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Abstract. We analyse the transition matrix for the two-body Coulomb scattering problem out
of the energy shell. This quantity appears in high-order perturbation treatments of multichannel
processes and plays a central role in the generalization of the scattering theory to include long-range
interactions. In particular, its branch-point singularities on the initial and final half of the energy
shell are known to produce sizeable effects in multiple-scattering amplitudes for rearrangement
and ionization collisions. In this paper we present a classical description of the off-shell collision
process which helps to clarify its essential concepts.

1. Introduction

Due to the infinite range of the Coulomb potential, the formal scattering theory is not
strictly applicable to the collision of charged particles. The asymptotic condition, one of
the basic postulates of standard scattering theory, is not fulfilled in the presence of Coulomb
interactions (Hack 1958, Dollard 1964). This represents a rather puzzling situation: the
collision of two particles interacting via a pure Coulomb potential is one of the few quantum-
mechanical systems where the scattering amplitude can be evaluated analytically by solving the
Schrödinger equation. However, this same amplitude cannot be obtained from the scattering
theory in its usual form.

Since the pioneering and influential papers by Dollard in the late 1960s (1964, 1968, see
also 1971), much work has been done to modify and extend the standard scattering theory
in order to cover the Coulomb case. In a time-dependent theory of potential scattering,
the isometric Møller operator has to be multiplied by a ‘renormalization’ term D(t) with
a logarithmic diverging phase which compensates the long-range effects of the Coulomb
interaction (Dollard 1964). These diverging phases can be readily eliminated in a wavepacket
description of the collision process (Dettmann 1971), by evaluating the transition probability
‘before’ taking the limit of infinite time. The translation of these ideas to a time-independent
description is a more subtle and cumbersome subject. Different approaches were proposed
during the 1970s, which can be roughly sorted into two broad groups. One idea (Mulherin and
Zinnes 1970) is to develop a time-independent Lippmann–Schwinger formalism by means
of distorted asymptotic states of the eikonal form. A completely different approach was
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proposed by van Haeringen in 1976. He also introduced modified Coulomb asymptotic states,
but did so in a way that avoided the use of any distorting potential (see also Prugovec̆ki
1971, 1973a, b, Prugovec̆ki and Zorbas 1973a, b, Zorbas 1974a, b, 1976, 1977). This idea
was further developed to obtain the Coulomb T -matrix as a well defined on-shell limit of an
adequately regularized off-shell T -matrix (Roberts 1985, 1997). However, it is important
to mention that, at least for the simplest case of Rutherford scattering of two charged
particles, both approaches can be rigorously derived from Dollard’s formalism, and shown
to be equivalent (Barrachina and Macek 1989). In fact, Mulherin and Zinnes’ theory
represents a conventional distorted-wave description of van Haeringen’s more fundamental
approach.

In principle, the idea that the Coulomb scattering amplitude can be obtained as the on-shell
limit of an adequately regularized off-shell transition matrix is not new. In fact, many different
authors (Schwinger 1964, Okubu and Feldman 1960, Mapleton 1961, Hostler 1964a, b) had
already noticed that, when the standard short-range theory is applied to the long-range Coulomb
scattering, expressions are obtained which, however, are defined only off the energy shells. The
on-shell limit of the T -matrix can only be correctly evaluated when certain additional branch-
point singularities on the initial and final half of the energy shell are removed. Therefore, the
novelty of van Haeringen’s approach is not in the idea of this regularization, but in that it shows
how to do this in a consistent way, leading to the formulation of a Lippmann–Schwinger theory
of Coulomb scattering processes.

As in the case of short-range interactions, the off-shell T -matrix provides all the necessary
information about the reacting system. Its simple poles correspond to the bound states (and their
residues are related to the corresponding wavefunctions), while the continuous positive energy
spectrum manifests itself as a branch-point singularity with a cut along the positive energy axis.
Furthermore, as we have already mentioned, the off-shell T -matrix represents the cornerstone
of the generalization of the time-independent scattering theory. Two-body off-shell T -matrices
also constitute the basic building blocks for many-body problems (Watson and Nutall 1967).
In fact, these problems can be reduced to the solution of a set of coupled equations whose
kernel is composed of two-body off-shell T -matrices. Besides, the branch-point singularities
of these matrices on the initial and final half of the energy shell have very important effects
when any multiple-scattering expansion is applied to a system with Coulomb interactions. For
instance, different higher-order perturbation descriptions of multichannel scattering processes
incorporate ‘intermediate’ T -matrices or wavefunctions off the energy shell. This is the case,
for instance, of the so-called channel-distorted strong-potential Born (DSPB) approximation
for charge-exchange processes in highly asymmetric collisions (Taulbjerg et al 1990). In these
models, the difference δE between the energy of the electron in the intermediate and final states
is small. However, due to the on-shell singularity of the off-shell wavefunction, it produces
a sizeable effect on the rearrangement cross section. In addition, it has been shown that the
position of the binary-encounter peak in ionization collisions is affected by off-shell effects in
the quasi-free scattering of the target electron in the field of the incident projectile (Madsen
and Taulbjerg 1994). More generally, it has been claimed that the Coulomb branch-point
singularities on the initial and final half of the energy shell produce a leading contribution
to the multiple-scattering amplitudes for both rearrangement and scattering collisions in the
high-energy limit (Chen and Kramers 1972).

We see that the off-shell two-body Coulomb T -matrix is a central quantity not only for the
formulation of a Lippmann–Schwinger theory of scattering processes, but also in multichannel
problems. Thus, it is clear that further progress on the description of collision processes in the
presence of long-range Coulomb interactions depends critically on a better understanding of
this basic quantity.
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Despite the difficulties associated with the long-range nature of the Coulomb potential,
mathematically well defined representations of the off-shell two-body Coulomb T -matrix
can be expressed in closed form (Chen and Chen 1972). Therefore, the primary source of
difficulties with the manipulation of these quantities does not arise from their calculation but
from their anomalous on-shell behaviour. In particular, a clear understanding of the origin
of these Coulomb branch-point singularities is still lacking. In order to gain a clearer insight
into this basic issue, different authors have analysed the long-range limit of T -matrices for
screened Coulomb potentials (Dalitz 1951, Ford 1964, 1966, Kolsrud 1978). Basically, it has
been observed that their absolute values converge to the results of standard short-range theory
when the momenta are fixed before the limiting process (Kolsrud 1978). In the present paper
we take a different route, by presenting a classical calculation of the square modulus of the
off-shell Coulomb T -matrix. This classical description can help in the understanding of the
essential concepts underlying the definition of this quantity.

It is well known that the classical and quantum expressions for the square modulus of the
on-shell Coulomb T -matrix, being proportional to the Rutherford scattering cross sections,
are identical. Moreover, the semiclassical cross section for scattering of identical particles—
which includes the quantum-mechanical phase—is exact (Rost and Heller 1994). Surprisingly
enough, the same seems to be valid off the energy shell, and our classical expression for the
square modulus of the off-shell T -matrix is almost identical to the quantum-mechanical result.
A comparison of both expressions enables us to single out the different terms in the off-shell
Coulomb T -matrix, providing a clearcut interpretation of their origin.

2. Classical definition of the off-shell Coulomb continuum state

Under single-collision conditions, the dispersion of a beam of particles by a target assembly
amounts only to repeating the elementary scattering of one reduced particle by a force centre,
many times with similar initial conditions (Fiol et al 1997). In this sense, and due to the lack
of information on its microscopic details, the scattering process can be analysed by means of
a stationary state describing the steady flow of an ensemble. The density of particles n(r) in
each point of space can easily be evaluated by studying the deformation of a control volume
due to the motion of each particle in the potential fieldU(r) of the target (Samengo et al 1999).

In order to describe an off-shell scattering state, we have to imagine a situation where the
initial kinetic energy Ek of the particle is not equal to its total energy E. This initial condition
is immediately achieved if each particle impinges upon the force centre not from infinity but
from a finite distance R, as shown in figure 1. In this case, the total and initial energies differ
by δE = U(R).

We assume that the starting points of the trajectories in the ensemble are uniformly
distributed over the surface of a sphere of radius R around the force centre. Thus, the number
of projectiles of mass m and initial impulse k (energy Ek = k2/2m) inside a control volume
δV0 = (k/m)δt ρ δρ δϕ located on the sphere at a distance ρ = R sin φ from the symmetry
axis is given by δN = (ξ0/R cosφ) δV0, where ξ0 is an arbitrary normalization constant and
φ is the azimuth angle on the sphere. At later times t , the control volume δV occupied by this
particle changes as shown in figure 2, giving rise to a spatial dependence of the particle density
n(r) = δN/δV in the ensemble. After a little algebra, it is possible to eliminate all explicit
dependences on the time variable t (Fiol et al 1997, Samengo et al 1999),

n(r) = δN/δV0

sin θ

∣∣∣∣
(
∂r

∂ρ

)
θ

∣∣∣∣
−1

= ξ0 R

sin θ

∣∣∣∣
(
∂r

∂φ

)
θ

∣∣∣∣
−1

.

We see that the spatial density of particles in the ensemble can readily be evaluated, provided
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Figure 1. Classical description of an off-shell collision process. Each projectile starts its trajectory
from a point on the surface of a sphere of radius R around the force centre.

Figure 2. An initial control volume δV0, occupied by a fixed number of particles, changes to δV as
time goes by due to the different trajectories followed by these particles in the field of the potential
U(r). The coordinates r and θ give the position in the collision plane of the particle of impulse p.
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Figure 3. Trajectories in the space of momentum. Those trajectories corresponding to an attractive
(Z < 0) and a repulsive (Z > 0) Coulomb interaction are restricted to move outside or inside the
sphere of radius pE = √

2 mE, respectively.

that the orbit r = r(θ, φ) is already known. This is actually the case for the Coulomb potential
U(r) = Z/r , where the orbits are given by

R sin φ

r
= −δE/Ek

sin φ
(1 + cosφ cos θ) +

(
1 +

δE

2Ek

)
sin θ. (1)

However, the corresponding quantum density, related to the position representation of the
off-shell Coulomb scattering state

|k, δE〉 = (1 + G(Ek + δE)V ) |k〉
cannot be given in closed form, and the analysis of its anomalous on-shell behaviour is
extremely complicated. These states have been studied by Macek and Alston (1982) in
relation to the appearance of off-shell effects in asymmetric electron capture collisions and their
Sturmian expansion was obtained by Dubé and Broad (1990), deriving basis set representation,
of the off-shell and half-shell T -matrices. On the other hand, the density of particles in
momentum space is trivially related to any of the mathematically well defined expressions for
the off-shell transition matrix. Thus, any comparison of the quantum-mechanical and classical
off-shell quantities can be performed more simply in momentum space.

Since the classical ensemble describes a situation where each point r in the coordinate
space is associated with a well defined impulse p, the density of particles n(p) in momentum
space can be readily evaluated by means of the transformation

n(p) = n(r)

∣∣∣∣ ∂(r)∂(p)

∣∣∣∣.
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Figure 4. Classical off-shell particle density in the space of momentum for the Coulomb potential.
The region inside the sphere of radius pE corresponds to an attractive interaction, while outside
corresponds to the repulsive case. Lighter shades indicate a higher density.

Up to now, we have been assuming that only one trajectory passes through any given point
r, and that the relation r ↔ p is one-to-one. Nevertheless, these assumptions are generally
untrue and all possible contributions have to be added (Samengo et al 1999).

In the momentum representation, the trajectories (1) are transformed into arcs of
circumference of ratio

k

sin φ

∣∣∣∣ δE2Ek

∣∣∣∣
and centred at the point

− δE

2Ek

k

tan φ
ρ̂ +

(
1 +

δE

2Ek

)
k

as shown in figure 3. Here ρ̂ is a unit vector on the scattering plane and normal to the initial
impulse k.

Now, the classical density of particles in momentum space can be readily evaluated. With
a convenient definition of the arbitrary constant ξ0 we obtain

n(p) = 1

(Ek − Ep + δE)2

1

|k − p|2
1

|(1 + δE/Ek)k − p|2
×�

(
Z(Ek − Ep + δE)

)
�(ZδE)) (2)

where �(x) is Heaviside’s step function, i.e. �(x) = 1 for x � 0 and �(x) = 0 for x < 0.
The location of the different divergent structures of this classical density and of its on-shell
limit

non(p) = 1

(Ek − Ep)2

1

|k − p|4 �
(
Z(Ek − Ep)

)
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are shown in figure 4. We have depicted in this figure the classical density for both the repulsive
and attractive potentials, in the interior and exterior of the sphere where it does not vanish,
respectively.

3. Off-shell Coulomb transition matrix

The classical density (2) has to be compared with the quantum-mechanical one as given by the
square modulus of the off-shell momentum wavefunction, normalized to the initial condition
of our classical model,

nQM(p) = |〈p|k, δE〉|2 . (3)

Excluding the forward direction, that is for p 
= k, this result can be easily related to the
off-shell Coulomb transition matrix,

nQM(p) =
∣∣∣∣ 1

Ek + δE − Ep + iη
〈p|T (Ek + δE + iη)|k〉

∣∣∣∣
2

.

For most quantum-mechanical systems, the off-shell T -matrix cannot be given in closed form.
In this sense, the case of two particles that interact via a Coulomb potential is exceptional,
since mathematically well defined expressions of the off-shell two-body Coulomb T -matrix
can be obtained. One of its possible representations reads (Chen and Chen 1972)

〈p|T (E + iη) |k〉 =
√
Ek/E

2πν

1

|k − p|2 {1 + τa + τb} (4)

where

τa = 1√
1 + ε

[
1 − 2

∞∑
n=0

ν2

n2 + ν2

(√
1 + ε − 1√
1 + ε + 1

)n]

and

τb = 1√
1 + ε

2πν

1 − e−2πν

(√
1 + ε − 1√
1 + ε + 1

)iν

.

Here ν is Sommerfeld’s parameter, ν = mZ/h̄
√

2 mE, and the variable

ε = (E + iη − Ek)(E + iη − Ep)

(E + iη) |k − p|2/2m

is related to the hyperbolic angle β on the Minkowski sphere in a stereographic projection
of momentum space, cosh β = 1 + 1/ε (Bander and Itzykson 1966, Norcliffe and Percival
1968a, b).

We see that the term in τa includes all the poles at ν = in of the discrete energy spectrum.
In the half-energy-shell limit (Ep → E or Ek → E) and on the energy shell Ep,Ek → E, τa
goes to −1 and exactly cancels the first-order Born approximation represented by the first term
in equation (4). Thus, the anomalous behaviour of the on-shell limit of the off-shell Coulomb
transition matrix is completely dominated by the term in τb, which in the limit η → 0 behaves
in the form,

τb = |τb| ×




1 for E > Ep,Ek

e−πν for Ep < E < Ek or Ek < E < Ep

e−2πν for E < Ep,Ek .
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Furthermore, it is interesting to note that in the limit |ν| → ∞, the series in τa converges
to 1 (see equation (147) of Chen and Chen (1972)). Therefore, the term (1 + τa)/2πν in
equation (4) vanishes and the classical limit is also determined by τb. In fact, this term can
be expressed as a sum over classical paths of exponential actions (Norcliffe et al 1969a, b,
Norcliffe 1975). This simple result demonstrates quite directly that the anomalous on-shell
behaviour of the off-shell Coulomb transition matrix is a purely semiclassical effect, dominated
by the term τb.

After some algebra, the previous expression for the off-shell Coulomb transition matrix
can be written as

〈p|T (E + iη) |k〉 = 1

|k − p|
1

|(E/Ek)k − p| eiScl/h̄ S(E,Ep,Ek).

Here, the function S reads

S(E,Ep,Ek) = 1

2πν



(√

1 + ε − 1√
1 + ε + 1

)−iν √
1 + ε +

2πν

1 − e−2πν

−

 ∞∑

n=−∞

ν2

n2 + ν2

(√
1 + ε − 1√
1 + ε + 1

)n−iν



.

The phase

Scl = mZ√
2 mE

ln

(√
(1 + ε) − 1√
(1 + ε) + 1

)

is the classical action from k to p along the trajectory of fixed energy E in momentum space
(Gutzwiller 1990). It is due to this that the Mott cross section for identical particles can
be evaluated semiclassically (Rost and Heller 1994). This action even includes part of the
anomalous behaviour at the on-shell limit. In fact, it can be shown that

lim
Ep,Ek→E

Scl = 2

(
σ0 − mZ√

2mE
ln sin θ/2

)

where θ is the scattering angle and σ0 is the divergent factor

σ0 = mZ√
2mE

ln

(
(E − Ek)(E − Ep)

4E

)
.

Since this divergence is restricted to a phase factor that does not depend on the scattering angle
θ , it does not affect either the elastic or the Mott cross sections (Rost and Heller 1994).

It can be shown that in the classical limit

lim
|ν|→∞

∣∣S(E,Ep,Ek)
∣∣2 = �(Z (E − Ek))�

(
Z (E − Ep)

)
.

Thus the quantum-mechanical density (3) converges, as expected, to the classical expression
(2). In addition, the momentum representation of the off-shell wavefunction approaches the
semiclassical result.
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4. Comparison of the classical and quantum-mechanical results

We are now in a position to provide a clearcut interpretation of the different terms in the off-shell
Coulomb transition matrix by comparing the quantum-mechanical and classical momentum
densities. Let us consider, for instance, the divergence in (Ek − Ep + δE). In the quantum-
mechanical approach, this is the matrix element of the free Green operator and represents the
asymptotic free evolution of the projectile. Here, due to the long-range nature of the Coulomb
interaction, the projectile does not converge to a free orbit, but its kinetic energy approaches a
well defined limit given by Ep = Ek + δE for infinite time.

We also observe two other terms, proportional to |k − p| and |(1 + δE/Ek)k − p|, which
can produce a divergence of the off-shell density n(p). At this point, it is interesting to note
that the |k − p|−2 divergence of Rutherford’s elastic transition matrix

ton(p,k) = +(1 + iν)

+(1 − iν)

1

|k − p|2
(

4k2

|p − k|2
)iν

originates from the on-shell limit of these two different contributions. The first one is due to
the initial condition of the scattering process. The second one, on the other hand, does not
lead to a real divergence in the classical approach, since it is located at a point of momentum
space that is forbidden by energy conservation. Therefore, this contribution does not diverge
except in the on-shell limit δE → 0. In our classical model, this limit is equivalent to pushing
the initial condition towards infinity, i.e. R → ∞. Thus, the divergence originates in those
trajectories with arbitrarily large impact parameters ρ, for which the impulse p is always close
to the initial value k. In the off-shell case, this situation is allowed in the quantum-mechanical
approach, but not in the classical limit where the impact parameter is bounded by the condition
ρ � R.

We also observe that the classical density is multiplied by Heaviside’s functions, which
are related to the conservation of energy. In momentum space, the orbits are restricted to
remaining outside or inside a sphere of radius pE = √

2 mE, depending on whether the
Coulomb potential is attractive (Z < 0) or repulsive (Z > 0), respectively. As we have
already seen, this effect is reproduced in the quantum-mechanical approach by the distortion
factor S in the limit |ν| → ∞. Furthermore, in the half-energy-shell limit (Ep → E or
Ek → E) the function S is dominated by the singular ‘Gamow’ factor

g±(E, δE) = +(1 ∓ iν) e−πν/2

(
δE

4E

)±iν

as expected from the well known limit of the off-shell Coulomb T -matrix (Schwinger 1964,
Roberts 1985)

lim
Ep,Ek→E

〈p|T (E + iη) |k〉 ≈ g+(Ep,E − Ep)ton(p,k)g+(Ek, E − Ek).

Thus, it can be shown that in the classical limit both Heaviside’s functions �(ZδE) are
approximated by |g+(E, δE)|2/2π |ν|.

5. Conclusions

The present classical description of the off-shell Coulomb transition matrix clearly indicates
that a shift δE off the energy shell is equivalent to considering an initial condition set at a
finite time. In connection with this result, it is important to note that, except for a gamma
function, the anomalous on-shell behaviour of the Coulomb transition matrix is described by
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the same distortion factor D±(E, t) = exp[∓iν log(4E|t |/h̄)] of Dollard’s time-dependent
theory, evaluated at t = h̄/δE, namely

g±(E, δE) = +(1 ∓ iν)D±(E, t = h̄/δE).

In this sense, the off-shell regularization technique is the time-independent counterpart
of Dettmann’s early proposal of postponing the limit of infinite time in the time-dependent
formalism (Dettmann 1971).

We have shown that the different structures of the off-shell transition matrix originate from
particular regions of the projectile’s orbit. In particular, the on-shell anomaly (represented by
the distortion factor g(E, δE)) is related in the classical limit to the constraints on the impulse
p due to the conservation of energy. Moreover, the classical action gives the correct quantum-
mechanical phase off the energy shell, which diverges in the on-shell limit. These facts show
that the singular behaviour of the Coulomb T -matrix is a purely semiclassical effect arising
from the long range of the interaction.

Further progress on multichannel Coulomb collision processes depends critically on a
better understanding of the off-shell two-body Coulomb transition matrix. In this sense, it is
clear that classical and semiclassical descriptions, such as that presented in this paper, can help
to clarify our understanding of this basic quantity.
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