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ABSTRACT 

This paper presents the development of innovative real-
time health estimation and automated fault accommodation 
techniques for advanced propulsion systems within a Dynamic 
Decision Support (D2S) framework. The proposed approach 
uses dynamic models in a real-time computing environment to 
not only diagnose system degradation and faults, but also to 
determine “on the fly” how to accommodate for them. The real-
time health estimation modules enhance on-board PHM 
(Prognosis & Health Management) capabilities with a dynamic 
system identification algorithm that is capable of detecting 
faults with a continuously updated dynamic model. In addition, 
a real-time, self-tuning Kalman filter and fault classification 
algorithm are combined to provide accurate health estimation. 
Based on the inferred health condition, mission requirements 
and flight regime information, the automated fault 
accommodation module automatically makes decisions 
regarding control reconfiguration and change of control 
strategies. The presented techniques have been applied to a 
generic turbofan engine model with simulated engine 
component faults and degradation and simulation results are 
presented. To further raise the technological readiness level, 
select algorithms have been implemented and evaluated on a 
PC104 embedded platform. The dynamic modeling capabilities, 
techniques and tools sets will not only improve the reliability of 
the propulsion systems, but also greatly enhance maintenance 
decision support and contingency planning concepts. 

 
INTRODUCTION 
 Impact Technologies, LLC has developed a novel 
architecture and a suite of tools for real-time health estimation 
and automated fault accommodation within a Dynamic 
Decision Support (D2S) framework for aircraft propulsion 
systems. The goal of this research was to create an aircraft-
embeddable software system to accommodate propulsion 
system faults and manage system health and life through the 
fusion of PHM and intelligent control technologies. The 
envisioned product is a real-time, modular, hierarchical 
s://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use
software system that can be implemented on an embedded 
platform and integrated with the Full Authority Digital Engine 
Controller (FADEC) and off-wing avionics hardware to 
provide real-time fault accommodation functionality to 
propulsion system components.  
 The research in health monitoring and fault 
accommodating control of propulsion systems has in recent 
years provided a variety of promising approaches to improving 
the reliability and performance of the propulsion systems [1-5]. 
Health monitoring and diagnosis of engine performance 
through engine parameter estimation has been reported in a 
wide range of works [4,6]. These processes estimate engine 
performance variables mostly using linearized models and 
some enhanced with neural networks to compensate for 
nonlinearity and modeling errors [7]. Romessis and et al. [8] 
and Ganguli [9] used classifiers to accomplish diagnostic 
functions. The health estimation algorithms developed here 
highlights the real-time system identification of the engine 
dynamic model and the combination of Kalman Filtering and 
classification methods for accurate and robust health 
estimation. Unlike the work done in [10], our work uses a 
Stochastic Pattern Classifier fused with a Probabilistic Neural 
Network based classifier, and does not require a-priori 
conditional probability measures as needed for Bayesian Belief 
Network. The Kalman Filtering algorithm used here is similar 
to the work done in [7]. However, in this work, the health 
parameter estimates from the Kalman Filter are not directly 
used due to that fact that their estimates have essentially 
become a mathematical artifact for achieving a better match 
between observation and model output [11]. Instead, the 
accurate state estimates are fed into fault classifiers to produce 
a robust health estimation. The automated fault accommodation 
concepts applied here incorporate an adaptive thrust controller 
and a damage protecting controller that is similar to the work in 
[12]. Innovative ways to implement automated fault 
accommodation are presented including the use of the 
StateflowTM toolbox and predicates-based reasoning. 
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 The work reported here establishes a real-time health 
estimation and automated fault accommodation framework and 
a suite of efficient algorithms that are embeddable in current 
COTS hardware platforms. The remainder of this paper is 
organized as follows. First, an overview of the system 
architecture is presented. Real-time health estimation modules 
including a recursive system identification algorithm, self-
tuning Kalman filter, and fault classifiers are described in 
details in the following section. Automated fault 
accommodation modules and predicates based reasoning 
concept are explained and the presented techniques are applied 
to a generic turbofan engine model to detect faults resulting in 
efficiency losses in the engine high-pressure compressor (HPC) 
and/or combustor. Simulation results are presented. To raise the 
technological readiness level of the presented system, select 
algorithms have been implemented and tested on a PC104 
embedded platform and real-time performance was evaluated. 
This paper concludes with remarks on future work. 

 
SYSTEM OVERVIEW 

 
Jet engine performance varies from engine to engine due to 

manufacturing tolerances, aging, and deterioration caused by 
use. Generally the control system developed for the engine is 
robust enough to keep it operating within acceptable 
boundaries for several thousand flight cycles if there were no 
major faults present. However, as the engine ages or faults 
occur, the baseline engine controller may no longer assure 
optimal engine operation. The goal of the proposed engine D2S 
system is to increase the level of autonomy of the engine 
operation by bridging the gap between onboard PHM system 
and baseline control systems. As shown in Figure 1, engine D2S 
system consists of two major functions: 1) real-time assessment 
of engine system health (PHM); 2) Automated Fault 
Contingency Planning (AFCP). 

 
Figure 1: D2S System for Jet Engines 

The PHM modules are enhanced with a set of innovative 
supporting tools including dynamic modeling and simulation 
capabilities and diagnostic technologies that are capable of 
detecting fault and isolating failures in a dynamic system 
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environment. A Self Tuning Kalman Filter (STKF) is utilized to 
provide accurate engine state estimation even in the presence of 
component faults and degradation. The health parameter 
estimated from STKF can be used as a fault indicator. The state 
estimates and features calculated from fault detection routines 
are feed into fault classifiers for fault isolation. Information 
fusion techniques are applied when there are multiple fault 
classifiers engaged.  

Based on health condition, mission requirements and flight 
regime information, the onboard AFCP module automatically 
makes decisions regarding control reconfiguration and change 
of control strategies. Usually when a fault can be confidently 
classified as a known fault pattern, predetermined optimal 
scheduling and control logics obtained from offline 
experiments, if available, can be applied to accommodate the 
fault. However, when an unknown fault (i.e., a fault that can’t 
be confidently classified as any known fault pattern) is 
encountered, in the absence of predetermined fault 
accommodating rules, the objective of achieving required thrust 
level to meet mission requirement and meanwhile minimizing 
damage to the engine can possibly be obtained by using 
adaptive control laws such as thrust control. Since thrust is not 
directly measurable, a thrust virtual sensor based on STKF was 
developed.  

Depending on the control strategy, the AFCP module may 
issue direct actuator commands or utilize an outer loop 
controller to adjust the reference (N1) commands sent to the 
baseline engine controller (the FADEC). A benefit of using a 
outer loop controller is that, since most baseline FADEC logic 
has been verified and validated (V&V), the change of reference 
fan speed command, which controls the engine via the FADEC, 
will not drive the engine into an unsafe operational regime.  

The ultimate goal of D2S system is to enable an aircraft 
propulsion system to operate in an intelligent way featuring 
self-diagnostic, self-prognostic, self-optimizing, and mission 
adaptable. At the control level, new engine control techniques 
that can potentially be leveraged include Life Extending 
Control [13], Performance Seeking Control [14], and Model 
Predictive Control [15]. 

 
REAL-TIME HEALTH ESTIMATION 

To adapt to changing environment, fault conditions and 
performance degradation, it’s very important that the proposed 
D2S system possesses the capability to identify/update various 
models in real-time. Based on the work of Bodson and et al 
[16,17], real-time recursive system ID algorithms have been 
developed and demonstrated on an embedded platform. 

Real-time Recursive System Identification Algorithm 
State space model or equation of motions for a plant can be 

stated (in discrete format) as, 

)()()()( nvnnny T += φθ  (1) 
Depending on the format of the model and different application 
scenarios, y(n) may either be a system output or the derivative 
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of a system state variable, and y(n) is a scalar; When applied to 
identify a state-space model, the state variables can be obtained 
from the STKF and derivatives of state variables can be 
calculated numerically. Each column of )(nθ  contains the 
parameters corresponding to one component of the vector y(n). 

)(nφ  is the regressor vector, e.g. [xT ; uT ]T, the state variables 
and control inputs. The least square algorithm drives )(nθ  

towards its true value, *θ  by a modified least squares 
algorithm that seeks to minimize an augmented cost function, 
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 2||)1()(|| −−+ nn θθα  (2) 
Where λ  is the time-varying forgetting factor, which will be 
modified adaptively according to an anomaly detection module. 
α is the weighting coefficient that adjusts the influence of the 
derivation of the current estimate from the previous estimate. N 
is the length of the data window used for regression. The 
parameter estimate can be obtained by  

)]1()()()[()()1()( −−+−= nnnynnPnn Tθφφθθ   
 )]2()1()[( −−−+ nnnP θθαλ  (3) 
where the covariance matrix P(n) is calculated by 
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where the matrix C(n) is given by, 
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and e(n) is a sequence of vectors, 
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np is the number of parameters in θ and the number of variables 
in φ . C(n) is a np ×2 vector and e(n) is a np ×1 vector. Only a 2 
x 2 matrix inverse is required. The covariance matrix is known 
to be symmetric, and it is helpful to compute the upper 
triangular part of the matrix only and to update the lower 
triangular part by symmetry (or vice versa). 

The augmented cost function includes one additional terms 
that restricts the movement of the estimate, )(nθ , in the 
temporal dimension. Similarly, another term can be added to 
restrict the movement of )(nθ  in the spatial dimension, e.g. 

2||ˆ)(|| θθβ −n , where θ̂  is an a priori estimation of )(nθ . 
This formulation will further help when )(nθ  doesn’t deviate 

too much from θ̂ . However, at the same time, extra 
computational burden is introduced. 

As an improvement for fast detection and tracking in real-
time, an anomaly detection scheme and a time varying 
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forgetting factor have been integrated. When a change in 
prediction residuals is detected, a smaller forgetting factor is 
utilized to discount ‘old’ data and place more weight on the 
latest measurements. 

It’s worth pointing out that the identified system is the 
dynamics of the degraded/faulty system. Since health 
parameters are not included as state variables, the influence of 
health degradation/fault is attributed to θ. In case of a state-
space model identification (e.g. BuAxx +=& ), engine 
component degradation/fault usually changes the A matrix, 
while actuator fault usually affects the B matrix, which can be 
directly used for actuator fault diagnosis. However, fault 
diagnosis based on A matrix changes is not straightforward. 
The identified degraded system dynamics can be utilized by 
some advanced controls, such as model predictive control to 
implement adaptive fault accommodation strategies. 

Self Tuning Kalman Filter (STKF) 
In order to make the on-board engine model adaptive to 

the real engine’s performance variations due to degradation or 
anomalies, the STKF is designed with the ability to adjust its 
performance through the adjustment of health parameters that 
are added to the system dynamics as “virtual state”, which also 
function as tuning parameters. The tuning parameters are 
embedded in the Kalman filter design. If sensor outputs deviate 
from nominal condition values due to component degradation 
and/or faults, the Kalman filter will attribute the cause of sensor 
output deviations to the tuning parameters, so that the residuals 
of state/output estimates will remain small. With this design 
approach, the STKF can maintain accurate estimation 
performance when it is applied to aircraft engines at off-
nominal conditions.  

An aircraft engine can be modeled as a nonlinear 
dynamical system as follows: 
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 (7)  

where, X: state vector, U: control vector, Ym: measurable 
output vector, Yu: unmeasurable output vector, v: system noise 
vector, w: measurement noise vector, and G: system noise 
transfer matrix. By linearizing Eq. (7) at a specific operating 
point, a linearized engine model is obtained as follows: 
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Assuming noise covariance matrices and mean values: 
 ,)(,)( RwwEQvvE TT ==    

0)(,0)( == wEvE  (9) 
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Maximum likelihood estimates of state, measurable and 
unmeasurable output vector, mYX ˆ,ˆ  and uŶ , are given by, 
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where,    
1−= RPCK T  (11) 

K is the linear Kalman filter gain matrix. P is the steady-state 
solution of the Riccati differential equation associated to the 
covariance matrix of the estimates and can be calculated from 

01 =−++ − CPRPCGQGPAAP TTT  (12) 
Worth noting is that for STKF, the state vector X is augmented 
with virtual state variables called health parameters, or tuning 
parameters. For example, for a gas turbine engine example, 
define, 

],,,,,,[ , combcombhpthptlptlptcompcompc wwwwX ηηηη=  

  (13) 
Where, Xc is the augmented virtual states including 
compressor, low and high pressure turbine, and combustor 
efficiency and flow capability. Since Xc is artificial state vector 
which can be estimated by the Kalman filter, state equation can 
be defined as, 

0=cX&   (14) 
Or in discrete form, 

cccc vGkXkX +=+ )()1(  (15) 
If an engine component performance is changed, it causes a 
difference between measurement and estimation; then the 
STKF changes Xc until the difference approaches zero. The 
STKF can accurately estimate output variables, and for state 
estimation, it usually outperform classic Kalman filter because 
of the tuning mechanism. The method can be extended to 
nonlinear system by using the Extended Kalman Filter (EKF).  

Fault Classification and Fusion 
Diagnostic methods employing statistical inference can be 

mainly categorized into regression methods and classification 
methods, depending on the way information is processed. 
Applying regression techniques such as Kalman filtering on gas 
turbine engine diagnosis poses some stability problems when 
few measurements are available [10]; Another problem related 
to regression methods such as STKF is that, since health 
parameters are also used as tuning parameters, their estimates 
tend to become a mathematical artifact for achieving accurate 
state and output estimates in the presence of faults [11]. The 
improvements suggested in [11] help to minimize the affect of 
nonlinearity and modeling error. However, the training of 
neural networks for the whole flight envelope seems a 
complicated process and difficult to implement in practice. In 
this work, the health parameter estimates are used as fault 
indicators while diagnosis and severity estimation are done by 
the fault classifiers.  
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Classification algorithms solve the diagnosis problem in a 
different way and, therefore, give a different kind of results. 
Although the results may be less accurate due to the number of 
the classes available, classification algorithms are often more 
reliable and usually more stable. Moreover, some classification 
algorithms allow some qualitative knowledge to be introduced 
into the classification rule [18]. Those characteristics make 
classification algorithms very complementary to regression 
algorithms. 

In the D2S system, synergetic combination of both 
regression methods (Kalman Filtering) and classification 
methods is developed. Both model based and data driven 
approaches can be utilized in the design of fault classifiers, and 
the outputs from multiple classifiers are further fused to 
improve accuracy and confidence.  

Figure 2 illustrates the application of multiple fault 
classifiers and information fusion techniques to jet engine fault 
diagnostics. In this example, both model based and data driven 
(e.g. the stochastic fault pattern and the Neural Networks 
classifiers) are implemented, and the results from different 
classifiers are fused using Dempster-Shafter Theory. Note that 
when the health is in tune with the expected level of 
degradation (change in parameters like efficiency in time), it 
will not be classified as a fault.  
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Figure 2: Multiple Fault Classifiers and Information Fusion 

Robust fault classifiers were developed based on stochastic 
fault pattern recognition techniques that rely on matching the 
current set of deltas (difference between measured and 
expected steady-state sensor readings) to sets of delta values in 
a fault pattern database. This approach relies on gauging the 
proximity of the current deltas to those associated with known 
fault conditions in the ‘N-delta’ feature space (defined in the 
fault pattern database). The proximity of the current set of 
deltas to a known fault pattern’s deltas determines the level of 
confidence with which one can expect this to be the current 
system fault. The deltas in sensor measurements are mapped to 
the health parameters of each component in order to estimate its 
health. For the proof-of-concept demonstration, the sensor delta 
feature space is four dimensional and consists of the four most 
commonly and universally available engine sensor 
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measurements: Fan Speed (N1), Core Speed (N2), Fuel Flow 
(Wf), and Exhaust Gas Temperature (EGT). The fault pattern 
database was developed using the deviations/deltas associated 
with each measurement and the corresponding associated fault. 
Details regarding the fault classifiers and the Dempster-Shafter 
method were presented in previous publications [19,12]. 

AUTOMATED FAULT CONTINGENCY PLANNING 

To meet the objective of real-time control reconfiguration 
and resource management in the D2S system, the intelligent 
control system functionality requires the health management 
modules to provide continuous and up-to-date state awareness. 
With this information, adaptable control strategies can be 
implemented conceptually within the hierarchical 
accommodation strategy shown in Figure 3.  In the presence of 
a fault, the high-level redistribution controller re-routes the 
available control authority taking advantage of any inherent 
redundancy in the system. A mid-level set point controller then 
determines set point values, which maintain stability of the 
restructured system, possibly at some degraded performance.  
Finally, the low-level algorithms adjust local controller gains in 
response to the new set points generated by the mid-level 
controller. 
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Figure 3: A Conceptual Structure for AFCP 

At the propulsion level, one of the goals of the D2S system 
is the capability to control (avoid) damaging gas path events 
such as surge or stall in the compressors, which is of 
fundamental importance in lengthening the life of those critical 
components in the engine. Figure 4 shows an automated fault 
accommodating control system that provides the capability to 
maintain acceptable performance and stability properties in the 
case when sensors, actuators, or other components malfunction 
in the engine.  

Particularly, AFCP strategies related to typical engine 
faults are illustrated in previous work [19,12]. Worth pointing 
 

ded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Us
out is that although the D2S architecture is a generic solution, 
the AFCP strategies to be implemented on a particular system 
are often application specific. 

 
Figure 4: Adaptive Engine Control Strategies 

New Methods to Implement AFCP System 

A capability predicate model is utilized for development of 
the contingency management decision support function that 
uses a hierarchy of predicates for the physical layer, the 
regulation layer, the maneuvering layer, and the mission layer, 
as shown in Figure 5.  The core part of a dynamic automated 
contingency management software is to use the information 
from the fault diagnosis to evaluate the vehicles capability for 
performing the function at all of these levels and completing its 
mission.  The real-time fault accommodation component will 
perform the contingency analysis including the assessment of 
controller capabilities, assessment of flight capabilities, and 
assessment of mission accomplishment capabilities. The 
analysis results will form the new constraints for potentially 
changing operations or re-planning the mission.  If the current 
mission plan can not satisfy the new constraints, mission re-
planning may become necessary under of the new constraints 
for responding efficiently to changes of vehicles status and 
environments. 

The capability predicate modeling concept is widely 
applicable to any set of interconnected subsystems as is the 
case for subsystems such as propulsion and multi-channel flight 
control actuators.  

Capability Predicates for Physical Layer Predicates:  The 
adaptive control system uses sensors, actuators, and 
communication devices.  Each of them is modeled as a 
dynamic predicate, which will return 1 if it is functioning 
properly and 0 otherwise. 

Capability Predicates for Regulation Layer Predicates:  The 
regulation layer assesses the capabilities of the controllers 
5 Copyright © 2007 by ASME 
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themselves, and depends on the predicates of sensors and 
actuators in the physical layer.  The capability of each 
controller in the regulation layer is modeled a dynamic 
predicate with 1 if the control functions are working properly 
and 0 otherwise. 

Capability Predicates for Maneuvers or Key Functions:  The 
vehicles maneuvering ability depends on several control laws 
in the regulation layer.  The function capabilities can be 
expressed as a vector consisting of dynamic predicates with 1 if 
the specific maneuvers are possible and 0 otherwise. 

Capability Predicates for Missions:  Execution of an aircraft’s 
overall mission requires certain maneuvers or a sequence of 
functions in a more generic case.  The mission capabilities can 
be expressed as predicates with 1 if it functions properly and 0 
otherwise. 

The predicate model decides when and how the 
contingency strategies should be activated in an optimal way 
based on health assessment and mission requirement. This will 
be implemented within the StateflowTM development tool for 
control and supervisory logic. This approach provides clear, 
concise descriptions of complex system behavior using finite 
state machine theory, flow diagram notations, and state-
transition diagrams, all in the same StateflowTM diagram.  
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Figure 5: Fault Accommodation Capability Modeling 

Using Predicates 

StateflowTM generates its own C-code to simulate 
StateflowTM charts during simulation. With the StateflowTM 
Coder, code can be generated for applications built in other 
environments, such as an embedded environment. With Real-
Time WorkshopTM tool, code from Simulink and Stateflow can 
be run as an application on another environment to control a 
process.  

SIMULATION RESULTS 

A generic turbofan engine model is utilized as a test bed, 
which has a bypass ratio of 4.8 and design fan and core speeds 
of 8,700 and 14,700 RPM and a rated thrust of 8,000 lbs. Mostl 
turbo-machinery based components, like the fan, compressor 
and turbine, are based on look-up tables obtained from engine 
test data. The test bench also contains a fault injection block 
that simulates engine faults by imparting gains, adding noise, or 
adding bias to model states. Simulated engine component faults 
include combustor efficiency loss, compressor efficiency loss, 
compressor flow capacity loss, fan hub efficiency loss, LPT 
efficiency loss, fan tip efficiency loss, HPT efficiency loss, 
degradation, and PT2 sensor failure, and etc. 
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STKF Simulation Results 

In this study, the state variables are N1, N2, T25, P25, T3, 
P3, T45, P45, T8, P8; control variable is Wf (fuel flow), output 
variables are N1, N2, T3, P3, T45, P45, T8, P8 and they are 
assumed to be measurable. Health parameters are compressor 
efficiency loss, compressor flow capacity loss, and combustor 
efficiency loss. Figure 6 shows the simulation results for a 
simulated 2% compressor efficiency loss introduced at time 95. 
Changes in the estimated values of the health parameters can be 
used for anomaly detection purpose. Since they also serve as 
tuning parameters, the estimated health parameter values might 
be inaccurate. However, STKF provides accurate state/output 
estimation in the presence of this fault. The estimation results 
for compressor efficiency, compressor flow capacity, 
combustor efficiency, N1, N2 and P3 are also shown in the 
same figure. Simulated measurement noises are Gaussian noise 
with standard deviation of .1% of the steady state values. The 
plots shows response time from time 60 to 140, the transient 
responses from time 0 to 60 correspond to an engine start 
procedure and are not shown in the plots. Note that though only 
simulation results for component faults are presented, the 
STKF technique is applicable to component degradation as 
well. Similar results were reported in [7]. 
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  (b). Compressor Flow Capacity 
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(c). Combustor Efficiency  
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Figure 6: STKF Simulation Results 

Real-time Recursive System ID Results 

Figure 7 shows the tracking capability of the identified 
linear model compared with the output estimation from the 
STKF module. The forgetting factor (λ ) and weighting factor 
(α ) were set to 0.99 and 0.1 respectively. 

In the above simulation results, the identified linear model 
could quickly adapt to the fault (2% Compressor Efficiency 
Loss introduced at time 95). However, there is a big overshoot 
in the N2, P3, P45 and P8 plots above. Figure 8 shows the P3 
and P45 response of the identified linear model when the 
forgetting factor (λ ) is set to 0.95. Decreasing λ  value will 
result in more prompt response to system dynamics changes. 
However, it may produce less accurate parameter estimation 
and is more sensitive to noise and perturbation. 

60 70 80 90 100 110 120 130 140
8685

8690

8695

8700

8705

Ti

N
1

identified model output
STKF output

60 70 80 90 100 110 120 130 140
1.45

1.5

1.55
x 10

Ti

N
2

identified model output
STKF output

 

60 70 80 90 100 110 120 130 140
1160

1165

1170

1175

1180

1185

Ti

T3

identified model output
STKF output

 

 

oaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Us
60 70 80 90 100 110 120 130 140
29.1

29.2

29.3

29.4

29.5

Ti

P3

identified model output
STKF output

 

60 70 80 90 100 110 120 130 140
2120

2140

2160

2180

2200

2220

2240

Ti

T4
5

identified model output
STKF output

60 70 80 90 100 110 120 130 140
7.45

7.5

7.55

7.6

7.65

7.7

Ti

P4
5

identified model output
STKF output

 
Figure 7: Comparison of Identified Linear Model Outputs 

and STKF Outputs 
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Figure 8: Comparison of Different Forgetting Factor 

Values 

Fault Classification & Fusion Results 

Figure 9 shows the fused classification result of a 
simulated 4% Compressor Efficiency Loss introduced at time 
95, where figure (a) shows the fused classification results and 
(b) the fused confidence level. The classification result is 
weighted based on the classification confidence for different 
fault severity levels to produce continuous output values as 
shown in Figure 9 (a). The fusion algorithms implemented is 
based on Dempster-Shafer Theory [19]. 
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 (b) Fused Confidence Level 

Figure 9: Fused Classification Result and Confidence Level 

Automated Fault Contingency Planning 

The AFCP module was implemented as a Finite State 
Machine in StateflowTM. The purpose of this AFCP 
implementation is straightforward; given state awareness (i.e. 
faults, mission, mode/regime) what can be accomplished 
autonomously to best fulfill a set of objective functions (i.e. 
complete the mission, survive, etc.). The flight regimes used in 
demonstration are take off/descent, cruise, and attack 
maneuvers, while missions can be sortie, transport and 
surveillance. As a demonstration case, three control laws, 
namely performance control, damage protecting control and 
thrust control, were developed. The decision making regarding 
control law change is made based on consideration of engine 
health condition, operating mode, mission requirements, flight 
regime and command & control orders. Snapshots of part of the 
Stateflow implementation of the AFCP control mode decision 
making module and the automatic switching of control laws is 
shown in Figure 10 for illustration.  

To test the performance of the AFCP module, a fault 
scenario was simulated as described in Table 1 below. 
Simulation Results are shown in Figure 11, where at time 87, 
the control law was switched to damage protecting control 
(lowering N1 setpoint value to reduce further damage), and at 
time 103 (with a delay due to the transient), the control low 
was switched to thrust control as shown in see Figure 11 (a). 
Figure 11 (b), (c) and (d) shows the commanded N1 value, 
thrust estimation and N1 estimation respectively. Interestingly, 
the same thrust level was obtained with a lower N1 speed with 
thrust control. 
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(a) Mapping of component level health information to 
engine level 

 

 
(b) Control decision making 

Figure 10: Stateflow TM Based FCM Implementation 

 

Table 1. AFCP Simulated Fault Scenario 

Simulation Time Simulated Fault 

[85 – 135] 3% Combustor Efficiency Loss 

[95 – 135] 4% Compressor Efficiency Loss 

[95 – 135] 3% Compressor Flow Capacity 
Loss 

 
 

 
(a) AFCP Control Strategy Decision  
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      (b) N1 Command Reference Signal 
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 (c) Thrust Estimation  
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Figure 11: AFCP Simulation Results 

 
EMBEDDED SYSTEM DEVELOPMENT 

To raise the technological readiness level of the presented 
techniques, an embedded system was developed to perform 
Kalman filtering and System Identification.  The PC104 system 
was used due to its small size and expandable capability. 
Running Linux, it is capable of establishing TCP/IP 
connections, receiving data, performing operations on that data, 
and sending it back to the host.  Two blocks were developed in 
Simulink for sending and receiving data to the PC104.  Each 
time the Simulink model is run, a connection is established 
with the PC104 and data is sent and received at 25Hz. The 
hardware setup was shown in Figure 12. 

 
Figure 12: Embedded System Development & Testing 

Hardware Setup 

The Kalman filter and the System ID algorithms were 
programmed in C and compiled for the PC104 platform. The 
testing results showed that the real-time recursive SID 
algorithm could track 72 parameters (the A and B matrix of the 
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engine state space model) in less than 15 ms, allowing the 
algorithm to run as high as 66Hz on a 100MHz CPU with 32M 
bytes flash memory.   

CONCLUSIONS AND FUTURE WORK 

This paper reports the first phase of the D2S system 
development process. Impact Technologies has developed and 
demonstrated a suite of innovative Dynamic Decision Support 
prototype software modules for real-time assessment of system 
health and fault contingency planning for potential application 
on JSF or Navy unmanned platforms systems. The proof-of-
concept demonstration provides insight into the problems 
Impact is trying to address using the D2S system. The program 
successfully demonstrates the ability to merge health 
monitoring and controls in a flexible, adaptable and scalable 
architecture. The dynamic modeling capabilities, techniques 
and tools sets will not only improve the reliability of the 
propulsion systems, but also greatly enhance maintenance 
decision support and contingency planning concepts.  

The logical next step in this development is to expand the 
D2S system to cover other engine components and accessories. 
Impact is working closely with Engine OEMs, to formulate a 
strategy for focusing the future efforts towards integrating the 
D2S system with modular control systems. The next phase of 
the program will accomplish the following objectives: 

1. Identify critical propulsion and power system faults that 
require detection, prognosis and contingency management 
in a target engine. 

2. Implement the modular, flexible and scalable architecture 
to create an on-board propulsion D2S system with health 
management and intelligent control capabilities.  

3. Develop and implement advanced adaptive control 
strategies using the model identified online in real-time. 
Model predictive control is an area to be further 
investigated. 

4. Develop algorithms to predict the achievable performance 
of the degraded system based on the model identified. 

5. The combination of Kalman Filtering and classification 
methods will be further developed. A potential 
improvement is to use the classifier output as an a priori 
heath estimation for the Kalman Filter to improve the 
health parameter estimation accuracy. 

6. Continue the embedded system development toward the 
goal of producing the envisioned product, which is a 
aircraft-embeddable real-time, modular software system 
that can be integrated with the FADEC and off-wing 
avionics hardware to provide real-time fault 
accommodation functionality to propulsion systems. 

NOMENCLATURE 

AFCP = Automated Fault Contingency Planning 
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COTS = Commercial off-the-shelf 
EFK = Extended Kalman Filter 
FADEC = Full Authority Digital Engine Controller  
JSF = Joint Strike Fighter 
N1 = Fan Rotor Speed, RPM 
N2 = Compressor Rotor Speed, RPM 
PHM = Prognostic and Health Management 
PLA = Power Level Angle 
SID = System Identification 
STKF = Self Tuning Kalman Filter 
V&V = Verification & Validation 
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