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Abstract— We present new algorithms for penalized-likelihood im-
age reconstruction: modified BSREM (block sequential regularized ex-
pectation maximization) and relaxed OS-SPS (ordered subsets separa-
ble paraboloidal surrogates). Both of them are globally convergent to
the unique solution, easily incorporate convex penalty functions, and are
parallelizable—updating all voxels (or pixels) simultaneously. They belong
to a class of relaxed ordered subsets algorithms. We modify the scaling
function of the existing BSREM (De Pierro and Yamagishi, 01) so that we
can prove global convergence without previously imposed assumptions. We
also introduce a diminishing relaxation parameter into the existing OS-SPS
(Erdoğan and Fessler, 99) to achieve global convergence. We also modify
the penalized-likelihood function to enable the algorithms to cover a zero-
background-event case. Simulation results show that the algorithms are
both globally convergent and fast.

I. I NTRODUCTION

STATISTICAL image reconstruction methods have shown
improved image quality over conventional filtered backpro-

jection (FBP) methods (e.g., [1]). Statistical methods can use
accurate physical models and take the stochastic nature of noise
into account; in addition, they can easily enforce object con-
straints like nonnegativity. For ML estimation, the expectation
maximization (EM) algorithm [2] was introduced into emis-
sion and transmission tomography by Shepp and Vardi [3], and
Lange and Carson [4]. The EM algorithm, despite its nice prop-
erties such as monotonicity and positivity, suffers slow conver-
gence; there has been considerable efforts to develop accelerated
algorithms.

Ordered subsets (OS) algorithms, also known as block-
iterative or incremental gradient methods, have shown signif-
icantly accelerated “convergence” compared to EM (e.g., [5]).
The ordered subsets idea is to use only one subset of the mea-
surement data in place of the total data for each update. Hudson
and Larkin [5] presented the OS-EM algorithm and showed
its order-of-magnitude acceleration over EM. However, OS-EM
generally oscillates rather than converges to a ML solution,
which is the typical behavior of OS algorithms without relax-
ation. We would like an algorithm to be not only fast but also
globally convergent. An algorithm is said to beglobally conver-
gentif for any starting point the algorithm is guaranteed to gen-
erate a sequence of points converging to a solution [6, p.182].
When implemented appropriately, a diminishing relaxation pa-
rameter (or stepsize) can help OS algorithms converge by sup-
pressing the limit cycle (e.g., [7]).

Due to the ill-posedness of the image reconstruction prob-
lem ML estimation yields unsatisfactory noisy images. Reg-
ularization or penalization, equivalently a Bayesian approach,
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can treat the problem. For regularized OS algorithms, De Pierro
and Yamagishi [8] have recently presented the block sequential
regularized EM (BSREM) algorithm, an extension of the row-
action maximum likelihood algorithm (RAMLA) [7]. They have
provided a convergence proof for BSREM with a few “a poste-
riori” assumptions: i) the convergence of the objective sequence
and ii) the positivity and boundedness of each iterate. We relax
such assumptions by making some modifications to BSREM: i)
a modified scaling function and ii) a modified log-likelihood if
needed (zero-background-event case). Neither of these modifi-
cations changes the value of the final solution. They just ensure
that the iterates converge to that solution.

The paraboloidal surrogates (PS) method [9] [10] is another
attractive family of reconstruction algorithms. While the EM al-
gorithm maximizes a surrogate function obtained by conditional
expectation (E-step) for each update, the PS methods employ
paraboloic (quadratic) surrogate functions. Separable surrogates
are natural for OS algorithms; the use of separable paraboloidal
surrogates and OS principles leads to the OS-SPS algorithm [11]
(originally suggested as OSTR in the context of transmission
tomography), which is fast but not globally convergent. We
introduce relaxation into the algorithm to obtain relaxed OS-
SPS, which we show to be globally convergent. We also modify
the log-likelihood if needed (zero backgrounds). The relaxed
OS-SPS can be seen as a diagonally scaled version of incre-
mental subgradient methods [12] [13]. Of related work, Kudo,
Nakazawa, and Saito [14] applied to emission tomography re-
construction their block-gradient optimization similar to the in-
cremental subgradient methods; Bertsekas [15] proposed a hy-
brid algorithm from the least mean squares (OS) and the steepest
descent methods (non-OS).

II. T HE PROBLEM

A. Penalized-Likelihood Image Reconstruction

We focus on emission computed tomography: positron emis-
sion tomography (PET) or single photon emission computed to-
mography (SPECT). Assuming usual Poisson distributions, the
measurement model for emission scans is as follows:

yi ∼ Poisson




p∑
j=1

aijλj + ri


 , i = 1, 2, . . . , N (1)

whereyi ≥ 0 is the number of photons counted in theith bin,
λj ≥ 0 is the activity at thejth voxel (or pixel),A = {aij}
is the system matrix (incorporating scanning time, detector ef-
ficiencies, attenuation, scan geometry, etc.), andri ≥ 0 is the
mean number of background events such as scatters and ran-
dom coincidences. The goal is to estimate the activityλ =
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[λ1, λ2, . . . , λp]
′ based on the measurementyi’s with knownA

andri’s where′ denotes the transpose.
The log-likelihood of the datayi’s is, ignoring constants in-

dependent ofλ, as follows:

L(λ) =

N∑
i=1

hi(li(λ)) (2)

wherehi(l) = yi log l − l andli(λ) =
∑p
j=1 aijλj + ri. The

penalized-likelihood (PL) estimation is to maximize the follow-
ing penalized-likelihood objective function overλ ≥ 0:

Φ(λ) = L(λ)− βR(λ) (3)

whereβ ≥ 0 is a regularization parameter which controls the
level of smoothness in the reconstructed image, andR is, for
example, the following type of roughness penalty function:

R(λ) =
1

2

p∑
j=1

∑
k∈Nj

ωjkψ(λj − λk) (4)

whereNj denotes the neighborhood of thejth voxel (or pixel),
ωjk is a weighting factor andψ is a potential function. We as-
sume thatψ is convex, continuously differentiable and bounded
below; so isR. In addition, we assumeminλR(λ) = 0 without
loss of generality. Ifβ = 0, the problem becomes maximum
likelihood (ML) estimation.

We assume that the objective functionΦ is strictly concave,
so there exists the unique PL solutionλ̂ = argmaxλ≥0 Φ(λ).
This can be ensured by choosingR appropriately. Under this
assumption one can verify that there exists an upper bound
U ∈ (0,∞) for λ̂, given anyν ∈ IRp such thatΦ(ν) ∈ IR,
as follows [16]:

U
4
= max
1≤j≤p

{
yij
aijj

,
ỹij
aijj

}
+ 1 (5)

whereij
4
= argmax0≤i≤N aij , ∀j, and

ỹi
4
= exp


hi(yi + 1) +∑

k 6=i

hk(yk)− Φ(ν)


 , ∀i.

As a result, we have

λ̂ ∈ B
4
= {λ ∈ IRp : 0 ≤ λj ≤ U, ∀j}.

Next, we modify the penalized-likelihood for a zero-
background-event case (ri = 0) to make the objective func-
tion well-behaved overλ ∈ B (especially on boundaries). Al-
though non-zero background events are realistic, we would like
our algorithms to also be applied to theri = 0 case which has
been used more frequently despite its oversimplicity. Decide
I = {1 ≤ i ≤ N : ri = 0}. Given anyν ∈ B such that
Φ(ν) ∈ IR, consider the following modified objective function:

Φ̃(λ)
4
=

N∑
i=1
i∈I

h̃i(li(λ)) +

N∑
i=1
i/∈I

hi(li(λ))− βR(λ) (6)

where

h̃i(l)
4
=

{
ḧi(ε)
2 (l − ε)

2 + ḣi(ε)(l − ε) + hi(ε) for l < ε
hi(l) for l ≥ ε

with

ε
4
=
1

2
min
i∈I
yi 6=0


exp

(
Φ(ν)−

∑
k 6=i hk(yk)

yi

)
, yi,

p∑
j=1

aijνj


 .

Then we can show [16] that

λ̂ = argmax
λ∈B
Φ(λ) = argmax

λ∈B
Φ̃(λ),

meaning that this modified objective function has the same max-
imizer as the original. The modified objective functionΦ̃ has the
nice properties that∇Φ̃ is Lipschitz continuous and bounded
overB contrast toΦ (whenri = 0), while preserving the max-
imizer λ̂. We will henceforth takẽΦ as our objective function
but keep the notationΦ for simplicity; likewise,hi will denote
h̃i whenri = 0.

B. Ordered Subsets (OS) Algorithms

Most iterative algorithms for findinĝλ = argmaxλ≥0 Φ(λ)
use the gradient∇Φ(λ) of the objective function which involves
a sum over sinogram indices,i.e., backprojection. Among them,
many “parallelizable” algorithms—able to update all the vox-
els (or pixels) simultaneously—can be written in the following
form:

λn+1j = λnj + αndj(λ
n)∇jΦ(λ

n), j = 1, 2, . . . , p (7)

whereαn > 0 is a stepsize (or relaxation parameter),dj(λ)’s
are nonnegative scaling functions and∇jΦ(λ) is, ignoring here
the regularization term for simplicity, as follows:

∇jΦ(λ) =
N∑
i=1

aij ḣi(li(λ)). (8)

Ordered subsets (OS) algorithms are obtained by replacing
the sum

∑N
i=1 in (8) with a sum

∑
i∈Sm

over a subsetSm of
{1, 2, . . . , N}. Let {Sm}Mm=1 be a partition of{1, 2, . . . , N},
and let

fm(λ)
4
=
∑
i∈Sm

hi(li(λ)) (9)

be a sub-objective function,∀m, resulting inΦ =
∑M
m=1 fm,

where the regularization term is included in one or more of the
fm’s. Suppose the following “subset balance”-like conditions
hold:

∇f1(λ) ∼= ∇f2(λ) ∼= · · · ∼= ∇fM (λ) (10)

or, equivalently,

∇Φ(λ) ∼=M∇fm(λ), ∀m. (11)

Now an ordered subsets version of (7) can be obtained, by sub-
stitutingM∇jfm(λ) for∇jΦ(λ), as follows:

λn,0j = λnj



λn,mj = λn,m−1j + αndj(λ
n,m−1)∇jfm(λ

n,m−1), ∀m

λn+1j = λn,Mj (12)

where the factorM is absorbed intoαn. We refer to each update
as themth subiteration of thenth iteration. In the tomography
context, the partition{Sm}Mm=1 are naturally chosen so that pro-
jections within one subset correspond to projections with down-
sampled projection angles. It is desirable to order the subsets in
a way that projections corresponding to one subset are as per-
pendicular as possible to previously used angles at each subiter-
ation [17].

The OS algorithms have been successful in speeding up con-
vergence. However, they generally get into a limit cycle when
using a constant stepsizeαn = α and do not converge to the
solutionλ̂. We may need to use a diminishing stepsize such that
αn → 0 to suppress the limit cycle. Even if an algorithm with
relaxation converges to someλ∗, we still must ensure that the
limit is the solutionλ̂.

III. G LOBALLY CONVERGENT ORDEREDSUBSETS

ALGORITHMS

We present relaxed OS algorithms which are globally con-
vergent: modified BSREM and relaxed OS-SPS. The goal is to
maximize the penalized-likelihoodΦ(λ) overλ ≥ 0 (equiva-
lently, λ ∈ B). Given a partition{Sm}Mm=1 of {1, 2, . . . , N},
we take the following sub-objective functions:

fm(λ) =
∑
i∈Sm

hi(li(λ))− βmR(λ), ∀m (13)

where βm(≥ 0)’s satisfy
∑M
m=1 βm = β. (Note Φ =∑M

m=1 fm.)

A. Modified BSREM

De Pierro and Yamagishi [8] have recently presented the
BSREM algorithm and proved its global convergence on the fol-
lowing assumptions: i) the sequence{λn} generated by the al-
gorithm is positive and bounded and ii) the objective sequence
{Φ(λn)} converges. These conditions are not automatically en-
sured by the form of the original BSREM. We eliminate those
assumptions by modifying the algorithm.

The basic idea of the modification is to ensure all iterates
lying in the interior of the constraint setB by suitably choos-
ing a scaling functiondj(λ) and a relaxation parameter{αn}
so that implementation and convergence analysis become con-
venient. For EM-like algorithms, we observe that the form of
dj(λ) = (some term)×λj helps each iterate to keep positivity,
i.e., to avoid crossing the lower boundaryλj = 0. We can also
do a similar thing for the upper boundaryλj = U . Consider the
following modified BSREM algorithm:

λn,0 = λn

λn,m = λn,m−1 + αnD(λ
n,m−1)∇fm(λ

n,m−1), ∀m

λn+1 = λn,M (14)

whereD(λ) = diag{d1(λ), . . . , dp(λ)} with

dj(λ) =

{
λj for 0 ≤ λj < U

2

U − λj for U2 ≤ λj ≤ U
, ∀j. (15)

Then it can be shown [16] that eachλn,m generated by (14)
belongs to the interior ofB when i)λ0 ∈ IntB and ii) 0 <
αn < α0, ∀n, where

α0 = min
m, j

{
U/2∑

i∈Sm
yi + γ

,
1∑

i∈Sm
aij + γ

}
(16)

with γ = maxj, m, λ∈B {βm∇jR(λ), βmλj∇jR(λ), 0}.
Therefore, each iterate satisfies positivity and boundedness. The
following Theorem [16] guarantees the global convergence of
the modified BSREM:

Theorem 1:Suppose that0 < αn < α0,
∑∞
n=1 αn = ∞

and
∑∞
n=1 α

2
n < ∞. Then the sequence{λn} generated

by (14) with an initial pointλ0 ∈ IntB converges tôλ =
argmaxλ∈B Φ(λ).

For any strictly concave functionΦ and sub-objective func-
tions fm’s such thatΦ =

∑M
m=1 fm, if D(λ)∇fm(λ) and

∇Φ(λ) is Lipschitz continuous, then we can obtain similar re-
sults.

B. Relaxed OS-SPS

We consider another family of OS algorithms with a constant
matrixD as follows:

λn,0 = λn

λn,m = PB
(
λn,m−1 + αnD∇fm(λ

n,m−1)
)
, ∀m

λn+1 = λn,M (17)

whereD = diag{d1, . . . , dp} with dj > 0, ∀j, andPB (λ)
is the projection ofλ ∈ IRp ontoB. If D = I, the algorithm
(17) becomes one of incremental subgradient methods [13]; so
it can be viewed as a diagonally scaled incremental subgradient
method.

The special case of (17) is OS-SPS [11] (ifαn = 1 anddj
is the inverse of a corresponding “precomputed curvature”). For
example, for OS-SPS with a quadratic penalty ofψ(t) = t2/2,
the diagonal elements are as follows:

dj =M


− N∑

i=1

aij ḧi(yi)

p∑
k=1

aik + 2β
∑
k∈Nj

ωjk



−1

, ∀j.

If we allow a diminishing stepsize, we obtain a relaxed OS-SPS.
The relaxed OS-SPS, contrast to ordinary OS-SPS, is globally
convergent by the following Theorem [16].

Theorem 2:Suppose thatαn > 0, ∀n, and
∑∞
n=1 αn = ∞.

Then the sequence{λn} generated by (17) converges tôλ =
argmaxλ∈B Φ(λ).

For any strictly concave functionΦ and sub-objective func-
tionsfm’s such thatΦ =

∑M
m=1 fm, if fm(λ) is concave and

∇fm(λ)’s are bounded, then we can obtain similar results.

IV. RESULTS

We performed PL image reconstruction for two-dimensional
PET simulation using the Shepp-Logan digital phantom to
test the performance of the modified BSREM and the relaxed
OS-SPS. We chose16 subsets by angular downsampling in



sinogram. For comparison, we also performed SPS (1 sub-
set with “optimum curvature”), ordinary OS-SPS (16 subsets
with “precomputed curvature”) and De Pierro’s modified EM
(DPEM) [18]. The sinogram had128 radial bins and160 an-
gles uniformly sampled over180 degrees. The total photon
counts amounted to5 × 106 and,ri corresponded to a uniform
field of 10% of random coincidences. The reconstructed images
were128 by 128 pixels and attenuation was not considered. We
used a first-order quadratic penalty functionψ(t) = t2/2 with
a regularization parameterβ = 8. The FBP reconstruction was
used as a starting image. As a relaxation parameter, we chose
αn = 11/(10 + n) for relaxed OS-SPS, andαn = 4× 10−4/n
for modified BSREM through a few trials.

The upper boundU for λ̂ computed by (5) in this example
was too large for computers capability (∼ exp 105); so U is
virtually infinity. This implies that in practicedj(λ) of (15) be-
comesλj as the original BSREM, andPB (·) of (17) becomes
just [·]+ where[λ]+,j = max{0, λj}. A real “practical” prob-
lem lies in determining the upper boundα0 for a relaxation pa-
rameter to guarantee that the modified (or original) BSREM is
positive. Equation (16) gives an extremely small relaxation pa-
rameter in this example (since the gradient of the penalty func-
tion can be very large on the constraint setB); the convergence
rate will become very slow with the small relaxation. Thresh-
olding (like T {λj} = max{λj , δ} for some smallδ > 0) may
ensure positivity without the concern for relaxation parameters.
But the algorithm including thresholding is already a “new” al-
gorithm and we will have to analyze the global convergence for
this “new” algorithm. Even though the “new” algorithm seems
to be also globally convergent, it is not easy to prove it. In
this simulation for modified BSREM, we chose a relaxation pa-
rameter reasonably small to keep iterates positivity and reason-
ably large for the algorithm to be fast, through a few trials. In
contrast, relaxed OS-SPS does not suffer from this difficulty in
choosingα0, so it may be more convenient in practice.

Fig. 1 shows objective increases in the penalized log-
likelihood Φ(λn) − Φ(λ0). As can be seen in the figure, OS
algorithms (OS-SPS, modified BSREM and relaxed OS-SPS)
are faster than non-OS algorithms (SPS and DPEM). Fig. 2
shows the same figure zoomed in for the OS algorithms. We
can observe that modified BSREM and relaxed OS-SPS keep
increasing—actually, converge to the optimal point— whereas
OS-SPS stagnated at a suboptimal point. Although the relaxed
OS-SPS seems to be superior to the modified BSREM in the fig-
ure, we do not jump to such a conclusion from this preliminary
data since the performances depend on relaxation parameters.
Fig. 3 displays the reconstructed images by20 iterations of re-
laxed OS-SPS and modified BSREM (also the digital phantom
and FBP reconstruction).

V. DISCUSSION

We presented relaxed OS algorithms (modified BSREM and
relaxed OS-SPS) which are globally convergent. Simulation re-
sults showed that both algorithms can be faster than non-OS and
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Fig. 1. Comparison of objective increase rates of non-OS algorithms—
SPS (with “optimum curvature”) and De Pierro’s modified EM (DPEM)—
and OS algorithms—original OS-SPS, modified BSREM, and relaxed OS-
SPS—with16 subsets: the OS algorithms are shown to be faster than the
non-OS algorithms.
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Fig. 2. Comparison of objective increase rates of original OS-SPS, modified
BSREM, and relaxed OS-SPS (same as Fig. 1 except zoomed in): modified
BSREM and relaxed OS-SPS are globally convergent whereas original OS-
SPS gets stuck at a suboptimal point.

unrelaxed OS algorithms, as well as globally convergent. How-
ever, for modified BSREM, as mentioned in Section IV, it was
hard to determine the relaxation parameter (without threshold-
ing) for ensuring fast and global convergence. By contrary, it is
relatively easy to determine the relaxation parameter for relaxed
OS-SPS. Since the original OS-SPS has already been correctly
scaled, it is effective to use a relaxation parameter starting with
1 and decreasing as∼ O( 1

n
). Nevertheless, there is still much

room for improvement in choosing the relaxation parameters.
Training of relaxation parameters for a specific type of tasks
may be performed [7] [17]. But we believe that convergence
rate analysis will give us more insights related to relaxation and
to the choice of scaling functions. We will direct future research



True image FBP

Modified BSREM Relaxed OS−SPS

Fig. 3. Reconstructed images (16 subsets and20 iterations): true image; Shepp-
Logan phantom (top-left), starting image; FBP reconstruction (top-right),
modified BSREM reconstruction (bottom-left), and relaxed OS-SPS recon-
struction (bottom-right)

to convergence rate analysis.
An extension to transmission tomography is straightfor-

ward for zero background events. However, for a nonzero-
background-event case, the penalized-likelihood becomes non-
concave; it is an open problem to find a global maximizer. At
least we hope to find a stationary point.
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