
than traditionally designed shapers of comparable duration. 
Computer simulations of a single-mode system demonstrated 
the advantages of the new shapers. MACE results collected 
aboard the Space Shuttle Endeavor demonstrated the shapers' 
vibration-reducing abiUty on real structures. 
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Vibration Controllability of 3D 
Flexible Manipulators 

S. Lopez-Linares,^ A. Konno / and 
M. Uchiyama' 

Structural vibrations of flexible robots are not always fully 
controllable in all the workspace. In some cases, there exist 
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configurations where the actuators cannot affect some of the 
vibration modes, and thus cannot control their vibrations. This 
problem has been neglected in the case of the one-link and two-
link planar manipulators; however, it must be dealt with in 
depth when trying to control a 3D flexible robot. This paper 
discusses the vibration controllability of flexible manipulators. 
Vibration uncontrollable conflgurations are estimated both by 
the minimum singular values of the controllability matrix and 
the closed-loop behavior. A 2-link 3-joint prototype flexible ma
nipulator is used for a case study, and the uncontrollable con
figurations of the manipulator are found. 

1 Introduction 

A great deal of interest has been put lately to study the flexible 
manipulators. They are foreseen as the new generation of indus
trial robots with lower ratio of arm weight to payload weight, 
higher safety, and higher power efficiency. 

Research has concentrated mainly on modeling (Book, 1984 
and Siciliano and Book, 1988), inverse dynamics (Bayo et 
al., 1984), vibration suppression of the one-link (Cannon and 
Schmitz, 1984; Sakawa et al., 1985; Kotnik et al., 1988; Lopez-
Linares et al., 1991) and two-link (Fukuda, 1985; Khorrami and 
Jain, 1992) planar flexible manipulators, and trajectory tracking 
(Uchiyama et al., 1990). 

There is very little literature on controllability of flexible 
manipulators. Balas discussed about the controllability of planar 
case (Balas, 1978). He divided the infinite vibration modes into 
the controlled modes and residual (uncontrolled) modes. In this 
paper, we do not consider the effect of the residual modes. 

Tosunoglu et al. (1992) have considered the configuration 
dependency of the controllability, but do not take into account 
the vibration modes in their study. Konno et al. (1994) take 
into account the vibration modes and find that, in the case of 
3D manipulators, there exist configurations where some of the 
vibration modes cannot be controlled due to the fact that they 
are inaccessible by the actuators. In this paper, we give a method 
to study the uncontrollable configurations of a general flexible 
manipulator. 

First, in Section 2 we make some assumptions to simplify 
the dynamic equation and we form the controllability matrix. 
Then, in Section 3, we present the control method that was used 
in the experiments with FLEBOT II (the 2-link 3-joint flexible 
robot built at Tohoku University), Finally, Section 4 shows the 
results of the numerical simulation of the robot, introducing the 
concept of controllable subspaces, and Section 5 confirms the 
simulations with experiments. 

2 Vibration Controllability Matrix 

Ignoring the structural damping, the dynamic equation of a 
flexible manipulator can be written as 

M„(0 , e) 

Ma,(6», e) 

M 2(6, e ) 1 

M22(e, e) _ 

+ 
"0 0 ' 
. 0 K22_ 

d 
e 

re 
[e 

+ 

+ 

h|(0, b, e, 6) 

hiie, 0, e, e) 

g.Ce, e) 

g2(e, e) 
(1) 

or in a more compact form 

M(q)q + h (q , q) + Kq- ) -g (q) = L T (2) 

where 

q = [e] is the vector of coordinates 
0 are the joint rotations (dimension n) 
e are the elastic deflections (dimension m), 

T is the vector of applied torques (dimension n), 
M(q) is the inertia matrix, 
h (q , 4) is the vector of centrifugal and Coriolis forces. 
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K 

g(q) 
L 

is a constant matrix of elasticity related only to the 
elastic coordinates, 
is the vector of gravity forces, and 
is a constant matrix to transform the applied torques 
to the generalized forces of the system 

and transforming this equation to the state-space we have 

L = 
I„ 

The upper part of the dynamic equation is related to the overall 
motion of the robot and the lower part is related to the elastic 
deformations. In the case of 8 = 0 = 0 and e = e = 0 we 
obtain the static displacement CQ produced by gravity in the 
structure of the robot as 

KsjCo + g2(0, eo) = 0 (3) 

In order to study this complex system we are going to make 
two assumptions: 

• First, we will only consider the stationary behaviour ne
glecting centrifugal and Coriolis forces h (q , q) = 0, as 
well as the time dependence of the inertia matrix M(q) 
= 0 

• Second, we will assume that the influence of elastic defor
mations e in the inertia matrix and the gravity term is 
small: 

M ( q ) « M ( 0 ) , g ( q ) « g ( e ) 

Then, substracting Eq. (3) from the lower part of Eq. (1) , it is 
possible to balance the effect of gravity at any configuration 0. 
The approximated dynamic equation of the flexible arm is 

M„(0) M,j(e) 

M„(6») M,2{9) 
r e ' + 

0 0 " 
0 Y.n_ 

0 
= 

A T 

0 

or in a more compact form 

M(0)Aq + KAq = L A T 

where 

(4) 

(5) 

Aq = 
e 

Ae 

Ae = e - Co = e + K2-2'g2(0) 

A T = T - gd0) 

Inverting the inertia matrix at a given configuration 0 we obtain 

0 

Ae 
M 

0 0 
0 K22 

" 0 

Ae 
+ M-' ^•riXn 

0 
A T (6) 

The lower part of this equation expresses the relationship be
tween Ae and A T and therefore can be used to study the control
lability of the elastic deformations. 

Denoting 

M 
(M- ' )n (M-') ,2 

(M-')2, (M^')22 
(7) 

the relation between Ae and A T can be written as 

Ae = -(M-')22K22Ae + ( M - ' ) 2 | A T (8) 

Ae 

Ae 
0 -(M->)22K22 

•i-iTiXni " 

Ae 

Ae 

(M-')2 
A T 

(9) 

(10) 

or in a more compact form 

z = Az + B A T 

where 

Ae 

Ae 

Then, the vibration controllability matrix G^ at a given configu
ration 0 is 

0 , (0) = [B AB . . . A^'"~'B] (11) 

If rank G,. < 2m some structural vibrations are uncontrollable. 

3 Control Algorithm 

In this section, we introduce the control algorithm that was 
used to study the closed-loop behaviour of the example at the 
uncontrollable configurations. For further information see our 
previous papers (Lopez-Linares et al., 1994). 

The experimental robot FLEBOT II uses hardware velocity 
servo loops that can be written as 

T = A{0, - 0) (12) 

where A is the diagonal matrix of servo gains and O, is the 
vector of velocity commands. Introducing Eq. (12) into Eq. (5) 
and making the approach Afl̂ . — g[(0) '^ AO^ (the servo gains 
are assumed to be high), the dynamic equation of the robot + 
servo system is 

M(6»)Aq + LAL Aq + KAq = LA0, (13) 

A software velocity control law can be obtained for the robot 
in the form 

6>, = -FpT(0 - 0„) - F , [ {0- 0Mt 
Jo 

- F,,(6»)Ae - F„(e) f A e * (14) 
Jn 

where the gains Vpt and Fit are diagonal matrices and the gains 
Fpe and F,5 are obtained from the solution of an optimal control 
problem. 

We can study the closed-loop behaviour of the robot from 
Eqs. (13) and (14). For each vibration mode there is a corre
sponding pair of closed-loop poles and the real part of these 
poles becomes zero at the configurations where it cannot be 
controlled. Thus, the closed-loop poles give us not only the 
configurations where the vibrations are uncontrollable, but also 
which mode is uncontrollable. See the case study in Section 
4.4. 

4 Example of a 3D Flexible Manipulator 

In this section we numerically study the controllability of the 
flexible robot FLEBOT II built at the Department of Aeronautics 
and Space Engineering of Tohoku University; and in the next 
section we present the experimental results. 
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Mptpr I Table 1 Properties of FLEBOT II 

Fig. 1 Overview of tlie experimental flexible manipulator FLEBOT II 

Parameter 

Length of the links 

Stiffness of the links 

Torsional stiffness 

Mass of the joints 

Reduction ratios 

Actuators' inertia 

Servo gains 

Notation 

/ j [ m ] 
/, [m] 
£2/4 [Nm^] 
£ 3 / , [Nm^] 
G2J2 [Nm'] 
G3J3 [Nm^] 
Ml [kg] 
m [kg] 
«, 
Ri 
« 3 
/», [kgm^] 
/., [kgm^] 
/», [kgm^] 
A| [Nms/rad] 
A2 [Nms/rad] 
A3 [Nms/rad] 

Value 

0.50 
0.44 

41.82 
13.23 
32.17 
10.18 

1.5 
0.3 
100 
100 
88 

0.326 
0.326 
0.041 
150.7 
150.7 
38.9 

4.1 Laboratory Setup. Figure 1 shows an overview of 
FLEBOT II. It can be seen that the robot is composed of two 
elastic rods and three motors (DC type). 

Each motor is connected to a Harmonic Drive and is con
trolled by a hardware velocity servo card using tachometer feed
back. Encoders are employed to measure joint rotations and 
strain gages located at the root of each rod permit to measure 
the elastic deflections. 

A 486 personal computer processes the information given by 
the sensors and calculates the velocity commands to control the 
movement of the joints. 

4.2 Lumped-Mass Model. Assumming that the links are 
massless slender beams, a technique based on the Holzer's 
Method (Konno and Uchiyama, 1996) can be applied to obtain 
a lumped-mass model of FLEBOT II. 

Figure 2 shows a scheme of this model which has 7 coordi
nates: 3 joint rotations 9,, 62, 63 and 4 elastic deflections 6y^, 
(5zj, 5̂ 3, 5̂ 3. The robot mechanism can be defined by the actua
tors' inertias /„,, I„^, I,,^, the reduction ratios Ru R2, Rj, the 
length of the links k, h, the concentrated masses at the tip of 
the links nij, ma and the elastic and torsional properties of the 
links, E2I2, E3I3 and G2J2, G3J3 respectively. The actuators' 
servo loop can be defined by the servo gains Aj, A2 and A3. 
Table 1 lists the values of the properties of FLEBOT II. 

In the case of the 2-link 3-joint flexible manipulator the gen
eral Eq. (5) can be decoupled into two separate equations as 
follows 

where 

M,(6>)Aq, -I- K,Aq„ = L , A T , 

M„(6>)Aq„ + K„Aq^ = L „ A T „ 

'2, ^7/2- Gih 

(15) 

(16) 

Aq, A6,, 
A<5,, 

, A q , = 

AT,, = [ A T I ] , AT,, = 

My. 

A6,' 

AT2 

Ar3 

• On the one hand, the subsystem indicated by subscript v 
is related to the movement and deflections of the robot 
in the vertical plane determined by the angle S| and will 
be called the "vertical subsystem." 

• On the other hand, the subsystem indicated by subscript 
h is related to the rotation 1̂ and the deflections normal 
to the vertical plane and will be called the "horizontal 
subsystem." 

We have studied the controllability of both, but as the vertical 
subsystem is controllable we are going to concentrate in this 
paper on the study of the horizontal subsystem. In this subsys
tem the gravity terms are equal to zero, and therefore Ae^ = ê  
and AT^ = TI, (see Eq. (5)) . 

4.3 Vibration Controllability of the Horizontal Subsys
tem. Applying the method described in Section 2 to the hori
zontal subsystem, we find that the vibration controllability ma
trix Gc{0) depends only upon 2̂ and ^3. To study the controlla
bility we must study the rank of Gc(^2, ^3) in all the 
configurations. 

Figure 3 plots the minimum singular value of the controllabil
ity matrix for 0 < 2̂ < i", 0 < 6'3 < TX. The configurations 
in which the minimum singular value is equal to 0 are the 
uncontrollable configurations or the singular lines of controlla
bility. 

Fig. 2 Lumped mass model of FLEBOT II 

ej(rad.) o"o 9, (rad.) 

Fig. 3 Minimum singular value of the controllability matrix 
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- 2 - 1 0 1 
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Fig. 4 Complete map of singular lines 
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Fig. 6 Controllable subspaces for O3 < 0 

Figure 4 plots the complete map of these lines. It can be seen 
that it is only necessary to study the controllability in the range 
0 < 2̂ < TT, 0 < 3̂ < TT because of the symmetry of the picture. 

4.4 Closed-Loop Poles. From Eqs. (13) and (14) it is 
possible to study the closed-loop behavior of the horizontal 
subsystem at the singular lines. Using the same technique as in 
a previous work (Lopez-Linares et al., 1994) we have computed 
the pairs of poles related to the first and second vibration modes 
in the range 0 < 2̂ < TT, 0 < ^3 < TT, and we plot their real 
parts in Fig. 5. 

It can be seen that the real parts become zero at some config
urations. These configurations coincide with the ones that we 
obtained from the vibration controllability matrix: the zeros of 
Figs. 5(a) and 5(fo) give us the dashed lines and the dashdot 
lines of Fig. 4, respectively. 

Therefore, from the closed-loop poles we can interpret the 
meaning of the lines in Fig. 4: the dashed lines indicate the 
configurations where the first vibration mode is uncontrollable 
and the dashdot lines indicate the configurations where the sec
ond vibration mode is uncontrollable. 

4.5 Controllable Subspaces. It is interesting to draw the 
singular lines in the robot's workspace. Considering S3 < 0 we 
have 4 singular lines. For each pair {dt,dt) defining a singular 
line, there is a corresponding position (x*, y*) of the end-
effector in the vertical plane determined by S,. Figure 6 plots 
the Cartesian singular lines (x*, y*) in the vertical plane. The 
solid lines show the limits of the workspace and the sketch of 
the robot in an arbitrary position. The dashed lines and the 
dashdot lines indicate the impossibility of controlling either the 
first or the second vibration mode respectively. It can be seen 
that the singular lines divide the workspace of FLEBOT II into 
four controllable subspaces. 

The meaning of this picture is that we can control all the 
vibrations of the "horizontal motion," only when the tip of the 
robot is inside one subspace. If we apply a "vertical motion" 
to change from one subspace to another while we are moving 
the robot "horizontally" then, at some point of the movement. 

>A. 
9, (rad.) «, (rad.) 8, (rad.) 

(a) First mode (b) Second mode 

the tip of the robot will meet one of the singular lines of Figure 
4, and the control algorithm will not be able to damp the corre
sponding vibration mode. However, if we only move "verti
cally," the horizontal modes will not be excited, and we can 
change of subspace with no vibrations. 

5 Experimental Results 
In order to check the validity of our simulations and to under

stand better the difficulties introduced by the uncontrollable 
configurations in the design of control algorithms for flexible 
robots, we have conducted experiments of position stabilization 
and trajectory tracking around the singular lines of FLEBOT 
II. 

Let us consider points A (62 = - 1 0 deg, i?, = 41 deg) and 
6 ( ^ 2 = 13 deg, di = 20 deg) picked up from the neighborhood 
of the first and second vibration mode uncontrollable configura
tions (the dashed lines and the dashdot lines in Fig. 4, respec
tively). 

Setting FLEBOT II at these two configurations and changing 
the reference position of 5, from 0 to 10 deg, we obtained the 
results plotted in Fig. 7. As expected, we can see that in point 
A the first mode cannot be controlled and in point B the same 
thing happens with the second mode. This instability is caused 
by the configuration-dependent uncontrollable nature of the ro
bot, that causes the gain functions ¥p,{e) and F,-,,(6') to be 
discontinuous at the singular lines. 

a)poirit A(fl, =-10°, e, =41°) b) point B(e, =13°, e , =20°) 

Fig. S Negative real parts of the closed-loop poles related to the vibra
tion modes 

Fig. 7 Experimental step motion of 10 deg at points A and B (a) point 
A (02 = -10 deg, 83 = 41 deg); (b) point B (62 = 13 deg, 63 = 20 deg) 
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6 Conclusions 

3D flexible robots may have uncontrollable configurations at 
which some of the vibration modes cannot be damped by the 
control law. We have given a method to find these configura
tions. 

The concept of controllable subspaces (regions of the work
space where the vibrations can be controlled) seems to be inter
esting, in order to assure the suppression of vibrations in a 
practical application of a flexible robot. 

In the case of the 2-link 3-joint flexible robot, the change 
from one-controllable subspace to another can be done with no 
vibrations by means of applying a vertical motion. 
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Position Control of Single Link 
Flexible Manipulator by Variable 
Structure Model Following Control 

S. Thomas^ and B. Bandyopadhyay^ 

A variable structure model following controller (VSMFC) is 
designed for the tip position control of a single flexible link. 
The design is done for the system model in which only the first 
two flexible modes are included. Due to the simplicity in choos
ing second order models for the subsystems representing the 
dynamics of the various flexible modes, the design can be easily 
extended to include any desired number of flexible modes. The 
tip position response is made to assume a second order step 
response by suppressing the flexible modes very quickly. Hence 
the tip position response can be easily controlled by a suitable 
choice of the damping factor and natural frequency of the sec
ond order model which the rigid body mode of the link is made 
to follow. The controller is robust to parameter variations and 
disturbances. 

1 Introduction 
Various advantages of flexible links make them desirable to 

rigid links. But the flexibility of such links make the position 
controller design difficult because one has to control not only the 
rigid mode but also the highly vibratory modes. Theoretically, a 
flexible arm is an infinite order system. Designing a controller 
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for a high-order system and implementing it may not be practi
cally feasible. Hence a reduced order model is a prerequisite 
for the design of any practical controller. Owing to the fact that 
actuators and sensors cannot operate in the high frequency 
range, the flexible arm is approximated by finite models that 
consist of finite number of modes. But the controller designed 
should be such that the higher-order modes, that are not included 
in the model and hence not considered in controller design, are 
not excited. 

Various control strategies for flexible links are reported in 
the literature such as robust control (Bontsema et al., 1988), 
pole placement method (Book and Majette, 1983), optimal con
trol (Cannon and Schmitz, 1984), variable structure control 
(Qian and Ma, 1992) etc. Most of the control strategies when 
implemented in practice may not yield high performance due 
to uncertainty in model, parameter variations and disturbance 
effects. Even the variable structure control design by Qian and 
Ma (1992) does not offer invariance property to parameter 
variations and disturbance effects because the functional rela
tionship of the tip position with the generalised co-ordinates 
of the system through the mode shape functions is not duely 
considered in the design procedure. This drawback has been 
pointed out by Thomas and Bandyopadhyay (1997). The 
VSMFC technique presented here not only guarantees invari
ance to a class of parameter variations and disturbances (Dra-
zenovic, 1969) but also posses the other attractive features of 
variable structure systems (VSS). 

Adaptive model following control (AMFC) has been proven 
to be superior to linear model following control because the 
former is capable of handling parameter variations and distur
bances. AMFC technique, though capable of sending the steady 
state error to zero, fails to offer any quantitative control over 
the error transients (Hang and Parks, 1973; Landau, 1974; Na-
rendra and Lin, 1980). Young (1977, 78) made use of the 
theory of VSS in designing AMFC system. Young's method 
not only produces asymptotically stable systems, but is also 
capable of prescribing the error transient. Young (1978) has 
designed an adaptive model following controller for a multivari-
able system where he employs the hierarchy of controls method 
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