
Preventing Injection Attack by Whitelisting

Inputs

Gopi Krishnan
Research Associate

Society for Electronic Transactions and Security, Chennai, India

gopikrishnans@setsindia.net

Sandeep K
PG Research Scholar

SRM Univerisity, Chennai, India

k.sandeep440@gmail.com

Abstract—Usage of web applications becomes larger than

just web pages. Usage of dynamic pages brought lot of

vulnerabilities. The web technology offers social

networking, online shopping, electronic library, and etc.

This paper proposes a possible technique to prevent

injection attacks by whitelisting inputs. This model was

developed using PHP (Hypertext Preprocessor) to makes

our developers easy. The input elements are divided into

text input and list input elements. The text input element is

verified using regular expression. And the list input element

verified comparing keys defined and submitted.


Index Terms—web security; injection attack; validation;

php

I. INTRODUCTION

Day to day increase in usage of web application

introduced attacks on web applications and web server. A

vulnerability of single page in a server can make it

exploitable. Injection attack is one of the major attack to

which most of the pages are vulnerable. According to the

Open Web Security Project (OWASP); Injection attack is

top most attack to which most of the pages are more

vulnerable.

II. WEB INJECTION ATTACK

Injection attack is act of injecting malicious data inside

POST and/or GET data to exploit the web server. To

launch the attack the hacker has to trick the input box or

URL by writing/appending combinations of malicious

inputs. To make this task simple lot of free tools are

available on the Internet. The different types of injection

attacks are discussed below.

A. Code Injection

A malicious code was injected to the web page‟s input

box. The injected code executes on client side or server

side. The login, registration and guest book are ideal

place for code injection.

Manuscript received January 10, 2013; revised March 12, 2013.

Figure 1. Code injection attack to steal cookie

Fig. 1 shows the example of code injection. This input

will be executed if programmer hasn‟t validated the

inputs. This will redirect to another page with their

cookie.

B. SQL Injection

The SQL (Structured Query Language) injection attack

is a method used by hackers to exploit the database by

using Vulnerabilities in the application software. A

successful SQL injection exploit can read and modify

sensitive data from the data base. SQL injection is

classified into [1] many types some of them are illicit

queries, union queries, piggy backed queries, stored

procedure. SQL injection occurs when data enters a

program from an untrusted source, data used to

dynamically construct a SQL query. The main

consequences [2] of SQL injections are confidentiality,

authentication, and authorization.

To detect and remove [3] the SQL queries there are

certain methods. Methods like web framework, static

analysis, dynamic analysis, and machine learning method.

These methods has certain draw backs to overcome

them Dr. Lee proposed [4] the novel method which is

used to detect and remove the SQL injections and queries

based on the static and dynamic analysis. By this method

they scan web applications in order to extract fixed SQL

queries and make a list to be compared with each

generated dynamic SQL queries. They use rules of static

and dynamic SQL queries this method removes the

attribute value in SQL queries and make it independent

DBMS (Database Management System).

Fig. 2 shows the example to bypass authentication via

SQL Injection. If the developer failed to validate the

input, it will return true as the SQL statement returns true

Lecture Notes on Information Theory Vol. 1, No. 3, September 2013

132

S

©2013 Engineering and Technology Publishing
doi: 10.12720/lnit.1.3.132-135

for or operation with a statement that always return true.

So, a malicious user will get access to the contents.

Figure 2. SQL Injection attack to bypass authentication

C. Command Injection

Consider a website is having search option. Developer

uses grep command to find the file with the content for

programming simplicity. The find text box will get the

text to search and gives in exec function as parameter.

Figure 3. Command Injection to execute malicious command

Fig. 3 shows a sample command injection. The text

typed in text box goes as argument to grep command

inside a exec function. The search query must be framed

as exec(“grep $_POST['query'] $search”); But the

injected malicious string will expanded to list all the files

in workdirectory as exec(“grep *.”” && ls -a”); in place

of “ls -a” any other malicious kind of linux command can

be substituted. That will executed with the privileges of

web server or application.

III. PREVENTING WEB INJECTION ATTACKS

A. Related Work

Prithvi Bisht et al [5] proposed a dynamic evaluation

mechanism to prevent SQL injection attack. It works by

escaping the special characters. The injection involves

special characters such as single quotes, double quotes,

ampersand, and etc.

Ramakanth Dorai et el [6] discussed various possible

ways and issues of SQL injection attack. They provided

solution based on Mod-Security, Green-SQL, PHP‟s

string escaping feature, user access control management,

and encrypting data. Sandeep et al [7] developed a

mechanism to prevent the SQL injection attack by

syntactic and semantic analysis of SQL query that sent

from web application to database service. Before

executing the SQL injection, the query is analyzed.

Shuo Tang et el [8] proposed a layer that integrates in

browser and provides automated security mechanisms to

protect the web pages from injection attack. But this can

easily bypassed using tools such as burpsuite. For

example the information passed through this page can be

sniffed using a tool called “burpsuite”. It acts as a proxy

server and allows us alter the data before it sent to the

internet. So, the protection only in client side does not

ensure safety.

B. Contribution

A public class called SecureField was developed using

PHP (hypertext preprocessor) which takes the arguments

of FieldHTML and LstOpts. It is mandatory when

developer create a combo list box. The constructor

identifies the type of element and builds the html tags

accordingly with the provided attributes; while other

methods help the constructor by providing necessary

functionality. If the type given FieldHTML is list the html

is constructed for a combo-box. This framework enforces

the input pattern on the developers. Rather than having

complex systems that consumes heavy resource, a simple

enforcement of pattern can prevent the injection attack.

Again the part is choosing a correct pattern. The standard

set of ready made patterns are available that can used.

C. Building HTML

If textbox or text area needs to be created then, the

attributes are provided in $key=>$value array format.

The elements provided are type, id, class, pattern, and

title. The pattern and title are the mandatory attribute of

this type of object. The element is not created if pattern or

title is not provided. While creating a list boxes the

LstOpts is mandatory in place of pattern or title. The list

box needs attributes such as id and class. The uses same

format as textbox or text area. The LstOpts is provided as

array in $value=>$label format.

The feature of HTML5 (hypertext markup language) is

used here to validate the client side inputs based on the

specified pattern. The pattern is specified in form of

regular expression. The form element objects are created

in a separate PHP script file. The form element is

deployed calling object→echoHtml(). This script is

included in both file where to deploy form element and

where to post the element. The element value passed

through $_POST is again verified in server side. To

verify validity of the $_POST data the method

object→isValid() is called for each object to get verified.

It returns true if given input is valid.

D. Server Side Validation

Even the inputs are validated on client side; it‟s very

safe to verify them on server side too. A man in the

middle attack can alter the content of date sent by the user.

Burpsuite is a tool that can be used to alter the sent by

them to a server without their knowledge. Intruder

module in the burpsuite exactly locates and shows the

$_POST and $_GET contents the hacker. In addition it

also provides an option to alter the content before it

reaches the server. The server only validation needs

AJAX or validated after entire form is filled and

submitted. This increases content loaded by AJAX

requests. In other case the user get stressed when they

receive a validation error after filling the entire form.

Twitter social networking registration site is very good

example for AJAX based server side only post-validation.

But matrimonial networking registration requires too

many inputs to be fed. The stress will in more as many

validation errors thrown after post-validation at server

side. To validate the textbox, regular expression is used

on both client and server. An attacker can also exploit the

regular expression verification process by giving the

more characters that matches the regular expression. That

Lecture Notes on Information Theory Vol. 1, No. 3, September 2013

133©2013 Engineering and Technology Publishing

causes the server to server check he character for long

time.

For example the expression /^[a-z][a-z0-9]*/ used to

match the user name, that can matches any number of

alphanumeric string. This expression exploitation can be

avoided by changing the regular expression that matches

only limited length of character. The example given

above can be rewritten as /^[a-z][a-z0-9]*{,16}/. This

matches the string of length from three to 16. The

username cannot go beyond 16 characters.

The option combo list boxes are also easily used to

inject an invalid data. Using Google chrome debugger the

value of a particular select option can be changed and a

malicious content can be injected through global $_POST

array variable. So the combo-list box is also validated for

its $_POST array data. The submitted option is cross

checked with the list of available values in the object for

which it is created.

IV. EXPERIMENTAL RESULTS

This class was utilized in web application that

developed to administrate Linux based firewall appliance.

The pattern loaded in client browser that supports

HTML5 validates and stop the form submission if the

entered input does not match the regular expression.

Figure 4. Client side validation error

Fig. 4 shows the validation error stopped the form

submission at client side. This regular expression based

input validation works even with java script disabled. A

public class called SceureField was developed using PHP

(hypertext preprocessor) which takes the arguments of

FieldHTML and LstOpts.

Figure 5. Using Google chrome debugger to modify source

An attacker can inject the malicious content by editing

the source using a debugger tool. Here Google chrome is

used to inject the malicious content. Fig. 5 shows the

usage of debugger tool to modify the source. The

representation of the dual validation is given below. A

class name SecureField has member function and

member data namely Sfmf, Sfmd respectively. The

constructor constructs the necessary html tags to echo the

particular field on html page. Then, the function

EchoHtml is called to print the actual html tags wherever

necessary. The validity and integrity of user input can be

verified using function IsValid. The function should be

called wherever the input of SecureField got posted.

Figure 6. Modifying source to Remove Regular Expression

Fig. 6 shows the code modification. Today most of the

web applications validate the textbox using java script.

This HTML5 regular expression based validation even

works with java script disabled. Mostly the combo- list

box inputs are assumed to be valid in most web

application. However, it is possible to utilize select option

list to inject malicious code.

Fig. 7 shows editing the source of combo-list box to

inject malicious data. In both cases the proposed system

validates all the elements and displays form elements

with invalid $_POST/$_GET content and exit the process.

Figure 7. Modifying source to tamper list box

SecureField ◄ {Sfmf ,Sfmd}

Sfmf = < f:Construct, f:EchoHtml, f:IsValid >

Sfmd = <@Name, @Type, @Regx, @Attr, @Htm5, @Opts >

f: Construct(@HtmlData, @LstOpts = Ø)

f: @htmlString → EchoHtml()

f: @httpSubmit → IsValid()

┌─Construct(@HtmlData, @LstOpts)

│

│ @this.Name := @HtmlData[„name‟];

│ @this.Type := @HtmlData[„type‟];

│ @this.Regx := @HtmlData[„regx‟];

│ @this.Attr := @HtmlData[„attr‟];

│ @this.Opts := @LstOpts;

│

│ @this.Htm5 := @this.Type + @this.Name + @this.Regx;

│ @this.Htm5 := @this.Htm5 + V(@this.Attr);

│ @this.Htm5 := @this.Htm5 + V(@this.Opts);

│▪

├─EchoHtml(void)

│

│ echo @this.Htm5;

│ (@this.Type ≠ „list‟ ∧ @this.Regx = Ø)?

│ echo „WARNING! No pattern‟;

│▪

├─IsValid(void)

│

│ @status := false;

│ (@this.Type = „list‟)?

│ array_key_exist(POST[@this.Name],

@this.Opts)?

│ @status := true;

│ : pregMatch(POST[@this.Name], @this.Regx)?

│ @status := true

│ return @status;

│▪

└─────────────────────────────■

Lecture Notes on Information Theory Vol. 1, No. 3, September 2013

134©2013 Engineering and Technology Publishing

Fig. 8 shows the failback page responded by our

system about the invalid input to the form elements called

lstSrcAddress and txtSrcMac. Currently the system accept

the textbox with input either match regular expression or

empty data.

Figure 8. Error message echoed if any invalid input

V. CONCLUSION

A programming approach to prevent the injection by

whitelisting the inputs. Whitelisting inputs is done for

both text and list inputs to prevent malicious strings.

Based on experiments, the whitelisting is simple and

effective for bot validation and preventing malicious

strings. But for text input elements, everything is still

depends on the regular expression used. Future work

includes expanding our experiment with efficient

dynamic list elements and other input elements on rich

Internet applications

REFERENCES

[1] K. Ahmad and K. P. Yadav, “Classification of SQL injection

attacks,” Visual Soft Research and Developement-Technical and

Non-Technical Journal, vol. 1, no. 4, pp. 235-242, 2010.

[2] Owasp Testing Guide, Version 3.0, 2008, pp. 204-207.

[3] P. Ramasamy, “SQL injection attack detection and prevention,”

IJEST, vol. 4, 2012.

[4] I. lee and S. Yeo, “A novel method for SQL injection attack

detection based on removing SQL query attribute values,”

Mathematical and Computer Modeling, vol. 55, no. 1-2, pp. 58-68,

2012.

[5] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan, “Dynamic

candidate evaluations for automatic prevention of SQL injection

attacks,” ACM Transactions on Information and System Security,

vol. 13, no. 2, pp. 38, February 2010.

[6] R. Dorai and V. Kannak “SQL Injection-Database attack

revolution and prevention,” Journal of International Commercial

Law and Technology, vol. 6, no. 4, pp. 224–231, 2011.

[7] S. N. Narayanan, A. P. Pais, and R. Mohandas, 5th International

Conference on Information Processing, pp. 103-112, August 2011.

[8] S. Tang, N. Dautenhahn, and S. T. King, "Fortifying Web-based

applications automatically," in Proc. 18th ACM Conference on

Computer and Communications Security, 2011, pp. 615-626.

Gopi Krishnan S born and brought up in

Virudhachalam, Tamil Nadu, India. Completed his

M.Tech in information security at Pondicherry

Engineering College, Pondicherry, India.

Interested in network security, web application

security, programming, image processing, and

cryptography. He is also interested on Linux

operating system and opensource.

He working as Research Associate at Society for

Electronic Transactions and Security, Chennai, India. He worked on

network perimeter product research and also involved in programming

activities. He published Color image cryptography scheme based on

visual cryptography, Signal Processing, Communication, Computing

and Networking Technologies (ICSCCN), 2011 International

Conference on, 21-22 July 2011, pp: 404 – 407.

Lecture Notes on Information Theory Vol. 1, No. 3, September 2013

135©2013 Engineering and Technology Publishing

