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Mean-Square Response of Simple Mechanical
Systems to Nonstationary Random Excitation
This paper concerns the mean-square response of a single-degree-of-freedom system to 
amplitude modulated random noise. The formulation is developed in terms of the 
frequency-response function of the system and generalized spectra of the nonstationary 
random excitation. Both the unit step and rectangular step functions are used for the 
amplitude modulation, and both white noise and noise with an exponentially decaying 
harmonic correlation function are considered. The time-varying mean-square response 
is shown not to exceed its stationary value for white noise. For correlated noise, hoiv-
ever, it is shown that the system mean-square response may exceed its stationary value. 

Introduction

s,SOLUTIONS to vibration problems which involve
random excitation often require a prediction of the mean-square
response of the structural system. The basic theory is known [ 1 ] '
for calculating the mean-square response of linear systems to
both stationary and nonstationary random excitation. For non-
stationary inputs, application of the theory gives rise to analytical
expressions somewhat more taxing than for the stationary case.
We consider here an application of the nonstationary theory to a 
problem fundamental to earthquake design and gust response
predictions.

The nonstationary random excitation is of the form

f(t) = e(t)n{t) (1)

where e(i) is a well-defined envelope function and n{t) is Gaussian
broadband stationary noise with zero mean. This excitation is a 
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nonstationary process created by the multiplication of sample
functions from a stationary process and the deterministic function
e(t). The mean-square response of a single-degree-of-freedom
mechanical system already has been examined for a unit step
envelope function with n(l) assumed as white noise and the sys-
tem assumed initially at rest [2]. For these same conditions, the
mean-square response has been studied for noise correlated as an
exponentially decaying harmonic function [3]. In both cases,
the response was formulated in terms of the system impulse re-
sponse and the autocorrelation function of the nonstationary
input.

This paper considers an alternate formulation for the mean-
square response of a single-degree-of-freedom mechanical system
to nonstationary random excitation. I t is developed in terms of
the system frequency-response function and generalized spectral
density function of the input excitation. Both white noise and
noise with an exponentially decaying harmonic correlation func-
tion are considered. In addition, the white noise and correlated
noise results are extended to include a rectangular step envelope
function.

Problem Description
The equation of motion of a single-degree-of-freedom me-

chanical system is of the form

1
yU) + 2faM) + co„MO /(0 (2)

•Nomenclature-

r-Vi

E[ ] 
E[yKt)\

e(t) = 

a = o>d = c o n [ l

b = r«.
c = viscous damping coeffi-

cient
expected value of [ ] 
time-varying mean-square

response
envelope function

F(a>) = Fourier transform of input
force

F,(coo — co) = frequency-shift Fourier
transformation of e(t-2)

input force excitation
one-sided spectral density

function of input noise
flo(«) = system frequency response

function

* = \/~^l 
K(t, w) = modulation function due

fit)

to unit step envelope
Ks(t, co) = modulation function due

to rectangular step en-
velope

k = linear spring constant
m = mass of system

n(t) = input noise
R/(h, ti) — nonstationary correlation

function of input force
excitation

Rn(r) = autocorrelation function of
input noise

RyU\, t-i) = nonstationary correlation
function of response

S„(co) = two-sided spectral density
function of input noise

S,(c0i, co2) = generalized spectrum of
input force excitation

So = magnitude of white noise
spectral density

Sv((i)i, co2) = generalized spectrum of
response

u(l) = unit step function
F(co) = Fourier transform of re-

sponse
y(t) = displacement response

a = decay coefficient of noise
correlation function

8(co) = delta function at co equal
to zero

f = system damping factor
p = frequency of noise correla-

tion function
u>d = system damped natural

frequency
to,, = svstem natural frequenev

*-*• = a Fourier transform pair
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where Rf(h, h) = e(h)e(U)Rn(r)

m

r = 

Since

(3)

Rn{r) ^ S.(W),

the generalized spectrum of the input excitation becomes

(15)

(16)

-jr.
Let us assume the system is initially at rest and the input excita-
tion is that of equation (1).

We are to determine the mean-square response Ely^H)} when
e(t) is a unit step and nit) has the correlation functions

• R„(r) = ZTTROHT) 

« Rn(r) = R 0 e _ a ' r l cos pr 
(4)

^/(wi, OJ2) = | S,Xw)Fe(<a - «1)Fe(w2 - «)Ao (17)

where the envelope function transformations are

i rro

Ft((a - Wi) = — I e f t j e - 1 ^ - " 1 ) ' 1 c%2?r J-»
1

(18)

Fe(ai2 - w)
2?r / :

e f tOe-^-^dfe

where r is the time difference U — ii. The upper correlation func-
tion is that for white noise whereas the lower expression is for the
correlated noise. In addition, the mean-square response is to be
determined when e(t) is a rectangular step and n(t) has the corre-
lation functions quoted above.

Response Formulation
The autocorrelation function of the system response to the non-

stationary force input is given by

These functions are noted to be conjugate pairs when o>i = OJ2.
The substitution of equation (17) into equation (13) produces

Ry(k, U) = E[y(h)y(h)] 

where E[ } is the expectation of [ ]. Since

Y(u) = H0(o))F(u)

where

1 1 
ffo(w) = 

(5)

(6)

(7)
t2f

(8)

the response y(t) may be expressed as

yit) = ~ f H0(ui)F(u)eiado}
*J — W 

Upon substitution of equation (8) into (5),

R„ih,k)^\ f Su(co1,u,)e'i(mb-mt^dmd^ (9)

where

Sy(0)i, u>2) = ffo*(«i)Jffo(a)2)<S/(co1, a>2) (10)

with the generalized spectrum of the input excitation defined by

1
Sf(ui, w2) (2ir)2

Now the mean-square response is

ElvKt)] = Rytt, t] 

so that from equation (9),

E \F*(o)i)F(0,)] (11)

(12)

E[y\t)}
/

CO / * «

— CO « / — CO

(13)

From the Weiner-Khintchine relations,

£,(«!, «,) = ~ \ R/(t1,h)ei(mh-"^dt1dh (14)

where the nonstationary correlation function of the modulated
noise input is
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E[y\t))
/ :

Sn(w)\h(t, U)\2d03 (19)

where

hit, ">)=•— f^ Be (m)F,(u-2 - u)eimtda>z (20)

Equation (19) is the desired general formulation for inputs of
amplitude modulated stationary noise.

Unit Step Envelope Function
For a unit step envelope function

e(t) = u(t) — 1, t > 0; and zero elsewhere

By the Fourier transformation [4]

ei,Mt u(t) «-> TT5(W - coo) + : ,
l(W — Wo)

the function Fe(Ui — to) becomes

Ft(u>t — co) = 7r5(o)2 — w) + T 
i"(u>2 — w)

(21)

(22)

(23)

Upon substitution of this equation into equation (20) and evalua-
tion of the resultant integral,

\h(t, co)j2 = |#„(a))|2A-(f,«)

where

K(t, w) = 1 + A(t) + Bit) 
b2 - a2 + a>2

(24)

(25)

- 2C(<) cos cat - 2D(0 - sina>«
a

with the time-dependent coefficients

A(t) = e-at

B(t) = e - a ' [ s m ! at] 

1 + - sin 2at 
a

r b. i 
cos at -j— sin at j 

(26)
C(t) = e - " I cos at - ) — sin at 

D(t) = e-6i[sin at]

Then, from equation (19), it follows that
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Fig. 1 Normalized mean-square response to white noise modulated by
a unit step function

|ffo(co)|2S„(co)X(«,<o)dco. (27)

/ — a / p = 100 / 

. — ff/P

= 10 / 

" l i 
= 0 . 1 / 

\

1
Wu

6 8 10

With K(t, co) = 1, this expression reduces to the mean-square
formulation for stationary inputs.

White Noise Input. If the input noise is assumed white, then the
spectral density function S„(co) reduces to the constant So and
the mean-square response becomes

E[y\t)} = So f |tf0(co)|2.K(i,co)&o (28)

By residue theory and a bit of algebra,

TTS„
E\y*(f)] = 

X

2fm2co„3

1 - e~a<( 1 + - sin2oi + 2 
a

sin2 at (29)

This result agrees with tha t derived in [1].
A normalized plot of equation (29) is shown as Fig. 1. I t is a 

family of curves in f where fj may be interpreted as the number
of response cycles of the system. Since no curve exceeds unity,
i t is concluded tha t this time-varying mean-square response does
not exceed the stationary mean-square response to white noise.
One application of these curves is to establish stationarity criteria
for the response of mechanical systems with one degree-of-freedom
in a white noise environment.

Correlated Noise Input. If the input noise is assumed correlated
as the damped harmonic of equation (4), then, by the transforma-
tion

S„(w) <- fi„(r), 

the two-sided spectral density becomes

S„(co)

where

For white noise,

flo a(a2 + p2 + co2)
X ' (CO2 - S 3

2 ) (C0 2 - S 4
2 )

53 = P + MX

54 = - S 3 *

So = Urn aS„(co) = — 

(30)

(31)

Fig. 2 Normalized autocorrelation functions of the correlated noise

- a p - 100

/
-alp = 1 

-elf - 0 . 1

Fig. 3 Normalized spectral density functions of the correlated noise

subsequently. Normalized plots of R„(T) and the associated
spectral density2 G„(co) are shown as Figs. 2 and 3, respectively.

Upon substitution of equation (30) into equation (27) and
evaluation of the resultant integral,

E[y*(t)] = —, [RiTt - XiTt + RzT3 - X , r j (32)

where the time-dependent terms are written as

This relationship is useful for checking purposes, as will be shown

2 For convenience in plotting, the one-sided spectral density Gn(u)
is used. By folding S„(w) about a = 0, <?»(«) = 25„(w).
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r , - - n - A(t)} 
lb

1 + -4(0 + 

ft = -B{1) 
2 - a2 + p* - a* 

B(t) - 2 [C(0

+ - D(t)]e-at cos pt - 2 - Z)(«)e
a a 

' ^ sin pt (33)

T. = 2 —• B(l) - lC(t) + - D(t)]e-at sin p<
a2 a 

+ -D(t)e 
a

" a ( cos pt • 

The remaining coefficients R\, R3, Xi, and Y3 are given by

fll - J " - <*" + "• + »'> - 1 «
U ^ 2 - S3

2)(s,2 - g4«)J a22)(si2

)(.s*' H e * ' - ss)w - Si
2)j

r (p2 + «2 + s,2) 1 a 

Lfe2 - si2)(s3* - s2
2)J

(34)

Y3 = Imag

After much algebra, this mean-square response may be rewritten
as

ElyHl)}

where

A„ = 

tfo [.4o + e - a ' ( A i + A2 sin 2a< + A3 sin2 of)

+ e (-a + b^t {At cos oi cos pt + A5 sin at cos p0 (35)
+ A 6 cos ai sin pi + A7 sin a£ sin pt] 

Ri + R3

-4, = -

At = -

1

ffii + Rz 

? + **
a2A"i + 

llh2 - n22(& a2 + p2 a2) D 4pa
a2 (36)

A, = - 2 f t 3

A5 = - - [(a + 6)fi3 + pA's
a

A 6 = 2 A " 3

A, = - - [pft3 - (6 + a)A'3]
a

which is a form (perhaps) more suitable for interpretation. By
the limiting operation,

lim aE[y«-{t)} 

equations (32) and (35) both reduce to the white noise result
given by equation (29).

Both of these expressions show the system mean-square re-
sponse is dependent upon interrelationships which involve the
system damping f, the system natural frequency /„, the correla-
tion function decay constant a, and the correlation function fre-
quency p. For a relatively large number of response cycles, the
exponential decay terms in equation (35) tend to zero and the
mean-square response reduces to the stationary value

E[vKD\ - - . \(~:) S. + R3\ (37)
(_,„ TO2 L V v

Figs. 4—11 are normalized plots of equation (32). Figs. 4-9
depict the behavior of the system rms response plotted as a family
of curves in a/p for specific values of Q and a/b. Figs. 10 and 11
show the mean-square response plotted as families of curves in
a/b for a/p = 1 and Q = 5 and 50, respectively. The ratio a/p 
provides a relative comparison between the damped natural fre-
quency of the system and the frequency of the noise correlation
function. The ratio a/b provides a relative comparison between
the exponential decay constant of the noise correlation function
and the decay coefficient associated with the system response to
a unit impulse function. The horizontal dashed lines are the
stationary values.

Such plots show that the damping values influence the mag-
nitude of the stationary value and affect how quickly stationarity
is attained. The larger damping values result in lower stationary
values and allow the response to become stationary in a lesser
number of response cycles.

The ratios a/p and a/b both influence the rms response over-
shoot of the stationary value. For a/b = 10, the largest value
considered for this ratio, no overshoot occurs over the range 0.5
< a/p < 10. This suggests that the response overshoot is rela-
tively insensitive to the ratio a/p when a/b > 10. Thus,
for white noise (a becomes infinite in the limit), no overshoot is
expected and such is verified by the plots in Fig. 1. For a/b = 
0.1 and a/b = 1, overshoot generally is observed.

Figs. 10 and 11 indicate the effect on the system rms response
of variations in a/b over the range 0.1 < a/b < 10 when a = p.
Since the frequency of the noise correlation function equals the
damped natural frequency of the system for these curves, the ratio
a/b = 1 implies a perfect overlap of the noise correlation function
and the system unit impulse response. For this condition, the
response buildup is the most rapid of the three curves, although
the asymptotic (or stationary) value is intermediate to the values
for a/b = 0.1 and a / 6 = 10.

Rectangular Step Envelope Function
For a rectangular step envelope function of duration U, 

e(l) = u{t) - u(l - to) (38)
so that

1
F2(«2 - w) = [1 - e^ '("2-" ) ( o ] TT5(UH - w) + «)«o] „-g

i(wt - c o ) .

(39)

By substitution of this expression into equation (20) and evalua-
tion of the resultant integral,

\h(t, a))]2 = |ff8(aj)l2 \K(t,oi)u(t) 

+ (-m,u) + A(l) + A(l - U) + 
b'1 — a- + co2

[B{t)

+ B(l - U)} - 2 C(t)C(t - ' » ) + ( - ) D(l)D(t - U) 

X cos uio + 2 - [C(t)D(t - to) - C(l - to)D(t)] sin coh 
a

X u(t - k) (40)

From equation (19),

ElyKt)) = I |H0(co)|2S„(co)K(t, w)dw for 0 < t < U 
\J — co

E[y\t)} = £
(41)

[Hoi^SMWSt, u)du fori > k 
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Fig. 4 Normalized rms response to the correlated noise modulated by a 
unit step function Fig. 7 Normalized rms response to the correlated noise modulated by a 
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Fig. 10 Normalized rms response to the correlated noise modulated by
a unit step function

where K(t, a)) is given by equation (25) and
M _ „2 i wi

K,(t, u) ~ A(l) + A(Jk - k) + --'— 

X [B(t) + B(t - to)] - 2 

Fig. 11 Normalized rms response to the correlated noise modulated by
a unit step function

where

Ta = 2fe { [A(l) + Ait- t„)] 

C(t)C(t - t„) + ~ D(t)D(t - t„) - 2 C(t)

a)
X cos cot0 + 2 -[C(t)D(t - k) - C(t - U)D(t)] sin wt0 (42)

a

White Noise Input. If the input noise is assumed white, then
/ •CO

ElvHt)] = So j |#0(w)|2if(t; w)du> for 0 < t < f„
« / — CO 

E[tf(t)] = So f \Ho(u)\*Ke(t, u)dta f o r t > f „
1 / — CO

Since the first integral is precisely equation. (28),

(43) " (

+ 2 

62 - a 

~D(t))c(t-a ) 

>)

•>

to)

b a2 - ¥ 
~ C'(t) :— D(t) )D(t - U) 
a a2

C(U)

b 62 — a2

- C ( 0 + — Dit) )C{t - k) 
a a2

a | 6 

C { t ) _ « * ^ D ( ( ) ) D ( l . wW - to) D(« I D(fo) (47a)

E[|/2(«)] = 
7TiSo

2fm2a>B
3 (1 - e-2U I 1 + - s i n 2 at

r s = I { " [5 (0 + B(t - to)]6 l o

Z>(t)C(f - to) - J <7(t) + ^ D(t) )-D(t -• tQ) C(to)

+ 2 ( r ) sin2 at

By residue theory and much algebra,

TTS,
E]yKt)] = 2fm2co„8

X [B(t) - B(t - t„)] - 2 

A(4) + A(t - t«) + 2 

C(t)C(t„) + 

X C(t - t e )+ 2 ?)*

for 0 < t < t„ (44)

G);
^ " Y D(t).D(t„)l

(c«) + ~ D(t)J C{i - t„)

'26 362 - as

C(i) + — P( t ) D(t - t„)

+

/26
\ a 

- A 

c-
) W - t„) D(h)\ D(U) (476)

T. = Ait) + A(f - to)
'6 2 — a2 + p2 — a !

2 - D(t)D(ta) - D(t)C(U) + C(l)D(t0)]

[Bit) + B(t - f„)]

C(t - to)

X Dit - f„) for t > f„ (45)

(c{t) + " D(t))

(f C(*} ~ ̂ ^̂ m ) Dit ~U)~\e ah cos pt0

Correlated Noise Input. If the input noise is assumed correlated
as the damped harmonic of equation (4), then S„(w) is given by
equation (30). After some algebraically tedious integrations by
residue theory, equation (19) yields

r>
E[y*(t)] = — [RiTi - XiTz + R,TZ - X*TA] for 0 < t < to

(46)

E[y\t)] = — [ f t T . - Xft + R3T€ - X,Td] for t > U 
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2p
a

(c(t) + ~ D(tUDit - to)]Dit)Cit - to) - C{t) + — D(t) )D(t - to)

X e-ah sin pt„ (47c)

ipa
l a 2Td - 2 P - [B(t) + B(t - to)]

[(c(0 + ^ J)(0J C(t - 4)

(47*)
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-(-a^)-P-^^))^-,)]e-sin„ (£2
+ ^ |"i)(OC(* - So) - ^ C ( 0 + ^ B ( o ) D(t - i , ) l

X e " a i o c o s p « o

The buildup of the mean-square response Ely^t)} over
0 < t < i0 is the same as tha t for a unit step envelope function
and, consequently, additional plots are not necessary. Although
cumbersome in appearance, the Ely^l)] for t > l0 reduces to the
square of an exponentially decaying harmonic function with fre-
quency 2cod. The decay exponent is governed by the product of
the system damping and natural frequency.

Concluding Remarks
The mean-square response of a linear single-degree-of-freeiom

mechanical system to amplitude modulated noise is nonsta-
tionary. A general formulation is presented for calculating
this response. I t is developed in terms of the system frequency-
response function and generalized spectrum of the input excita-
tion. A unit step modulation and a rectangular step modulation
are considered in conjunction with both correlated and perfectly
uncorrelated noise of zero mean.

This time-varying response is dependent upon the system

damping and natural frequency, the shape of the modulation
function, and the parameters of the noise correlation function.
For white noise modulated by a unit step function, the system
mean-square response will not overshoot its stationary value.
For correlated noise modulated in this same way, the system
mean-square response may exceed its stationary value. These
same comments are pertinent for the rectangular step modula-
tion.
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