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Necessary and sufficient conditions for the commutativity of linear time-varying systems are
derived in the case of nonzero initial conditions. It is shown that some commutative class of
linear time-varying systems may not commute with arbitrary initial conditions. In this respect,
commutativity of Euler differential systems is investigated. Explicit commutativity conditions
for the fifth-order systems are solved. New results about the effects of commutativity on system
sensitivity and disturbance properties are presented, which is very important for network design
and industrial applications where many of the systems are composed of subsystems cooperating
one after another in a chain. The results are supported by examples treated either analytically or
numerically.

1. Introduction

When two linear time-varying single-input single-output dynamical systems A and B are
connected in cascade (or series), the input-output relation of the combined system depends
on the parameters of both systems and on which appears first. If both of the connections AB
and BA have the same input-output pairs irrespective of the applied input, then we say that
these systems are commutative systems; in this case AB and BA are equivalent, that is, AB =
BA.

Most of the industrial processes and network designs contain subsystems or
subnetworks which are arranged in a cascaded fashion or in a chain, which can be called
a serial composition as well. If the change of the order of any two subunits in this chain does
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not affect the input-output relation of the whole system while it is creating some advantages
on the sensitivity, stability, disturbance or noise, or other similar properties, the use of the
optimum sequence is inevitable. Therefore, the study of the commutativity conditions is very
important from theoretical and as well as practical point of views. And, this paper is aimed
at closing the gap in the theory on the related topic.

An exhaustive study of the commutativity of the linear time-varying dynamical sys-
tems which can be referred as differential systems, due to their mathematical representations
given in Section 2, was introduced in 1988 by the author [1]. This work has been the basic
reference for years since it includes the most general necessary and sufficient commutativity
conditions for systems of any order but without initial conditions. All the previous results
concerning the commutativity conditions were shown to be deduced from the main theorem
in that paper. Namely, those for the first-order [2], second-order [3–5], third-order [6], and
fourth-order [7, 8] systems.

In addition to the deductions of the commutativity conditions for low-order systems,
the main reference [1] covers some general results in the form of corollaries or theorems
of minor importance. For example, Corollary 3.2 states that for the commutativity of two
linear systems it is required that either both systems are time-invariant or both systems
are time-varying, which is a result originally stated by Marshall [2]. Corollary 3.3 states
the commutativity of identical time-varying systems with arbitrary time-invariant forward
and feedback path gains, which is originally proved by the author himself for second-
order systems [5]. Theorem 5.1 deals with the unconditional commutativity property of
Euler Systems in the light of the stated general necessary and sufficient conditions, which
is originally treated in the undistributed report [7] and presented in a national conference
[8].

Although the exhaustive study [1] included all the previous results reported until
its publication, it was not claimed to be the completion of the research on the subject. On
the contrary, it forecasted open questions on the commutativity conditions for systems with
initial conditions and on the role of the system performance characteristics such as noise,
sensitivity, and disturbance, in the cascade connected control or communication networks.
Later, some new results on these subjects have appeared in the national [9] and international
[10, 11] conference proceedings.

The commutativity conditions with nonzero initial conditions were derived in [9, 10].
It was shown that two initially relaxed commutative systems may not be commutative when
they have nonzero initial conditions; further, commutativity with arbitrary initial conditions
requires additional constraints on the coefficients of the differential equations describing the
systems. The importance of commutativity as far as the system sensitivity is concerned was
reported in [9, 11]. It was shown that for the same input-output relation, one system could be
much less sensitive to system parameters than the other if the subsystems are commuted.

Although the above results are important from both theoretical and application point
of views, it is believed that they have not been widely and sufficiently announced at least
in an international journal paper. This is due to time limitations of the presentations in the
conferences and page limitations in their proceedings which always sound less than journals.
Further, some errors in the mentioned literature of major importance but minor reflection
need to be corrected. Therefore, the scope of this paper is confined mainly on the explicit
commutativity conditions for linear time-varying differential systems with nonzero initial
conditions and the effects of commutativity on the system sensitivity. Further, the analytic
solution of explicit commutativity conditions for the fifth-order systems is introduced in the
literature for the first time. Another original point is the derivation of explicit commutativity
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conditions for Euler systems which are always commutative without initial conditions.
Commutativity of time-invariant linear systems with nonzero initial conditions is also
studied as another particular case. Further, new results are obtained for the commutativity of
feedback systems with nonzero initial conditions.

This paper, as a survey or a tutorial on the commutativity with nonzero initial
conditions, is mainly aimed at presenting the above-mentioned original items of theoretical
values andmoreover to highlight the importance of commutativity on industrial applications
or engineering designs where most of the subsystems are connected in cascade or in a chain.

The rest of the paper is organized as follows: in the following section, the
problem of commutativity is defined and for the sake of completeness the main results
previously obtained in [1] are summarized as Theorem 2.1 without proof. In Section 3, the
commutativity conditions for systems with initial conditions are introduced by Theorem 3.1;
some results of minor importance in the above-mentioned literature are correctly stated.
Particular results including feedback systems are presented. Section 4 includes the explicit
solution of the commutativity conditions for the fifth-order systems. Examples showing the
roles of commutativity on system disturbance and system sensitivity to parameter values are
presented in Section 6 to show the practical importance of the results. Finally the last section
is devoted to conclusions.

2. First Commutativity Conditions

Let the two linear time-varying dynamical systems A and B be represented by nth order
linear differential equations with variable coefficients ai(t), bi(t), i = 1, 2, . . . , n, respectively,
as follows:

A:
n∑

i=0

ai(t)
di

dti
y1(t) = x1(t), an(t)/= 0, (2.1a)

B:
n∑

i=0

bi(t)
di

dti
y2(t) = x2(t), (2.1b)

where ai(·) and bi(·) are piecewise continuous mappings from R into Rwhich is the real line;
xi and yi are the input and output of the systems A (i = 1) and B (i = 2). It is assumed
that xi(·) : R → R is also piecewise continuous. Although an(t)/= 0, that is, A is always
assumed an nth order dynamical system, (n ≥ 1) it is allowed that bi(t) = 0 for i = n, n −
1, . . . , m ≥ 0, whilst bm(t)/= 0, which means B is an mth order system; m is assumed to be
equal to n unless otherwise stated. It is well known [12] that both systems and hence their
interconnections described in the sequel have unique solutions under the cited conditions
about the coefficients ai(t) and bi(t) unless an(t0)/= 0 and bm(t0)/= 0, where t0 is the initial
time, which is a fact that will not be emphasized in this paper anymore.

For the cascade connection AB shown in Figure 1(a), the output y1(t) of A is equal to
the input x2(t) of B; so that letting y1(t) = x2(t) and replacing (2.1b) into (2.1a), the following
differential equation is obtained

n∑

k=0

ak(t)
m∑

i=0

dk

dtk

[
bi(t)y(i)(t)

]
= x(t), (2.2)
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Figure 1: Cascade connection of the differential systems described by (2.1a) and (2.1b).

where x(t) = x1(t) and y(t) = y2(t) are the input and output of the cascaded system AB,
respectively; the superscript in the parenthesis denotes ith derivative. Note that B is assumed
of degree m ≤ n. Performing the kth derivative on the product bi(t)yi(t) and rearranging,
(2.2) reduces to the following (n +m)th order differential equation describing AB:

n+m∑

r=0

⎡

⎣
n∑

i=max(0,r−m)

min(i,i+m−r)∑

k=max(0,i−r)

i!
k!(i − k)!

aib
(k)
r+k−i

⎤

⎦y(r) = x. (2.3a)

For the connection BA shown in Figure 1(b), the input x(t) = x2(t), y2(t) = x1(t), the
output y(t) = y1(t), and a similar equation to (2.3a) are obtained with the replacements of n,
m, a, b bym, n, b, a, respectively. The result is

m+n∑

r=0

⎡

⎣
m∑

i=max(0,r−n)

min(i,i+n−r)∑

k=max(0,i−r)

i!
k!(i − k)!

bia
(k)
r+k−i

⎤

⎦y(r) = x. (2.3b)

When the two differential equations in (2.3a), (2.3b) are identical except at a finite
number of points in every finite subinterval of R (these may be the discontinuity points of
the coefficients ai(t) and bi(t) and their derivatives), the connections AB and BA will have
the same output y for the same input x if the initial conditions for subsystems A and B are
zero. When the coefficients of the derivatives of the same orders are equated, the necessary
and sufficient conditions expressed by the following theorem can be obtained [1].

Theorem 2.1 (Koksal 1). The necessary and sufficient conditions for a linear time-varying system of
order n (System A) to be commutative with another linear time-varying system of the same or lower
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order (System B), in the case of zero initial conditions, are that

(i) the coefficients of the differential equation describing the second system must be expressed
in terms of the coefficients of the differential equation describing the first system through
n + 1 equations

bi =
i∑

j=n

cifi,j , i = n, n − 1, . . . , 0 (2.4a)

involving (n + 1) properly chosen constants cn, cn−1, . . . , c0, where

fi,j = fi,j
(
an, an−1, . . . , an+i−j

)
,

fi,j = ai, for j = n, i = n, n − 1, . . . , 0,

fi,j = ai/n
i , for j = i = n − 1, n − 2, . . . , 0, n ≥ 1,

fi,j =
1
n
ai/n
n

∫
a
−(i+n)/n
n

⎡

⎣
j∑

k=i+1

min(k,k−i+1)∑

s=max(1,k−n+2)

k!
s!(k − s)!

a
(s)
n+i+s−k−1fk,j

−
n∑

k=max(i+1,n+i−j)

k+j−n−i+1∑

s=max(1,k−n+2)

k!
s!(k − s)!

a
(s)
k f

(s)
n+i+s−k−1,j

⎤

⎦dt,

for j = n − 1, n − 2, . . . , 1, i = j − 1, j − 2, . . . , 0, n ≥ 2;

(2.4b)

(ii) further, with the same constants ci’s, the coefficients of the first system must satisfy (n − 1)
nonlinear algebraic equations

1∑

j=n−1
Fi,jcj = 0, for i = n − 1, n − 2, . . . , 1, (2.5a)

which involve the derivatives of the coefficients as well due to the expression

Fi,j =
n∑

k=max(1,i−j)

min(k,k−i+j+1)∑

s=max(1,k−i+1)

k!
s!(k − s)!

akf
(s)
i+s−k−1,j

−
j∑

k=1

k∑

s=max(1,k−i+1)

k!
s!(k − s)!

fk,ja
(s)
i+s−k−1 for i, j = n − 1, n − 2, . . . , 0.

(2.5b)

Although this theorem is apparently stated and originally proved for n = m, that is,
for the commutativity of equal order systems, it should be remarked that it can easily be
reduced for the case m < n by simply choosing cn, cn−1, . . . , cm+1 = 0, which results with
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bn = bn−1 = · · · = bm+1 = 0. Hence, it is valid for systems of any order. Another remark to be
noted is that a decreasing order indexing is used for convenience in all of the subscripts and
summations in (2.4a) and (2.5a) in accordance with the order of computations from simple
to complex; this order corresponds to the decreasing order of derivatives and coefficients in
the original equations (2.1a), (2.1b).

The above theorem expresses the necessary and sufficient conditions for systems A
and B in the case of zero initial conditions for the differential systems in (2.1a), (2.1b).
Although the initial clue for the proof is given above, the full proof is exhaustive and given
in [1] which also discusses the consequences of the theorem. Therefore, it is not included in
this paper. Instead, the case of nonzero initial conditions is considered next.

3. Second Commutativity Conditions

Let the systems in (2.1a), (2.1b) be commutative when they are initially relaxed, that is, they
satisfy the conditions of Theorem 2.1. Consider now the nonzero initial conditions expressed
by

YA =
[
y
(0)
1 y

(1)
1 · · ·y(m−1)

1

...y(m)
1 y

(m−1)
1 · · · y(n−1)

1

]T
=

[
YA1

YA2

]
, (3.1a)

YB =
[
y
(0)
2 y

(1)
2 · · · y(m−1)

2

]T
, (3.1b)

where YA1 and YA2 express the vector of the first m and the remaining n-m initial values of
y1(t) and it is derivatives according to the partitioning in (3.1a). With these initial conditions,
the commutativity requirements are expressed by the following theorem.

Theorem 3.1 (Koksal 2). The necessary and sufficient conditions for the commutativity of two linear
time-varying systems A and B which are described by the differential equations in (2.1a) and (2.1b),
and with the initial conditions in (3.1a) and (3.1b), respectively, are

(i) the conditions of Theorem 2.1 on the coefficients (2.4a), (2.5a) be satisfied,

(ii) the initial conditions satisfy the following at the initial time t0:

(n)

(m)

[
YA

A−1
2 (YB −A1YA)

]
=

[
YB

B−1
2 (YA − B1YB)

] (m)

(n)
(3.2a)

or equivalently,

(n) (m) (n) (m)
⎧
⎨

⎩
(n)

(m)

[
I 0

−A−1
2 A1 A−1

2

]
−

(m)

(n)

[
0 I

B−1
2 −B−1

2 B1

]⎫⎬

⎭

[
YA

YB

]
= [0],

(3.2b)

where the matrices A1, A2, B1, B2 are defined in the proof (see (3.8a)–(3.8d)).
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Proof. Having satisfied the conditions of Theorem 2.1, the differential equations in (2.3a) and
(2.3b) will have the same coefficients. For the same input, they will have identical solutions
if their initial conditions are also equal.

For the connection AB, y = y2, and for BA, y = y1; hence to have the same initial
conditions for y in (2.3a) and (2.3b),

y(k) = y
(k)
1 = yk

2 ; for k = 0, 1, . . . , n +m − 1 (3.3)

must be satisfied at the initial time t = t0. On the other hand, using x2 = y1 for AB and x1 = y2

for BA in (2.1b) and (2.1a),

y1 =
m∑

j=0

bjy
(j)
2 , (3.4a)

y2 =
n∑

j=0

ajy
(j)
1 (3.4b)

are obtained for the connections AB and BA, respectively. Using the formula

dk

dtk
(uv) =

k∑

s=0

k!
s!(k − s)!

u(s)v(k−s), (3.5)

the kth derivative of a product

y
(k)
1 =

m∑

j=0

k∑

s=0

k!
s!(k − s)!

b
(s)
j y

(i+k−s)
2 , k = 0, 1, . . . , n − 1,

y
(k)
2 =

n∑

j=0

k∑

s=0

k!
s!(k − s)!

a
(s)
j y

(j+k−s)
1 , k = 0, 1, . . . , m − 1

(3.6)

can be obtained from (3.4a) and (3.4b), respectively.
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The last two equations can be written in matrix form as

B1YB + B2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y
(m)
2

y
(m+1)
2

...

y
(n+m−1)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= YA, (3.7a)

A1YA +A2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y
(n)
1

y
(n+1)
1

...

y
(n+m−1)
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= YB, (3.7b)

where the entries a′
ij(a

′′
ij , b

′
ij , b

′′
ij) of the coefficient matrix A1(A2, B1, B2) are defined by

a′
ij =

i−1∑

s=max(0,i−j)

(i − 1)!
s!(i − 1 − s)!

a
(s)
j−i+s, for i = 1, 2, . . . , m, j = 1, 2, . . . , n, (3.8a)

a′′
ij =

i−j∑

s=0

(i − 1)!
s!(i − 1 − s)!

a
(s)
j−i+m+s, for i = 1, 2, . . . , m, j = 1, 2, . . . , i,

= 0, for i = 1, 2, . . . , m − 1, j = i + 1, i + 2, . . . , m,

(3.8b)

b′ij =
i−1∑

s=max(0,i−j)

(i − 1)!
s!(i − 1 − s)!

b
(s)
j−i+s, for i = 1, 2, . . . , n, j = 1, 2, . . . , m, (3.8c)

b′′ij =
i−j∑

s=max(0,i−j−m)

(i − 1)!
s!(i − 1 − s)!

b
(s)
j−i+m+s, for i = 1, 2, . . . , n, j = 1, 2, . . . , i,

= 0, for i = 1, 2, . . . , n − 1, j = i + 1, i + 2, . . . , n.

(3.8d)

The above expressions for the entries of the coefficient matrices in (3.7a), (3.7b) imply that
A1, A2, B1, B2 are matrices of orders m × n, m × m, n × m, n × n, respectively. Further, the
square matrices A2 and B2 are lower triangular matrices with nonzero diagonal elements
an(t0) and bm(t0), respectively; therefore, they have well-defined inverses. Hence, y(k)

1 for
k = n, n+ 1, . . . , n+m− 1 can be computed from (3.7b), and y

(k)
2 for k = m,m+ 1, . . . , m+n− 1

can be computed from (3.7a). If these computed values are inserted in (3.3), this equation can
be rearranged in matrix from as in (3.2a) or equivalently (3.2b).

The linear time varying systems A and B are commutative for all inputs if and only
if (1) AB and BA are described by identical differential equations and (2) this differential
equation has the same initial conditions for AB and BA at the initial time t0. Hence, in addition
to the conditions of Theorem 2.1, the conditions obtained in (3.2a), (3.2b) for the equivalent
initial conditions of (2.3a) and (2.3b) constitute the necessary and sufficient conditions of
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the commutatitivity of the systems A and B. Equation (2.3b) must be satisfied by the initial
conditions of A and B. Hence this completes the proof.

This theorem is stated improperly in the present literature [9, 10], which formulated
that the second condition above as the coefficient matrix in (3.2b) be identically zero, which
is an impossible situation unless m = 0 and system B is an identity.

We now consider the consequences of Theorem 3.1 in the form of corollaries. First
consider the commutativity of A and B for all arbitrary initial conditions. This is a case which
we call absolute commutativity. Even the first condition about the coefficients is satisfied, the
commutativity for all arbitrary initial conditions is not possible ifm ≥ 1. This is obvious from
the first block of m equations in (3.2a). If m = 0, (3.2a), (3.2b) imply that (I − B−1

2 )YA = 0;
that is, B2 = I for the commutativity of all initial conditions. Equation (3.8d) gives that B2 =
diag[b0 b0 · · · b0]; hence b0 = 1, which means that system B is an identity. This result can
be expressed by the following corollary.

Corollary 3.2 (Absolute Commutativity). There are no time-varying dynamical systems which are
absolutely commutative at any time t0. The only absolutely commutative system of a time-varying
system of order n ≥ 1 is the identity. Note that the corollary holds for time-invariant systems as well.

When the case of the special values of the initial conditions is considered for A and B
at a particular initial time t0 (conditional commutativity), the firstm rows and the remaining
n rows of (3.2b) can be expressed as follows:

YB = YA1, (3.9a)
(m) (n −m) (m) (n −m)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(n −m)

(m)

⎡
⎢⎢⎢⎣

0
... I

· · ·
−A−1

2 A1

⎤
⎥⎥⎥⎦
− B−1

2 +

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎣

0

A−1
2

⎤
⎥⎦ + B−1

2 B1

...

...

...

0

⎤
⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

YA = 0.
(3.9b)

Corollary 3.3 (Conditional Commutativity). If the systems A and B of Theorem 3.1 are commuta-
tive with zero initial conditions, the necessary and sufficient conditions for their commutativity under
nonzero initial conditions at time t0 as well are

(i) the first m initial values of A expressed in (3.1a)must be identical with those of B expressed
in (3.1b);

(ii) the initial condition vector of A, that is, YA in (3.1a) must be in the null space of the value
of the coefficient matrix in (3.9b) at the initial time to t0.

Corollary 3.4 (Conditional Commutativity of Systems of Equal Orders). If A and B are
commutative systems with the same order n, for their commutativity with nonzero initial conditions
at the initial time t0, it is necessary and sufficient that both of these systems must have the same initial
condition vectors YA = YB in the null space of n × n matrix

A−1
2 (I −A1) − B−1

2 (I − B1) (3.10)

at t = t0.

This corollary follows from (3.9a), (3.9b)withm = n.
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4. Reduction for Special Cases

4.1. Time-Invariant Systems with Nonzero Initial Conditions

If the coefficients of linear systems in (2.1a) and (2.1b) are constant, A and B become time-
invariant. Since time-invariant linear systems with zero initial conditions are commutative,
they commute [1]. Although primitive, this can be proved by considering the Laplace
transform of (2.1a) and (2.1b)with zero initial conditions and showing that AB and BA have
the same transfer function H(s)

Y (s)
X(s)

= H(s) =
1

(∑n
i=1 aisi

)(∑m
i=1 bis

i
) , (4.1)

where Y (s) and X(s) are the Laplace Transforms of the input x(t) and the output y(t) of
the connections AB and BA. An alternate way would be to show that the conditions of
Theorem 2.1 are satisfied. This necessitates the reduction of the formulas in (2.4a), (2.4b) and
(2.5a), (2.5b) for constant ai’s. Since the fact to be shown is obvious from the above discussion,
this approach is omitted.

The commutativity of time-invariant systems with nonzero initial conditions, however
is not straightforward. In this case, Corollaries 3.3 and 3.4 are valid for all initial times t0,
which is due to the time invariance of the coefficients. For the last reason, the expressions in
(3.8a)–(3.8d) for the entries of the coefficient matrices in (3.2a), (3.2b), (3.7a), (3.7b), (3.9a),
(3.9b) simplify to

a′
ij = aj−i, for i = 1, 2, . . . , m, j = i, i + 1, . . . , n,

a′′
ij = am−j−i, for i = 1, 2, . . . , m, j = 1, 2, . . . , i,

b′ij = bj−i, for i = 1, 2, . . . , n, j = i, i + 1, . . . , m,

b′′ij = bm+j−i, for i = 1, 2, . . . , n, j = max(1, i −m), . . . , i.

(4.2)

All the other entries of A1, A2, B1, B2 which are not defined above are zero. Therefore, in
addition to the lower triangular matrices A2 and B2, A1 and B1 become upper triangular
(trapezoidal if m < n).

4.2. Euler Systems with Nonzero Initial Conditions

It is well known that linear time-varying systems described by Euler-type differential
equations [13] are always commutative when the initial conditions are zero [1, 7, 8]. A
detailed proof in [1] is given based on the impulse response representations of the individual
systems as well as that of the interconnection. That paper also shows that the cascade
connection of any two Euler systems is another Euler system, and further, all the commutative
pairs of an Euler system are of the same type, that is, Euler-type. Although the proof can be
done by showing that any Euler system A of order n and another one B of the same or lower
order satisfy the conditions of Theorem 2.1, the attempt here will be directly to the case of
initial conditions.
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It is shown by a simple example in [10] that the commutativity of Euler systems with
arbitrary nonzero initial conditions is not straightforward as in the case of time-invariant
systems. Here in the following, the problem is treated on a general base as an application of
the results obtained in the previous section.

The differential systems A and B described by (2.1a) and (2.1b), respectively, become
Euler-type systems if the time-varying coefficients are set to

ai(t) = Ait
i, i = 0, 1, . . . , n,

bi(t) = Bit
i, i = 0, 1, . . . , m.

(4.3)

Using the formula for the sth derivative of the kth power, that is,

ds

dts
tk =

⎧
⎪⎨

⎪⎩

k!
(k − s)!

tk−s, for s = 0, 1, . . . , k,

0, for s > k,
(4.4)

all the previous results about the commutativity of Euler systems with nonzero initial
conditions, in particular Theorem 3.1, Corollaries 3.3 and 3.4, can be derived with slight
modifications. Since an(0) = 0, bm(0) = 0 only for t = 0, the initial time t0 can be any real
number except 0. The mentioned modifications are on the expressions in (3.8a)–(3.8d) for the
entries of the coefficient matricesA1,A2, B1, B2 which are used in the statement of the theorem
and its mentioned corollaries. The Euler systems (3.8a)–(3.8d) reduce to the following:

a′
ij = tj−i

i−1∑

s=0

(i − 1)!
s!(i − 1 − s)!

(
j − i + s

)
!

(
j − i

)
!

Aj−i+s, for i = 1, 2, . . . , m, j = i, i + 1, . . . , n, (4.5a)

a′′
ij = tj−i+m

i−j∑

s=0

(i − 1)!
s!(i − 1 − s)!

(
j − i +m + s

)
!

(
j − i +m

)
!

Aj−i+m+s, for i = 1, 2, . . . , m, j = 1, 2, . . . , i,

(4.5b)

b′ij = tj−i
i−1∑

s=0

(i − 1)!
s!(i − 1 − s)!

(
j − i + s

)
!

(
j − i

)
!

Bj−i+s, for i = 1, 2, . . . , m, j = i, i + 1, . . . , m, (4.5c)

b′′ij = tj−i+m
i−j∑

s=0

(i − 1)!
s!(i − 1 − s)!

(
j − i +m + s

)
!

(
j − i +m

)
!

Bj−i+m+s,

for i = 1, 2, . . . , n, j = max(1, i −m), . . . , i.

(4.5d)

Note that the entries a′
ij , a

′′
ij , b

′
ij , b

′′
ij of the matricesA1,A2, B1, B2 of ordersm×n,m×m, n×n,

n×m, which are not defined in (4.5a),(4.5b), (4.5c), (4.5d), respectively, are all zero. Hence as
in the time-invariant case, A1 and B1 are upper triangular.

Examples to explicit forms of the coefficient matrices used to express the constraints
on the initial conditions for commutativity will be given in Section 6.
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σA

SαA

x1
+

−

x y y1∑

A:

αB S

σB

x2
+

−

x y y2∑

B:

Figure 2: Feedback systems obtained from S by constant forward and feedback path gains.

4.3. Feedback Systems

Due to their importance in automatic control theory, commutativity of feedback systems is
expressed by a corollary.

Corollary 4.1. Any two versions A and B of a linear time-varying system S simply obtained by
constant forward and feedback path gains αA and σA, αB and σB, respectively, are commutative with
any set of initial conditions of S if and only if

αA(σA − 1) = αB(σB − 1), (4.6)

where αA,αB /= 0

Proof. Let the system S be described by

S: sn
dn

dtn
y + sn−1

dn−1

dtn−1
y + · · · + s1

d

dt
y + s0y = x. (4.7)

Then the feedback systems A and B shown in Figure 2 are described by (2.1a) and (2.1b),
respectively, with

ai =
si
αA

for i = n, n − 1, . . . , 1, a0 =
s0
αA

+ σA,

bi =
si
αB

for i = n, n − 1, . . . , 1, b0 =
s0
αB

+ σB.

(4.8)
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Since these coefficients can be related as in (2.4a) with

cn =
αA

αB
, c0 = σB − αA

αB
σA, (4.9a)

ci = 0, for i = n − 1, n − 2, . . . , 1 (4.9b)

and (2.5a) is satisfied due to (4.9b), conditions of Theorem 2.1 are satisfied. Hence, A and B
are always commutative with zero initial conditions.

For the case of nonzero initial conditions, first note that y1 = y2 = y so that A and B
have the same initial conditions as S; so Corollary 3.4 is satisfied with YA = YB = YS. Then
express bi’s in terms of ai’s by using (4.8) and (4.9a), (4.9b) as follows:

bi = cnai =
αA

αB
ai, i = n, n − 1, . . . , 1,

b0 = cna0 + c0 =
αA

αB
a0 +

(
σB − αA

αB
σA

)
.

(4.10)

Using these expressions in (3.8c), (3.8d) to evaluate the coefficient matrices B1, B2 appearing
in (3.10), the following results are obtained:

B1 =
αA

αB
A1 + c0I, B2 =

αA

αB
A2. (4.11)

Finally inserting these expressions in (3.10),

[
1 − σA +

αB

αA
(σB − 1)

]
A−1

2 (4.12)

is obtained. Since A2 is nonsingular and αA /= 0, αB /= 0, the common initial condition vector
can be arbitrary chosen if the scalar coefficient of A−1

2 in (4.12) is zero; that is,

αA(σA − 1) = αB(σB − 1). (4.13)

Otherwise, A and B cannot commute with any nonzero initial conditions; hence this
completes the proof.

5. Explicit Formulas for the Fifth-Order Systems

The explicit commutativity conditions are important from two points of views. The first is
the ease for the applicability of the use of the commutativity conditions stated in Theorems
2.1 and 3.1. The second is their contribution on the development of the commutativity theory.
In fact, the starting point of the commutativity theory considered in the sense of this paper
is the explicit commutativity conditions suggested by Marshall for the first-order systems
[2]. Later the explicit commutativity conditions for second-order systems [3–5] and those
for third-order systems [6] constituted the base of the general commutativity conditions
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originally presented in [6]. Later the explicit conditions of commutativity for forth-order
systems appeared in the undistributed work [7] and presented in [8]. All of these results
were summarized in the main reference [1].

Here as in the following theorem, the explicit commutativity conditions for fifth-order
linear time-varying systems are presented for the first time.

Theorem 5.1 (Koksal 3). The necessary and sufficient conditions for a fifth-order linear time-varying
system of order n (System A) to be commutative with another linear time-varying system of the fifth-
or lower-order (System B), in the case of zero initial conditions, are that

(i) the coefficients of the differential equation describing the second system must be expressed
in terms of the coefficients of the differential equation describing the first system through 6
equations

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b5

b4

b3

b2

b1

b0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a5 0 0 0 0 0

a4 a4/5
5 0 0 0 0

a3 f34 a3/5
5 0 0 0

a2 f24 f23 a2/5
5 0 0

a1 f14 f13 f12 a1/5
5 0

a0 f04 f03 f02 f01 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c5

c4

c3

c2

c1

c0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.1a)

involving 6 properly chosen constants c5, c4, c3, c2, c1, c0, where

f34 =
2
5
a−1/5
5 (2a4 − ȧ5), f12 =

1
5
a−3/5
5 (2a4 − 3ȧ5),

f23 =
3
5
a−2/5
5 (a4 − ȧ5), f01 =

1
5
a−4/5
5 (a4 − 2ȧ5),

f24 =
2
5
a−1/5
5 (2a3 − ȧ4) +

1
25

a−6/5
5

(
−2a2

4 + 4a4ȧ5 + 3(ȧ5)2
)
,

f13 =
1
5
a−2/5
5 (3a3 − 3ȧ4 − ä5) +

3
25

a−7/5
5

(
−a2

4 + 3a4ȧ5

)
,

f02 =
1
5
a−3/5
5 (2a3 − 3ȧ4 + 2ä5) +

3
25

a−8/5
5

(
−a2

4 + 4a4ȧ5 − 2(ȧ5)2
)
,

f14 =
1
5
a−1/5
5 (4a2 − 2ȧ3 +

...
a5) +

2
25

a−6/5
5 (−2a3a4 + 3a3ȧ5 + 2a4ȧ4 + ȧ4ȧ5 − 6ȧ5ä5)

+
1
125

a−11/25
5

(
4a3

4 − 18a2
4ȧ5 − 4ȧ4a

2
5 + 33(ȧ5)3

)
,

f03 =
1
5
a−2/5
5 (3a2 − 3ȧ3 + ä4 +

...
a5) +

7
25

a−12/5
5

(
a3
4 − 6a2

4ȧ5 + 5a4(ȧ5)2 + 6(ȧ5)3
)

+
1
125

a−7/25
5 (−6a3a4 + 12a3ȧ5 + 9a4ȧ4 − 4a4ä5 − 7ȧ4ȧ5 − 14ȧ5ä5),
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f04 =
1
25

a−1/5
5

(
20a1 − 10ȧ2 + 5

...
a4 − 4 ¨̈a5

)

+
1
125

a−6/5
5

(
− 20a2a4 + 40a2ȧ5 − 10a2

3 + 30a3ȧ4 + 20ȧ3a4 − 10a3ä5 − 10ȧ3ȧ5

+40a4ä4 − 20a4
...
a5 + 35(ȧ4)2 − 55ȧ4ä5 − 45ä4ȧ5 + 46ȧ5

...
a5 + 42(ä5)2

)

+
1
625

a−11/5
5

(
60a3a

2
4 − 240a3a4ȧ5 + 90a3(ȧ5)2 − 90a2

4ȧ4 + 20a2
4ä5

−140a4ȧ4ȧ5 + 440a4ȧ5ä5 + 385ȧ4(ȧ5)2 − 594(ȧ5)2ä5

)

+
11
3125

a−16/5
5

(
−5a4

4 + 40a3
4ȧ5 − 40a2

4(ȧ5)2 − 160a4(ȧ5)3 + 114(ȧ5)4
)
;

(5.1b)

(ii) further, with the same constants ci’s, the coefficients of the first system must satisfy 4
nonlinear algebraic equations

⎡
⎢⎢⎢⎢⎢⎣

F44 F43 F42 F41

F34 F33 F32 F31

F24 F23 F22 F21

F14 F13 F12 F11

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

c4

c3

c2

c1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎦
, (5.2a)

where

Fi,j =
n∑

k=max(1,i−j)

min(k,k−i+j+1)∑

s=max(1,k−i+1)

k!
s!(k − s)!

akf
(s)
i+s−k−1,j

−
j∑

k=1

k∑

s=max(1,k−i+1)

k!
s!(k − s)!

fk,ja
(s)
i+s−k−1 for i, j = 4, 3, 2, 1, 0.

(5.2b)

Proof. When the general conditions of Theorem 2.1 are applied for the commutativity of fifth-
order systems, (5.1a) results simply as the matrix form of (2.4a) for n = 5. The explicit
solutions given in (5.1b) are obtained by evaluating the integrals in (2.4b) with n = 5, for
each fij successively in the order given in (5.1b). However, it is very exhaustive to derive the
explicit expressions for fij given in this equation. The derivation details are wearying and too
lengthy to include in the proof, though they involve an attentive treatment of the ordinary
integration methods. But the verification is straight foreword by inserting them in (2.4b) for
n = 5. Finally (5.2a), (5.2b) follows as the direct result of the second condition (2.5a), (2.5b)
of Theorem 2.1 for n = 5 and it is included for the sake of completeness of the theorem.

The above equations in (5.1b) explicitly represent the coefficients bi‘s of the same or
lower order commutative systems in terms of the coefficients ai‘s of a fifth-order system.
Using these equations in (3.8a)–(3.8d) and inserting the results in (3.2a), (3.2b), (3.7a),
(3.7b), (3.9a), (3.9b), the commutativity conditions for systems with initial conditions are
also expressed explicitly. Although it appears that these explicit results are inevitably lengthy,
(5.1a), (5.1b) and all the subsequent equations obtained from them greatly simplify if some
of the coefficients ai’s are constant or completely zero.
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Another remark about shortening all the apparent results (not only for fifth-order
systems) obtained in this paper is the assumption an(t) = 1; that is, the normalization of the
coefficients ai’s dividing by an(t). In this case, all the derivatives of an(t) will be zero, and all
its integer or fractional powers will be 1. But this is experienced complicating the expressions
for the derivatives of the remaining coefficients due to the existence of the denominator term
generated by normalization.

6. Effects of Commutativity on System Sensitivity and Disturbance

The importance of commutativity for system sensitivity was first reported by the author
[9, 11]. It was shown that when the order of connections of a second-order system and its
first-order commutative pair was changed, the impulse response and hence the input-output
transfer characteristics could be much more stable to parameter changes in one case than the
other. This fact is very important in systems which use cascade connection of subsystems,
which is usually the case in most of the telecommunication, control, and other practical
applications. The effect of noise or disturbance interfering at an intermediate stage of a system
may also depend on the order of connections of the subsystems. Therefore, the convenient
order must be preferred when cascading the systems which need to be commutative to
function the same input-output relation.

To illustrate the use of the derived formulas for the commutativity of fifth-order
systems, the first example is chosen accordingly for the study of sensitivity and disturbance
in conjunction with the commutativity.

Example 6.1. Let A be a fifth-order system described by

d5

dt5
y1 + t

d4

dt4
y1 + y1 = x1. (6.1)

Consider the search for the fifth- or lower-order commutative pairs of A. Computing fi,j ’s
expressed in (5.1b) and inserting them in (5.1a), the following matrix equation is obtained
for the fifth- or lower-order commutative systems B:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b5

b4

b3

b2

b1

b0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

t 1 0 0 0 0

0
4t
5

1 0 0 0

0
−(10 + 2t2

)

25
3t
5

1 0 0

0

(
20t + 4t3

)

125
−(15 + 3t2

)

25
2t
2t

1 0

1

(
175 − 90t2 − 11t4

)

625

(
7t3 + 9t

)

125
−(15 + 3t2

)

25
t

5
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c5

c4

c3

c2

c1

c0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.2)
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In view of (5.2a), (5.2b), the second commutativity condition of Theorem 2.1 implies

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F44 F43 F42
4t
5

F34 F33
−6t
25

0

F24
42t
125

0 0

−264t
125

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

c4

c3

c2

c1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎦
, (6.3)

where Fi,j ’s are computed using (2.5b). Note that the entries above the second cross diagonal
are not computed since they are not needed to arrive the conclusion that c4 = c3 = c2 = c1 = 0.
With this information, all the commutative pairs of A are described by

c5

[
d5

dt5
y2 + t

d4

dt4
y2 + y2

]
+ c0y2 = x2. (6.4)

Since cn−1 = cn−2 = · · · = c1 = 0, this case is obviously a special application of Corollary 3 in
[1]. In fact, system B described by (6.4) has a block-diagram representation shown in Figure 3;
that is, B is obtained from A by an arbitrary forward and feedback path gains 1/c5 and c0,
respectively.

Consider now the commutativity with nonzero initial conditions. For the system A in
(6.1) and the system B in (6.4), m = n = 5 and Corollary 3.3 necessitates A and B have the
same initial conditions in the null space of

c5(c0 + c5 − 1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

−t 1 0 0 0

t2 − 2 −t 1 0 0

−t3 + 3t t2 − 1 −t 1 0

t4 − 4t2 + 2 −t3 + 2t t2 − 1 −t 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.5)

which is the coefficient matrix in (3.9b).
Obviously, the null space is empty for all initial times unless c0+c5 = 1, and for c0+c5 =

1, A and B are commutative for any set of initial conditions.
The above conclusions are verified by Simulink. The results are plotted in Figure 4.

In this figure, the curve I shows the equal responses of AB and BA to a unit step for c0 = 3,
c5 = 0.2 with zero initial conditions. For curves II-AB and BA, equal nonzero initial conditions
(yi(0) = −1, ẏi(0) = 2, i = 1, 2, all others are zero) are used with the same values of input and
c0, c5; obviously A and B are not commutative since c0+c5 /= 1. In Figure 4(b), I shows the step
response of both AB and BAwith the equal initial conditions when c0 = 0.75, c5 = 0.25, that is,
c0 + c5 = 1; hence the commutativity conditions hold. When the same coefficients but unequal
initial conditions are used (ẏ1(0) is changed to 1), AB and BA yield different responses as
shown by the curves II-AB, BA.

To show the sensitivities of AB and BA to parameter values and initial conditions,
consider the commutative case yi(0) = −1, ẏi(0) = 0.2, i = 1, 2, c0 = 0.75, c5 = 0.25 for which
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1/c5

c0

x2 +

−

x y1 y2
∑

d5

dt5
y1 + t

d4

dt4
y1 = x1A:

A:
B:

Figure 3: The only commutative class of systems of A considered in Example 6.1.

the unit step response was shown in Figure 4(b) (I). If the commutativity condition is spoiled
slightly by changing y1(0) to −1.2, then the responses of AB and BA change as shown in
Figure 4(c) by the curves I-AB, BA. Obviously, the connection AB is much more sensitive
to y1(0) than BA. On the other hand, when c0 is reduced to 0.60, then AB and BA give the
responses shown in Figure 4(c) by II-AB, BA; AB is still more sensitive than BA for this case.

To test the disturbance by an external noise, a unit step is injected in to the connection
between A and B when both systems are initially relaxed and unforced with c0 = 0.75, c5 =
0.25. Under the same conditions, a saw-tooth wave with period 0.2 and ranging from –18.5
to 20 is applied as the second disturbance. The results are shown in Figure 4(d) by the curves
I-AB, BA and II-AB, BA, respectively. Comparing the results with the zero response, it is seen
that the output of AB is much more effected than that of BA by both of the disturbances.

Example 6.2. Consider the second-order time-invariant linear systems

A: ÿ1 − y1 = x1,

B: 2ÿ2 + b1ẏ2 + b0y2 = x2,
(6.6)

where A is chosen unstable to emphasize on the effects of commutativity on sensitivity and
disturbance. For the commutativity of these systems with nonzero initial conditions as well,
Corollary 3.4 requires

YA =

[
y1(0)

ẏ1(0)

]
= YB =

[
y2(0)

ẏ2(0)

]
, (6.7)

[
1.5 + 0.5b0 0.5b1

0.25b1(1 − b0) 1.5 + 0.5b0 − 0.25b21

][
y1(0)

ẏ1(0)

]
=

[
0

0

]
. (6.8)

The coefficient matrix in (6.8) is the one given in (3.10) and obtained from it by using formulas
in (4.2) for the given systems in this example. To have commutativity with nonzero initial
conditions, it is necessary that this coefficient matrix must be singular which is achieved if

b1 = ∓
√
2(1.5 + 0.5b0). (6.9)
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0 1 2 3 4 5 6
−10
−5

0

5

10

15

20

25

30

II-AB

II-BA

I-AB, BA

(a)

0 1 2 3 4 5 6
−6

−4

−2

0

2

4

6

II-AB

I-AB, BA

II-BA

(b)

0 1 2 3 4 5 6
−15

−10

−5

0

II-AB

II-BA

I-BA

I-AB

(c)

0 1 2 3 4 5 6
−5

0

5

10

15

II-AB

I-BA

II-BA

I-AB

(d)

Figure 4: Simulation results for Example 6.1.

Further, (6.8) requires

(1.5 + 0.5b0)y1(0) + 0.5b1ẏ1(0) = 0. (6.10)

Obviously, if b0 = 3, then b1 = 0 and the systems are commutative for any set of equal initial
conditions; that is, y1(0) = y2(0) and ẏ1(0) = ẏ2(0) can be chosen arbitrarily. If b0 /= − 3, using
(6.9), (6.10) is reduced to

ẏ1(0) = ±
√
2y1(0). (6.11)

It is important to note that all of these commutativity results can be equally obtained
by taking the Laplace transform of (6.6) with the general nonzero initial conditions for both
systems A and B; and then computing and equating the s-domain input-output relations for
the connections AB and BA. The result is

YAB =
X +

(
2y1

)
s3 +

(
b1y1 + 2ẏ1

)
s2 +

(
2y2 + b0y1 + b1ẏ1

)
s +

(
b1y2 + b0ẏ1 + 2ẏ2

)

(s − 1)(s + 1)(2s2 + b1s + b0)
, (6.12)
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YBA =
X +

(
2y2

)
s3 +

(
b1y2 + 2ẏ2

)
s2 +

(
y1 − 2y2

)
s +

(
ẏ1 − 2ẏ2 − b1y2

)

(s − 1)(s + 1)(2s2 + b1s + b0)
, (6.13)

where y1, y2, ẏ1, ẏ2 represent the initial values at time t0 = 0. Equating the appropriate
coefficients of YAB and YBA, results equivalent to the commutativity conditions in (6.7), (6.8)
are obtained. However, this elementary process is not valid for time varying systems for
which Laplace transform can apply only under specific conditions, and it is not as systematic
and easily applicable as given in this paper for higher-order time-invariant systems.

The simulation results for the case b0 = −3, b1 = 0 with a unit step input are shown in
Figure 5(a). For yi(0) = 1 and ẏi(0) = −1, i = 1, 2, both connections yield the response I which
is coincident with the plot of the analytic result

y(t) =
1
3

[
1 − 1.5et − 4.5e−t +

(
4 − 2

√
1.5

)
e
√
1.5t +

(
4 + 2

√
1.5

)
e−

√
1.5t

]
(6.14)

computed from (6.12) or (6.13) by setting X = 1/s and inserting the given numerical values
in; for yi(0) = −1 and ẏi(0) = 1, the responses for AB and BA are still equal as noted by
II; when b1 is changed to –2.5 in case II, the commutativity condition in (6.9) is spoiled and
different responses are obtained as indicated by III-AB and III-BA for AB and BA. Further
results are shown in Figure 5 for the case b0 /= − 3; with b0 = 9, (6.9) implies b1 = ∓6√2; and
with b1 = 6

√
2, (6.11) implies ẏ1(0) = −√2y1(0). For yi(0) = 1 and ẏi(0) = −√2, i = 1, 2, it can

be shown by using (6.12) or (6.13) that an input

x(t) = 2
(√

2 − 1
)
sin t (6.15)

cancels the pole in (6.12), (6.13) at s = 1, and hence it prevents unboundedness and produces
an output

y(t) =
11 + 6

√
2

49
e−t +

[
4110 − 432

√
2

5929
+
15
√
2 − 4
77

t

]
e−1.5

√
2t +

√
2 − 1
121

(12 cos t − 7 sin t).

(6.16)

This analytical solution is shown in Figure 5(b) by I; in the same figure, II indicates the equal
outputs of both AB and BA obtained by Simulink. A slight difference originates from the
deficiency of Simulink due to the particular case in concern, that is, exact pole cancellation
cannot be achieved numerically, so that simulation results get unbounded as t → ∞. To test
the sensitivity to the initial conditions, yi(0) is changed to 1.01; the result is that the output of
BA blows up almost two times before that of AB, as seen from the curves III-AB and III-BA
in Figure 5(b), respectively; hence BA is more sensitive then AB to yi(0). In Figure 5(c), the
responses to 10 sin(10t) are compared for AB and BA; I is obtained for AB and BA with the
same commutativity conditions valid for Figure 5(b) (I and II); II-AB and II-BA are obtained
for AB and BA when b0 is increased from 6

√
2 to 10. Obviously, AB is almost insensitive to

this change and BA is still more sensitive then AB. To show the disturbance effects, under the
zero input conditions of the case in Figure 5(b) (I, II), a step of magnitude of 0.1 is injected
at time t = 1 between A and B. The output without disturbance (I-AB, BA) and the output
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Figure 5: Simulation and analytical results for Example 6.2.

with disturbance (II-AB, II-BA) are shown in Figure 5(d); obviously, AB is almost insensitive
to this disturbance and BA is much more affected then AB.

Example 6.3. This example is preciously chosen so that the systems are both time varying and
they have analytic solutions. A is defined as

A: ÿ1 + 2tẏ1 + t2y1 = x1. (6.17a)

The coefficients of this system satisfy the first set of commutativity conditions expressed by
(2.5a), and with (2.4a) all of its commutative pairs are expressed by

B: c2ÿ2 + (2c2t + c1)ẏ2 +
(
c2t

2 + c1t + c0
)
y2 = x2. (6.17b)
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Figure 6: Simulation and analytical results for Example 6.3.

Further, if A and B are required to be commutative with nonzero initial conditions as well,
Corollary 3.3 requires

[
y1

ẏ1

]
=

[
y2

ẏ2

]
, (6.18a)

1
c22

[
c2c1t + c22 − c2 + c2c0 c2c1

−3c2c1t2 −
(
2c22 + c21 − 2c2

)
t + c1(1 + c2 − c0) −3c1c2t + c22 − c21 − c2 + c2c0

][
y1

ẏ1

]
= 0,

(6.18b)

at the initial time t = t0. For the commutativity with nonzero initial conditions, the coefficient
matrix in (6.18b) must be singular, that is, its determinant must be zero and this is achieved
if and only if

c2 + c0 − 1 = ∓
√
2c1. (6.19a)
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With this condition, (6.18b) implies the relation

ẏ1(t0) = −
(
t0 ∓

√
2
)
y1(t0) (6.19b)

between equal initial conditions of systems A and B, so that they are commutative in case of
nonzero initial conditions as well.

For the analytic solution of differential equations describing systems A and B, these
equations are first written in state-space form, then the successive decomposition method is
used to decompose the state-coefficient A-matrix [13, 14]. A second decomposition is used
to evaluate the state transition matrix φ(t, τ) [15]. Knowing the state transition matrices, the
general solutions with arbitrary initial conditions at t0 = 0 are obtained for systems A and B
by the usual methods. The computed results are expressed for c2 = 1 as

y1(t) = e−0.5t
2

[
y1(0) cosh t + ẏ1(0) sinh t +

∫ t

0
e0.5τ

2
sinh(t − τ)x1(τ)dτ

]
,

y2(t) =
1
b
e−0.5t

2−0.5c1t
[
y2(0)(b cosh bt + 0.5c1 sinh bt) + ẏ2(0) sinh bt

+
∫ t

0
e0.5τ

2+0.5c1τ sinh b(t − τ)x2(τ)dτ

]
,

(6.20)

where b = +
√
1 − c0 + 0.25c21. Obviously both systems are strongly stable due to the terms

−0.5t2 in the exponents.
Using the input-output relations for the connections AB and BA depicted in Figure 1,

the analytic solutions are obtained for any input x(t) and any set of initial conditions. The
derivation details and the results are not given here for space limitations. Comparison of the
like terms in the solutions reveals that the responses with zero initial conditions are equal.
Further, to have equivalence with nonzero initial conditions, it is verified that (6.19a), (6.19b)
must hold, and A and B must have identical initial conditions satisfying (6.19b).

The simulation results and some analytical solutions for the example are shown in
Figure 6. In this figure, equal initial conditions are used for A and B in all cases; it is set that
c2 = 1, c1 = 4

√
2, c0 = 8 as to satisfy the commutativity conditions. In Figure 6(a), the input

is 100 sin t; I is for y1(0) = 1, ẏ1(0) = −√2 so that (6.19b) is satisfied; hence AB and BA give
the same response. However, when ẏ1(0) is set to 0, then (6.19b) is spoiled and AB and BA
give different responses as shown by the curves II-AB and II-BA. Observe that the connection
BA is more sensitive to this change than AB. In Figure 6(b), the input is a square wave of
magnitude 100 and period 1, y1(0) = −2, ẏ1(0) = 2

√
2; since all the commutativity conditions

hold AB, and BA yield the same responses I-AB, BA; however, when the coefficient c1 in
(6.17b) is omitted, the first commutativity condition gets violated and the connections give
different responses indicated by II-AB and II-BA. To see the disturbance (or noise) effects,
the input is set to 10, y1(0) = −2, ẏ1(0) = 2

√
2. Commutativity conditions hold and both

connections yield the response shown in Figure 6(c) by the curve I-AB, BA. But when a saw
tooth disturbance signal (with period 0.5, maximum and minimum values ±50) is injected
between the connections, BA is much more affected than AB as the responses II-AB and II-
BA show. Finally in Figure 6(d), the curve I shows the output (scale 100 : 1) of AB and BA
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with zero input and equal initial conditions y1(0) = y2(0) = 8, ẏ1(0) = ẏ2(0) = −8√2; the
results for AB, BA, and the analytic solution

y(t) = e−0.5t
2
[
4 cosh t − 3

√
2 sinh t + e−2

√
2t
(
4 cosh t + 3

√
2 sinh t

)]
(6.21a)

are all coincident. When ẏ2(0) is increased by an amount of ε, the deviations ΔyAB and ΔyBA

analytically expressed by

ΔyAB = εe−0.5t
2−2√2t sinh t (6.21b)

ΔyBA =
ε

8
e−0.5t

2
[
−
√
2 cosh t + 2 sinh t + e−2

√
2t
(√

2 cosh t − 2 sinh t
)]

(6.21c)

and the simulation results are plotted for ε = 1 (curves II-AB, II-BA). Analytical and
simulation results are checked to be coincident. Obviously, the connection BA is more
sensitive than AB to the initial condition relevant to the derivative.

7. Conclusions

Commutativity conditions of two linear time-varying systems with nonzero initial conditions
are thoroughly investigated in this paper. The derived conditions can be used to test the
commutativity without solving the differential equations describing the system. Although
equivalent conditions can be obtained in another way comparing the analytic solutions of the
interconnections, very few classes of time-varying systems have explicit analytic solutions
only. Therefore, the method of finding explicit solutions is not general and easily applicable
as the method presented in this paper since it does not require finding the analytic solutions.
This method can be used for all linear time varying systems as well.

The explicit commutativity conditions for fifth-order systems are obtained by an
enormous effort and presented in this paper. Moreover, the commutativity is studied in view
of system sensitivity and disturbance; it is shown that for commutative pairs, one order of
connection might be more advantages than the other, which is an important fact from the
applications point of view.

Most of the results are verified by examples treated analytically and/or by Simulink.
It is seen that the analytical solutions and the results of Simulink are almost same with an
exception where there is a perfect pole cancellation which cannot be achieved numerically by
Simulink.
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