(xk,0) = u(xk,0) for all k, buts(xk, t)≈ u(xk, t) for t > 0.

3.3 Differentiating the RBF–PU approximant

In order to use the RBF–PU approximation (3.10) for a PDE problem, we need to compute the effect of applying a spatial
differential operatorL at the interior node points. Letα andβ be multi-indices and adopt common rules for multi-index
notation. Then a derivative term of orderα in the differential operator can be applied in two steps. First we use the properties

of the local approximations in each patch to compute∂ |β |ψk
∂xβ (xi) and then we compute the values of

∂ |α−β |ω j

∂xα−β (xi) for all β ≤ α.
The derivative applied to the global approximation (3.10) becomes

∂ |α |

∂xα s(xi , t) = ∑
j∈I(xi)

∑
k∈J(Ω j )

∂ |α |

∂xα [w j(x)ψk(x)]x=xi uk(t)

= ∑
j∈I(xi)

∑
k∈J(Ω j )

[

∑
β≤α

(

α
β

)

∂ |α−β |ω j

∂xα−β (xi)
∂ |β |ψk

∂xβ (xi)

]

uk(t), 1≤ i ≤ NI , (3.11)
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whereNI is the total number of interior node points inΩ. Fixing i andk in equation (3.11) gives us theik-element of the global
differentiation matrix corresponding to theα-derivative. For composite linear operators, we just sum upthe contributions from
each term. We denote the global differentiation matrix under operatorL by WL .

4 The unsteady convection-diffusion equation

Consider an unsteady convection-diffusion equation of theform

∂u(x, t)
∂ t

= κ∆u(x, t)+v·∇u(x, t)≡ L u(x, t), x∈ Ω ⊂ R
d, t > 0, (4.1)

where∆ and∇ denote the Laplacian and the gradient operator, respectively, κ is the diffusion coefficient,v is a constant velocity
vector, andu(x, t) may represent concentration or temperature for mass or heattransfer, respectively. This equation also serves
as a simplified model problem for the Black–Scholes equationand other equations in financial mathematics. The equation (4.1)
must be supplemented with an initial condition of the form

u(x,0) = f0(x), (4.2)

and boundary condition

Bu(x, t) = f (x, t), x∈ ∂Ω, t > 0, (4.3)

whereB can be a Dirichlet, a Neumann or a mixed boundary operator. Ifwe use equation (3.11) for the differentiation matrices,
assume Dirichlet boundary conditions, and collocate the PDE (4.1) at the node points, we get the system of ODEs

U ′
I (t) = κW∆,IUI (t)+v·W∇,IUI (t)+F(t), (4.4)

whereW·,I contains the columns of the differentiation matrix corresponding to interior nodes andW·,b contains the columns
of the differentiation matrix corresponding to the boundary points. The matrixW∇,I is vector valued and the dot product with

the velocityv should be taken for each node point. The vectorUI (t) = [u1(t), . . . ,uNI (t)]
T and the vectorF(t) =

(

κW∆,b+ v ·

W∇,b

)

f (t), where f (t) = [ f (xNI+1, t), . . . , f (xN, t)]T .

We can solve the system of ODEs in equation (4.4) in MATLAB with the ODE solver commandode15s, which is suitable for
stiff ODEs or implement some other common time stepping method.

4.1 Error estimate

In the calculation of an upper bound for the discrete error, we need the following three functions: the exact solutionu(x, t), the
RBF approximations(x, t) from (3.10), and the auxiliary functionz(x, t), which interpolates the exact solution at each time

z(x, t) = ∑
j∈I(x)

∑
k∈J(Ω j )

(w j(x)ψk(x))u(xk, t) (4.5)

The initial conditions for all three functions coincide at the collocation points. That is,

s(xi ,0) = z(xi ,0) = u(xi ,0), 1≤ i ≤ NI . (4.6)

We define the error functione(x, t) = u(x, t)−s(x, t) and the interpolation errorε(x, t) = u(x, t)−z(x, t). The time evolution of
the error is governed by the PDE

∂e(x, t)
∂ t

=
∂u(x, t)

∂ t
− ∂s(x, t)

∂ t
= L u(x, t)−L s(x, t)
= L z(x, t)−L s(x, t)+L u(x, t)−L z(x, t)
= L z(x, t)−L s(x, t)+L ε(x, t). (4.7)
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Fig. 1. The variation ofEQ with time. Initially the value is close tot and then approaches the asymptotic value of‖Q−1‖. The asymptotic
results are indicated by the dashed trend lines.

We will derive an estimate for the discrete error. Therefore, we define the vectorsE(t) = [e(x1, t), . . . ,e(xNI , t)]
T andεL (t) =

[L ε(x1, t), . . . ,L ε(xNI , t)]
T , and evaluate (4.7) at the interior collocation points to get

E′(t) = (κW∆,I +v·W∇,I )E(t)+ εL (t), (4.8)

where we have used the fact thatz(xi , t) = u(xi , t) for all node points, and that bothz(x, t) ands(x, t) are PU approximations in
the forms (4.5) and (3.10). LetQ= κW∆,I +v·W∇,I . Then, the system of ODEs (4.8) can be formally integrated toyield

E(t) =
∫ t

0
eQ(t−τ)εL (τ)dτ . (4.9)

A simple worst case estimate for the discrete error becomes

‖E(t)‖∞ =

∥

∥

∥

∥

∫ t

0
eQ(t−τ)εL (τ)dτ

∥

∥

∥

∥

∞
≤ ‖Q−1(I −eQt)‖∞ max

0≤τ≤t
‖εL (τ)‖∞ ≡ EQ max

0≤τ≤t
‖εL (τ)‖∞ (4.10)

We will investigate the size ofEQ further. For small enought, we can Taylor expand the matrix exponential aseQt = I + tQ+
t2
2 Q2+O(t3Q3), which leads to

Q−1(I −eQt) =−
(

t +
t2

2
Q+O(t3Q2)

)

.

For large enough values oft, we instead use the form

Q−1(I −eQt) =VQΛ−1(I −eΛt)V−1
Q , (4.11)

where the diagonal matrixΛ contains the eigenvaluesλ j of Q and the columns of the matrixVQ are the eigenvectors ofQ.
Numerical experiments indicate that all eigenvaluesλ j have a negative real part. Therefore, the exponential in (4.11) approaches
zero as time increases, and the limit value ofEQ becomes‖Q−1‖∞. Figure 1 shows howEQ changes over time for the convection
diffusion example. We can see that the asymptotic value is small, that it depends on the shape parameter, and that it is reached
quickly (for this time scale). In order to investigate if‖Q−1‖∞ also depends on the discretization, we define the local fill distance
for nodes

h j = sup
x∈Ω j

min
k∈J(Ω j )

‖x−xk‖, (4.12)

which can be explained as measuring the radius of the largestball empty of nodes in partitionj, the global fill distance

h= max
1≤ j≤M

h j , (4.13)
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and the partition fill distance
H = sup

x∈Ω
min

1≤ j≤M
‖x−x j‖, (4.14)

which similarly measures how densely the partition centersx j cover the domain. For uniform discretizations,h is proportional
to the node distance andH to the partition size. Figure 2 shows how the maximumEQ value depends onh andH. The figure
shows a weak dependence onh, especially in the more resolved cases, and an even weaker dependence onH.
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Fig. 2. The dependence ofEQ on the fill distanceh whenH = 0.2 (left) and the dependence on the partition fill distanceH whenh= 0.077
(right) for different values of the shape parameterε.

We now change our focus to the second part of the error estimate (4.10) and expand this to get

‖E(t)‖∞ ≤ EQ

(

κ max
0≤τ≤t

‖ε∆(τ)‖∞ +d‖v‖∞ max
0≤τ≤t

‖ε∇(τ)‖∞

)

. (4.15)

The RBF–PU interpolation error and its derivatives have been discussed extensively in [15] and rely on the sampling inequal-
ities derived in [21]. We choose to consider two different modes of refinement in order to separate the dependence onh and
H in the error estimates. For the first refinement mode, we require the number of nodes per partition to stay the same while
we refine the partitions, meaning thath= cH, wherec< 1 is a constant. Then we have the following estimate from [15]for a
derivative of the interpolation error

‖εL ‖∞ ≤Cmax
j

Cj r
mj− d

2−αL

j ‖u‖N (Ω j ), (4.16)

wherer j is the radius of partitionj, mj depends on the number of nodes within the partition,αL is the order of the highest
derivative in the operatorL , and‖ · ‖N (·) denotes the native space norm (cf. [4,21]) corresponding tothe chosen radial basis
or kernel function. For the other refinement mode, we fix the partition and then change the number of node points locally or
globally, leading to the following convergence estimate

‖εL ‖∞ ≤Cmax
j

eγ j log(h j )/
√

h j‖u‖N (Ω j ). (4.17)

When the estimates are expressed on this form, we clearly see the potential for adaptive refinement in relation to the local
behavior of the solution. However, when performing numerical convergence studies, we work with (quasi) uniform discretiza-
tions, in which caser j can be replaced byH andh j by h.

Combining the different parts of the error estimate, we get the following estimates for the two different refinement cases for
uniform discretizations
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‖E(t)‖∞ ≤CEQHm− d
2−2 max

0≤τ≤t
max

j
‖u(τ)‖N (Ω j ), (4.18)

‖E(t)‖∞ ≤CEQeγ log(h)/
√

h max
0≤τ≤t

max
j

‖u(τ)‖N (Ω j ), (4.19)

where the constantsm and γ that determine the order of or rate of convergence, are takenas the minimum values over all
partitions. We conclude that we expect to observe algebraicconvergence inH, when the number of nodes per partition is fixed,
and spectral convergence inh when the partitions are fixed.

Remark:When the shape parameterε is small, the local RBF approximation is close to polynomial[14], and assuming that
the node set is polynomially unisolvent, the rate constantm approximately relates to the multi-variate polynomial degreeK
supported by the number of node points within the partition asm= K+1. As an example, ten degrees of freedom/nodes in two
dimensions corresponds to a polynomial of degree 3, leadingto m= 4 and an overall convergence rate ofH1.

Remark:The spectral estimate involves
√

h instead ofh. This has to do with boundary effects and can be mitigated if the nodes
are distributed more densely near the boundary of the approximation domain [22]. This is not practical in the PU case, since
it would mean refining nodes near all partition boundaries. However, there are other effects that may in practice suppress the
boundary errors, such as the decay of the weight functions towards the partition boundary.

4.2 Numerical results

With appropriate initial condition and Dirichlet boundaryconditions, the following function is a solution to the unsteady
convection-diffusion equation (4.1) ind = 2 space dimensions

u(x,y, t) = aexpbt−c(x+y), (4.20)

wherea andb can be chosen freely, andc= v±
√

v2+4bκ
2κ > 0.

We discretize the domainΩ = [0,1]× [0,1] uniformly by N = n2 nodes. We also consider a corresponding non-uniform dis-
cretization with a similar number of node points. The discretizations of the square domainΩ are shown in Figure 3. Circular
patches are used for partitioning of the domain. We let the overlap of the patches be 20% of the distance between the centers.
An example of partitions for the square domainΩ is shown in Figure 4.

Numerical experiments are performed with the parametersa= 1, b= 0.1, κ = 1 andv= (1,1). Figure 5 displays the absolute
error for the two different types of node distributions shown in Figure 4 withε = 1.25 att = 1. The eigenvalues of the coefficient
matrix Q are plotted in Figure 6. It can be seen that all of the eigenvalues are in the left half plane. Therefore, the stability of
the numerical solution is guaranteed.

The convergence of the solution is investigated in Figure 7 from two vantage points. In the first scenario, for a fixed number
of partitions, uniformly distributed nodes with varying fill distance have been taken for studying the convergence trends of
the presented method. In the second scenario, circle patches ranging from 2×2 to 6×6 for an almost fixed number of local
nodes per partition are considered. The behavior of the convergence is studied for a fixed shape parameterε = 1.25. As shown
in Figure 7, increasing the number of local points for a fixed number of partitions results in spectral convergence. The rate
constantsγ from (4.19) are estimated from the experimental results. For the second scenario we get algebraic convergence
with respect toH for a fixed number of local nodes. The slopes of the lines in theright figure can be interpreted as the
approximate convergence rate, and show that we can attain high order convergence. The results are even a little better than
expected from (4.18). However, with only a few measurement points we cannot draw any conclusions.

The approximated solution is plotted in Figure 8. In Table 1,the accuracy of the RBF–PUM is compared for the two types
of node distributions shown in figure 4. It can be seen that theRBF–PUM is stable for long times and has almost the same
accuracy for the non-uniform and uniform node distributions.

For illustrating the capability of the proposed method for irregularly shaped domains, the nonconvex domain in the leftpart
of Figure 9 is considered. The same convection-diffusion problem (4.1) as in the previous experiment is considered withthe
solution (4.20). The absolute error of the approximation isplotted in Figure 9 at timet = 1 with ε = 0.75.
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Fig. 3. Node distribution
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Fig. 4. Partitions of the square domain with circle patches

We have also solved the convection-diffusion problem (4.1)in three space dimensions in a solid domain bounded by the surface

x2+y2+z2−sin(2x)2sin(2y)2sin(2z)2 = 1, (4.21)
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Fig. 6. Eigenvalues of the coefficient matrixQ with the two types of node distributions.

Table 1
L∞ error of the RBF–PU method for 21× 21 uniformly distributed nodes and 445 non-uniformly distributed nodes with ε = 1.25 in the
square domain and 325 nodes withε = 0.75 in the nonconvex domain at different times.

t non-uniform points uniform points nonconvex domain

0.1 7.6887e−006 9.4552e−006 9.9341e−006

0.5 8.1349e−006 1.0633e−005 1.0513e−005

1 8.5706e−006 1.1182e−005 1.9896e−005

3 1.0466e−005 1.3655e−005 2.2720e−005

10 2.1077e−005 2.7511e−005 3.5680e−005
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as shown in Figure 10. Boundary conditions at the surface arechosen based on the exact solution

u(x,y,z, t) = ebt−c(x+y+z) (4.22)

whereb = 1
10 and c =

√

b/6. With that particular choice of exact solution, the vector~v in equation (4.1) can be exactly
determined as~v=<−c,−c,−c>.

The solid domain is discretized with a total ofN = 2046 node points and covered byNp = 512 partitions. Initially, all node
points are distributed uniformly. Interior nodes are then slightly perturbed in a random way in the direction towards the bound-
ary. Non-overlapping boxes that cover the domain, which form the basis for constructing the ball covers or partitions, are shown
in Figure 10.

As in the two-dimensional case,ode15s is used for the time-stepping. Figure 11 shows the distribution of the eigenvalues of the
three-dimensional convection-diffusion operator with the number of nodes per partitionnloc = 26. Gaussian RBFs with shape
parameterε = 0.75r̄, where ¯r is the average radius of the ball covers, are used. All eigenvalues lie in the left half of the complex
plane as is required for stability. The right subfigure in Figure 11 shows how the error evolves in time for three differentvalues
of nloc. The growth in time is very limited and as expected the error decreases with increasing numbers of local nodes.
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Fig. 10. The solid domain bounded by the surface equation (4.21) (left). The layout of the non-overlapping boxes which are the skeleton for
the ball (partition) covers. The dots illustrate the node points (right).

5 Multi-asset American option pricing

The multi-dimensional version of the Black–Scholes equation takes the form

∂P
∂ t

+
1
2

d

∑
i=1

d

∑
j=1

ρi j σiσ jSiSj
∂ 2P

∂Si∂Sj
+

d

∑
i=1

(r −Di)Si
∂P
∂Si

− rP = 0, 0≤ t ≤ T, (5.1)

whereP is the value of the contract,Si is the value of theith underlying asset, T is the time of expiry,d is the number of
underlying assets,ρi j is the correlation between asseti and assetj, σi is the volatility of asseti, r is the risk-free interest rate
andDi is the (continuous) dividend yield paid by theith asset. The aim is to computeP in equation (5.1) throughout the time
interval[0,T], i.e., we will try to solve the equation (5.1) backwards in time, starting at the final condition at timeT.
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Fig. 11. Eigenvalues of the three-dimensional convection-diffusion operator discretized with Gaussian RBFs in the partition of unity setting
with 26 nodes per partition (left). Error of the numerical solutions compared with the exact solution as a function of time (right).

The payoff function of the American put is given by

FT(S) = max(E−
d

∑
i=1

αiSi ,0), (5.2)

whereE is the exercise price of the option andαi , i = 1, . . . ,d are given constants. The final condition is given by

P(S,T) = FT(S), S∈ Ω = R
d
+. (5.3)

The boundary of the computational domain can be divided intotwo parts. The near-field boundary, where one or more asset
prices are zero, and the far-field boundary, where one or moreasset-prices tend to infinity.

For the near-field boundary, it can be noted that if one of the asset prices is zero at timet∗, then the asset will be worthless for
any t ≥ t∗, i.e., the solution remains at the boundary. We denote thed near-field boundaries byΩi = {S∈ Ω|S 6= 0,Si = 0},
i = 1, . . . ,d. Then the boundary values atΩi can be propagated by solving a(d−1)-dimensional Black–Scholes problem. We
denote the solutions of the reduced problems byhi and use the boundary conditions

P(S, t) = hi(S, t), S∈ Ωi , i = 1, . . . ,d. (5.4)

However, already in [5] it was shown that the problem is well posed without boundary conditions at the near-field boundaries,
assuming the Fichera condition on the relative strength of the drift and diffusion term holds. For a more recent discussion of
the well-posedness of the problem, see also [11]. In the numerical experiments here, we will use (5.4) as in [3] even if it is not
needed. For an example where near-field conditions are not used, see [20].

For put options, the contract becomes worthless as the priceof any of the underlying assets tends to infinity. Therefore,we
employ the following far-field boundary conditions [12]:

lim
Si→∞

P(S, t) = 0, S∈ Ω, i = 1, . . . ,d. (5.5)

The American option allows early exercise, which means thatat some values ofS, where it is more profitable to use the option
than to keep it until the expiry date, this will be done. Mathematically, this corresponds to a free boundary problem. This
issue can be treated in different ways. Ito and Toivanen [10]as well as Persson and von Sydow [19] use an operator splitting
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approach. The approach we will use here employs a penalty term as described in [28] and later refined in [17]. The penalty
term takes the form

δC
P+δ −q

, (5.6)

and ensures that the solution stays above the payoff function as the solution approaches expiry. Here 0< δ ≪ 1 is a small
regularization parameter,C≥ rE is a positive constant. The so calledbarrier function q(S) is defined as

q(S) = E−
d

∑
i=1

αiSi , (5.7)

see [28] for a motivation of this choice. Adding the penalty term to the Black–Scholes equation (5.1) for the American option
converts it to a fixed domain problem. The penalty term is small enough so that the PDE still resembles the Black–Scholes
equation closely. The error introduced by the penalty term is expected to be of the order ofδ . The penalty term (5.6) together
with equation (5.1) lead to

∂P
∂ t

+
1
2

d

∑
i=1

d

∑
j=1

ρi j σiσ jSiSj
∂ 2P

∂Si∂Sj
+

d

∑
i=1

(r −Di)Si
∂P
∂Si

− rP

+
δC

P+δ −q
= 0, S∈ Ω, 0≤ t ≤ T. (5.8)

The terminal and boundary conditions on the fixed domain are just like before

P(S,T) = FT(S), S∈ Ω, (5.9)
P(S, t) = hi(S, t), S∈ Ωi , i = 1, . . . ,d, (5.10)

lim
Si→∞

P(S, t) = 0, S∈ Ω, i = 1, . . . ,d. (5.11)

Using the RBF–PUM approximation (3.11) and collocating thePDE (5.8) at the node points we get the system of ODEs

P′
I (t) =−1

2

d

∑
i=1

d

∑
j=1

ρi j σiσ jSiI SjI Wi j ,I PI (t)−
d

∑
i=1

(r −Di)SiIWi,I PI (t)+ rPI (t)

− δC
PI (t)+δ −q

+F(t), (5.12)

whereW·,I contains the columns of the differentiation matrix corresponding to interior points,SiI are diagonal matrices con-
taining the respective coordinates of the interior node points,PI (t) = [P1(t), . . . ,PNI (t)]

T , and

F(t) =−1
2

d

∑
i=1

d

∑
j=1

ρi j σiσ jSiI SjI Wi j ,bFb(t)−
d

∑
i=1

(r −Di)SiIWi,bFb(t), (5.13)

whereW·,b contains the columns of the differentiation matrix corresponding to boundary points andFb(t)= [P(xNI+1, t), . . . ,P(xN, t)]T

contains the known boundary values.

We solve the arising system of ODEs (5.12) in MATLAB with the ode solver commandode15s.

5.1 Space discretization and experimental conditions

We note that the payoff function (5.2) possesses a discontinuity in its first derivative at the strike price. In practice,the region
near the exercise price in the(S1,S2) domain is the most interesting one where one wishes to obtainoption prices. Along the
Si-directions we want to have a distribution of node points which is more dense in a neighborhood of the exercise price. By
using an adapted node placement we aim to increase the accuracy of the approximation in the region of interest as well as to
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Fig. 12. Discretization of the square domain with oval and circle patches

capture the initial discontinuity in the solution better. We would like to apply the non-uniform discretization that has recently
be employed, e.g., in [24,9].

In order to cluster nodes around the exercise priceE, we define the node coordinates in each directioni through

Si, j = E+ l sinh(ξ j), 0≤ j ≤ m, (5.14)

whereξ j ∈ [ξ0, ξm] are equidistant values andl is a parameter that determines the amount of clustering. By the requirement
that the nodes should fall in the interval[0, Si,∞] we can compute the range ofξ to

ξ0 = sinh−1(−E/l)

ξm = sinh−1((Si,∞ −E)/l).

Note that the centers of the patches are defined with a similarpattern as for the node distribution. In our numerical experiments
we have usedl = E/2 for both nodes and partition centers.

The approximation of the solution is performed by uniform and non-uniform discretization of the square domainΩ= [0,S1,∞]×
[0,S2,∞] with oval and circle patches. Figure 12 shows the discretization pattern. For the numerical illustrations throughout this
section we consider both independent colorations of the assets, i.e.,ρi j = 0, i 6= j and correlated assets withρi j = 0.5, i 6= j.
Furthermore, we use the parameter values from [3,18] given by r = 0.1, σ1 = 0.2, σ2 = 0.3, α1 = 0.6, α2 = 0.4, D1 = 0.05,
D2 = 0.01 and we further takeT = 1, E = 1, Si,∞ = 4E, L = 0, δ = 0.01 andC= 0.2. The Wendland function (3.3) is used for
constructing the partition of unity weights, but here

ϕ j(x) = ϕ

(√

(x−x j)2

r2
j,x

+
(y−y j)2

r2
j,y

)

, j = 1, . . . ,M, (5.15)

to scale the support to fit the oval patches with radiir j,x in thex-direction and radiir j,y in they-direction. The shape parameters
for the radial basis functions used for the local approximations are scaled with respect to the node density in the patch such that

ε j =
ε
δ j
, (5.16)
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Fig. 13. The payoff function of the two-dimensional American put option(left). The approximate solution of the 2D American put option
pricing at timet = 0 without correlation (right). The solution with correlation is visually indistinguishable.

Table 2
Approximate solution of the two-dimensional American option pricing problem for uncorrelated assets using uniform nodes withε = 1.5.

P(S1,S2, t) 21×21points 31×31points 41×41points

P(0.9,1,0) 1.0295e−001 1.0553e−001 1.0555e−001

P(1,0.9,0) 8.3281e−002 9.1270e−002 9.2725e−002

P(1,1.1,0) 5.2689e−002 5.3921e−002 5.4184e−002

P(1.1,1,0) 4.0733e−002 4.6148e−002 4.6480e−002

Table 3
Approximate solution of the two-dimensional American option pricing problem for uncorrelated assets using adapted nodes.

P(S1,S2, t) 16×16points 21×21points 26×26points 31×31points

P(0.9,1,0) 1.0697e−001 1.0608e−001 1.0543e−001 1.0554e−001

P(1,0.9,0) 9.4548e−002 9.3233e−002 9.2458e−002 9.2615e−002

P(1,1.1,0) 5.5743e−002 5.4418e−002 5.4003e−002 5.4129e−002

P(1.1,1,0) 4.8031e−002 4.6825e−002 4.6230e−002 4.6380e−002

whereδ j is the minimum node distance within the patch. This makes sense because the adaption of the node distribution is
based on the local smoothness of the solution. Where there arehigher derivatives, the shape parameter is larger and the nodes
more dense, see also [6].

5.2 Numerical results

Approximate solution values of the two-dimensional American option pricing problem with uncorrelated assets for different
numbers of node points in the uniform and adapted cases are displayed in Tables 2 and 3. The numerical solution is computed
using the parameter values defined in Section 5.1, and is evaluated at four points near the exercise price. The tables showthat
the approximated solution in both cases approach similar values when the number of nodes increases. From the tables, it can
also be seen that the accuracy of the approximation for the same number of the points in the adapted node case is better thanin
the uniform case.

Table 4 shows the corresponding result for correlated assets. The relative differences between results for different numbers of
nodes seem to behave similarly as in the uncorrelated case.
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Table 4
Approximate solution of the two-dimensional American option pricing problem for correlated assets using adapted nodes.

P(S1,S2, t) 16×16points 21×21points 26×26points 31×31 points

P(0.9,1,0) 1.1753e−001 1.1621e−001 1.1595e−001 1.1608e−001

P(1,0.9,0) 1.0538e−001 1.0380e−001 1.0346e−001 1.0360e−001

P(1,1.1,0) 6.8154e−002 6.6258e−002 6.6192e−002 6.6229e−002

P(1.1,1,0) 6.0041e−002 5.8171e−002 5.7971e−002 5.8102e−002

Figure 13, right subfigure, shows the approximate solution to the American option pricing using the nodes shown in Figure12
andε = 0.15.

6 Conclusions

We have implemented and tested RBF–PU methods for convection-diffusion problems such as those typically arising in val-
uation problems in computational finance. From the numerical experiments we have eigenvalue stability for this class of
problems. A combination of theoretical and experimental analysis shows that the numerical errors are well behaved, andthat
we can achieve both spectral and algebraic convergence rates depending on the mode of refinement.

The RBF–PUM provides an appealing alternative to traditional collocation methods such as finite-difference (FD) and pseu-
dospectral (PS) methods for the same problem. From the implementation perspective, differentiation matrices can be generated
rather easily, and independently for each partition, without the restriction of particular stencil arrangements, or specific tensor
product grids as in the FD and PS cases. This also provides flexibility with respect to the shape of the computational domain.

A main advantage of the RBF–PUM is that it allows for local adaptivity. Partitions can be locally refined and have shapes
adapted to the local solution behavior as in our option pricing example. Furthermore, the node density in each partitioncan
be locally adjusted. To develop the support for automatic adaptivity will be part of our future work, and we will also consider
larger and higher-dimensional computational problems.
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