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a single verified report whereby breeding 
or radiation and/or chemical mutagenesis 
resulted in a toxin, allergen or other hazard 
that was not known to exist before. These 
facts support the conclusion that DNA 
insertions and other types of mutations 
do not pose unreasonable risks to the 
environment or to human and animal 
health, regardless of how they came about.
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Broad consent in biobanking
To the Editor:
The Feature in the February issue by Scott  
et al.1 on the policy challenges of biobanking 
characterizes broad specimen donor 
informed consent as “ethically contentious.” 
A survey of public attitudes is cited. This 
same survey found that a significant 
percentage of individuals are prepared “to 
consent broadly to future research use and to 
forego additional choices as a result”2.

With our perspectives in patient advocacy 
or at research centers aimed at bringing new 
regenerative therapies to patients, we have 
consistently emphasized the value of research 
donors’ perspectives. In the context of 
protocols for creating immortalized cell lines 
for banking and distribution, we have also 
witnessed support for broad consent. Indeed, 
enthusiasm is even more pronounced among 
those touched by disease, and patient donors 
actually express concern that study-specific 

consent can be burdensome and impede 
research.

This experience suggests to us that broad 
consent is ethically responsible, provided 
there is comprehensive oversight and a robust 
informed consent process. With the continued 
support of donors, we look forward to 
applying this model in biobanking efforts.
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An accelerated workflow for 
untargeted metabolomics using the 
METLIN database
To the Editor:
Metabolites, which are typically recognized as 
small molecules that are involved in cellular 
reactions, provide a functional signature 
of phenotype that is complementary to the 
upstream biochemical information obtained 

from genes, transcripts and proteins. The 
high correlation between metabolites and 
phenotype has created a surge of interest in 
the field that is reflected in the number of 
metabolomic publications growing from just 
a few articles in 1999 to over 5,000 in 2011. 
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Although relatively new compared with 
its genomic and proteomic predecessors, 
research in the field of metabolomics has 
already led to the discovery of biomarkers for 
disease, fundamental insights into cellular 
biochemistry and clues related to disease 
pathogenesis1,2.

The success of metabolomics over the 
past decade has relied largely on advances in 
mass spectrometry instrumentation, which 
make it possible to detect thousands of 
metabolites simultaneously from a biological 
sample. Coupled with developments in 
bioinformatic tools such as XCMS Online 
(https://xcmsonline.scripps.edu/)3, it 
has now become relatively routine to 
comprehensively compare the intensities of 
thousands of metabolite peaks in one sample 
group to those in another in an untargeted 
manner. This approach, called untargeted 
metabolomics, has the potential to implicate 
unexpected pathways with a unique 
phenotype or disease process.

Despite the attractiveness of having a 
comprehensive and unbiased approach 
for profiling metabolites that is analogous 
to those used in the other ‘omic’ sciences, 
an overwhelming proportion of the 
metabolomic community exclusively uses a 
targeted platform in which only a specified 
list of metabolites is measured. The benefit 
of such a targeted platform is speed. Unlike 
the untargeted platform, after the targeted 
mass spectrometry methods are established, 
minimal effort and resources are required 
to profile these specific metabolites over a 
large number of samples. In contrast, the 
major bottleneck of untargeted metabolomics 
has been the challenge of determining 
the identities of the peaks found to be 
dysregulated in the untargeted profiling data.

Traditionally, the untargeted 
metabolomic platform involves multiple 
steps (Fig. 1). The first step is acquiring 
global mass spectrometry data for each of 
the samples. Next, these data are analyzed 
using bioinformatic software that performs 
quantitative analyses to find peaks that 
are significantly different between sample 
groups. The investigator then typically 
searches the mass-to-charge (m/z) ratios of 
the peaks of interest manually in metabolite 
databases. Searches that return hits within 
the mass accuracy of the instrument are 
considered to be putative identifications. 
To confirm the identifications, tandem 
mass spectrometry (MS/MS) data from the 
research sample are then compared to the 
MS/MS data of a commercial standard. To 
obtain the MS/MS data, a targeted MS/MS  
analysis is typically performed on one of 
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database that has advanced functionality 
to automate metabolite identification and 
reduce the labor-intensive bottleneck that has 
traditionally been associated with untargeted 
metabolite profiling. Instead of manually 
comparing the MS/MS data from research 
samples to the MS/MS data of commercial 
standards, the new version of METLIN 
allows metabolomic investigators to upload 
their MS/MS data to the METLIN database 
so the comparisons can be performed in an 
automated way. By using automated MS/
MS data matching, metabolite identities 
can be confirmed much more efficiently 
and quickly compared with the traditional 
untargeted metabolomic workflow. The 
quality of the match between the MS/MS data 
from the research sample and the MS/MS 

data from the METLIN library is measured 
by a newly introduced METLIN scoring 
system, which is based on a modified version 
of the established X-Rank scoring system9. To 
evaluate the correlation of METLIN MS/MS  
data to MS/MS data acquired using different 
instrument platforms, we performed a 
comparative experiment was performed 
using 23 metabolite standards. The 
compounds were measured on five different 
instruments, and the resulting spectra were 
matched against the METLIN database. 
Based on the modified X-Rank scoring 
system, the correct result was returned as the 
first hit for 90 out of the 101 spectra (89.1%; 
Supplementary Table 1 and Supplementary 
Figs 1–27).

the research samples for which the peak 
was determined to be upregulated. The 
fragmentation pattern of the MS/MS data 
is then manually compared with that of the 
MS/MS data from a commercial standard 
(however, not all commercial standards, for 
example, stereoisomers, can be resolved by 
MS/MS data alone).

To facilitate identification of metabolites 
in the untargeted workflow, we launched a 
freely accessible metabolite database called 
METLIN4 in 2004 (http://metlin.scripps.edu/) 
that incorporates MS/MS data from model 
compounds. Recently, other metabolite 
databases such as the Human Metabolome 
Database (HMDB)5, MassBank6 and 
LipidMaps7 have also begun incorporating 
MS/MS data for standard compounds. These 
repositories allow investigators to compare 
MS/MS data from their research samples 
to MS/MS data from model compounds 
catalogued in the database and thereby 
improve the speed, efficiency and cost 
effectiveness of untargeted studies.

Over the past 7 years, our objective has 
been to generate a sufficiently large MS/MS 
data library that can be used in an automated 
manner to revise the traditional untargeted 
metabolomic workflow (Fig. 1). Since we 
originally reported the establishment of 
METLIN in 2005, we have increased the 
number of MS/MS spectra that are included 
in the database by a factor of 150. As of 
April 2012, METLIN contains MS/MS data 
on >10,000 distinct metabolites at four 
different collision energies. These data were 
collected using an electrospray ionization/
quadrupole time-of-flight (ESI-QTOF) 
mass spectrometer in both the positive and 
negative detection modes, representing a 
total number of >48,000 high-resolution 
spectra. To estimate the current coverage 

of physiologically relevant metabolites in 
METLIN and the other three largest databases 
available (HMDB, MassBank and LipidMaps), 
metabolites were isolated from Escherichia 
coli and standard human serum using defined 
protocols8. Samples were analyzed in both 
the positive and negative modes with an ESI-
QTOF mass spectrometer (Supplementary 
Methods). Each peak detected (excluding 
isotopes) was searched in each of the four 
databases. Figure 2 shows the number of hits 
for each database and also the subset of the 
hits for which MS/MS data were available to 
confirm the metabolite identification.

In addition to its increased size, here 
we describe a new version of the METLIN 
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Figure 1  Schematic representation of the traditional metabolomic workflow involving six steps 
and the new METLIN-based workflow with only two steps. In the two-step autonomous workflow, 
mass spectrometry (MS) and MS/MS data are acquired simultaneously during profiling and 
searched in the METLIN database for automated identification, thereby reducing the time of the 
workflow from days or weeks to minutes or hours.

Figure 2  Estimate of the physiological relevance of metabolite coverage in metabolomic databases. 
Metabolites from human serum and E. coli were isolated and analyzed in both the positive and negative 
modes by ESI-QTOF mass spectrometry, and the mass of each metabolite was searched with a tolerance 
of 5 parts per million in the METLIN, LipidMaps, HMDB and MassBank databases. LipidMaps contains 
data primarily on lipids, which is only a subset of the metabolome, but was included in the comparison 
for the sake of completeness. For human serum, 12,170 features were detected and searched, and for 
E. coli, 11,641 features were detected and searched. The number of hits on the basis of accurate mass 
are shown in light blue and light red for E. coli and human serum, respectively. The subset of those 
hits that also contained MS/MS data are shown in dark blue and dark red for E. coli and human serum, 
respectively.
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Some classes of metabolites produce 
characteristic fragments or neutral losses 
in their MS/MS spectra that can be used as 
signatures for unique chemical functional 
groups. For example, the MS/MS spectra 
of phosphatidylcholines are characterized 
by a fragment at m/z 184.07. For instances 
in which the MS/MS data uploaded by a 
user do not match any compound in the 
database, the new version of the METLIN 
database will search the MS/MS data for 
characteristic fragments that can be used 
for molecular classification. The search can 
also be performed manually by accessing 
the ‘fragment search’ or ‘neutral loss 
search’ options. These tools provide a new 
mechanism by which unknown metabolites 
can be chemically classified, and they take 
advantage of the large amount of MS/MS data 
in the library.

To highlight the new database 
functionalities, we performed MS/MS on 
select peaks from the metabolite extracts of 
E. coli and human serum. These data were 
uploaded to the METLIN database, and 
fragment matching was performed using 
the automated feature described above. 
Representative examples of metabolites 
identified on the basis of the mass 
spectrometry and MS/MS  data using this 
method are shown in Supplementary Figures 
28–32. The compounds identified ranged 
from lipids to smaller, polar metabolites. 
Additionally, representative examples of 
unknown compounds that were classified by 
characteristic fragments are also shown.

With the combination of the METLIN 
functionalities described here and the 
increasing speed of QTOF instrumentation 
for performing MS/MS, there is the potential 
to reduce the untargeted metabolomic 
workflow to just two steps (Fig. 1). Using 
high–scan-speed QTOF instruments, 
mass spectrometry and MS/MS data can 
be acquired simultaneously in a single 
run. Quantitative information can then 
be extracted from the data using the 
bioinformatic software XCMS Online, and 
metabolites can be identified simultaneously 
by matching the MS/MS data with MS/MS  
data in the METLIN database in an 
automated fashion, an approach that is self-
directed or autonomous in nature. 

With this truncated workflow, the time 
needed to perform untargeted profiling and 
the subsequent metabolite identification 
may be reduced to minutes or hours as 
compared to the days or weeks needed with 
the traditional workflow. The results shown 
here from automated MS/MS matching 
highlight the applicability of the method for 

performing high-throughput, untargeted 
metabolomics using this type of accelerated 
workflow. Moreover, we have shown that the 
coverage of the METLIN database enables 
the characterization and identification 
of thousands of naturally occurring 
metabolites in biological samples. Thus, the 
new METLIN database has the potential 
to expedite the workflow for untargeted 
metabolomics as more investigators obtain 
mass spectrometry instrumentation that 
can produce high-quality MS/MS data with 
increasing speed and sensitivity.

Note: Supplementary information is available at http://
www.nature.com/doifinder/10.1038/nbt.2348.
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Successful suppression of a field 
mosquito population by sustained 
release of engineered male 
mosquitoes
To the Editor:
Our paper published last year described the 
results of preliminary release experiments 
showing that engineered 
sterile male mosquitoes 
could mate with females 
in a wild population in 
the Cayman Islands1. This 
trial was supported by 
simple simulation models 
indicating that sustained 
release of sufficient numbers 
of such males should 
substantially suppress a 
target population within 
a few weeks or months2–4. 
In the following letter, we 
describe a field release 
experiment testing this proposition.

The sterile insect technique is an 
environmentally friendly, species-specific 
method of pest control that is used to 

successfully control several agricultural 
pest insects5. Large numbers of sterile 
insects are released to mate with their wild 

counterparts and thereby 
reduce their reproductive 
potential. However, 
despite its attractive 
features, this technique 
is not in operational use 
against mosquitoes, in 
part because of damaging 
effects of sterilizing doses 
of radiation on the released 
mosquitoes6–8. Following a 
similar principle, we have 
proposed that engineered 
males carrying a dominant 
lethal transgene could 

be released to mate with wild females; the 
resulting progeny would die as a result of the 
lethal effect of the transgene. We named this 
system RIDL (release of insects carrying a 
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