
An Introduction to String Re-Writing Kernel
Fan Bu1, Hang Li2 and Xiaoyan Zhu3

1,3State Key Laboratory of Intelligent Technology and Systems
1,3Tsinghua National Laboratory for Information Sci. and Tech.
1,3Department of Computer Sci. and Tech., Tsinghua University

2Huawei Noah’s Ark Lab, Hong Kong
1bufan0000@gmail.com

2hangli.hl@huawei.com
3zxy-dcs@tsinghua.edu.cn

Abstract

Learning for sentence re-writing is a fundamental
task in natural language processing and informa-
tion retrieval. In this paper, we propose a new
class of kernel functions, referred to as string re-
writing kernel, to address the problem. A string
re-writing kernel measures the similarity between
two pairs of strings. It can capture the lexical and
structural similarity between sentence pairs without
the need of constructing syntactic trees. We fur-
ther propose an instance of string re-writing ker-
nel which can be computed efficiently. Experi-
mental results on benchmark datasets show that
our method can achieve comparable results with
state-of-the-art methods on two sentence re-writing
learning tasks: paraphrase identification and recog-
nizing textual entailment.

1 Introduction
Learning for sentence re-writing is a fundamental task in nat-
ural language processing and information retrieval, which in-
cludes paraphrasing, textual entailment and transformation
between query and document title in search.

The key question here is how to represent the re-writing of
sentences. In previous research on sentence re-writing learn-
ing such as paraphrase identification and recognizing tex-
tual entailment, most representations are based on the lex-
icons [Zhang and Patrick, 2005; Lintean and Rus, 2011;
de Marneffe et al., 2006] or the syntactic trees [Das and
Smith, 2009; Heilman and Smith, 2010] of the sentence pairs.

Motivated by previous work on paraphrase generation [Lin
and Pantel, 2001; Barzilay and Lee, 2003], we represent a re-
writing of sentence by all possible re-writing rules that can
be applied into it. For example, in Fig. 1, (A) is one re-
writing rule that can be applied into the sentence re-writing
(B). Specifically, we propose a new class of kernel functions,
called string re-writing kernel (SRK), which defines the sim-
ilarity between two re-writings (pairs) of strings as the inner
product between them in the feature space induced by all the
re-writing rules. SRK can capture the lexical and structural

 wrote . Shakespeare wrote Hamlet.

 * was written by . Hamlet was written by Shakespeare.

(B)
**

* *

(A)

Figure 1: Example of re-writing. (A) is a re-writing rule and
(B) is a re-writing of sentence.

similarity between re-writings of sentences and does not need
to parse the sentences to create the syntactic trees of them.

One challenge for using SRK lies in the high computational
cost of straightforwardly computing the kernel, because it in-
volves two re-writings of strings (i.e., four strings) and a large
number of re-writing rules . We are able to develop an in-
stance of SRK, referred to as kb-SRK, for which we can effi-
ciently count the number of applicable rewriting rules without
explicitly enumerating all of them and thus can drastically re-
duce the time complexity of computation.

Experimental results on benchmark datasets show that
SRK achieves comparable results with the state-of-the-art
methods in paraphrase identification and recognizing textual
entailment. Meanwhile, SRK is more flexible to the formula-
tions of sentences. For example, informally written sentences
such as long queries in search can be effectively handled.

2 Related Work
A variety of kernels defined on two strings were proposed
and applied to text classification and bioinformatics in previ-
ous work [Lodhi et al., 2002; Leslie et al., 2002; Leslie and
Kuang, 2004]. For kernels defined on two pairs of objects
(including strings), they were simply decomposed into the
products of kernels between individual objects using tensor
product [Basilico and Hofmann, 2004; Ben-Hur and Noble,
2005] or Cartesian product [Kashima et al., 2009]. In this
paper, we define the string re-wring kernel on two pairs of
strings, but we do not necessarily decompose the kernel.

In paraphrase identification, various types of features
such as bag-of-words feature, edit distance [Zhang and
Patrick, 2005], dissimilarity kernel [Lintean and Rus, 2011]
predicate-argument structure [Qiu et al., 2006], and tree edit
model (which is based on a tree kernel) [Heilman and Smith,
2010] were used to conduct the classification task. Among

the most successful methods, [Wan et al., 2006] enriched the
feature set by the BLEU metric and dependency relations.
[Das and Smith, 2009] utilized the quasi-synchronous gram-
mar formalism to incorporate lexical and syntactic features.
[Socher et al., 2011] proposed deep learning approaches on
paraphrase identification.

In recognizing textual entailment, [de Marneffe et al.,
2006] classified sentences pairs on the basis of word align-
ments. [MacCartney and Manning, 2008] used an inference
procedure based on natural logic and combined it with the
methods by [de Marneffe et al., 2006] to achieve a compar-
ative result. [Harmeling, 2007] and [Heilman and Smith,
2010] classified sequence pairs based on transformation on
syntactic trees. [Zanzotto et al., 2007] utilized a kernel
method on syntactic tree pairs [Moschitti and Zanzotto, 2007]
for the problem.

3 String Re-writing Kernel
We address sentence re-writing learning using a kernel
method. Following the literature of string kernel, we use
the terms “string” and “character” instead of “sentence” and
“word”.

Let Σ be the set of characters and Σ∗ be the set of strings.
Let wildcard domain D ⊆ Σ∗ be the set of strings which can
be replaced by wildcards.

Each training sample is a rewriting of strings and their re-
sponse

((s, t),y) ∈ (Σ∗×Σ
∗)×Y.

In this paper, we assume that Y = {±1}(e.g. paraphrase/non-
paraphrase) for simplicity. Our goal is to predict correct re-
sponse for a new string re-writing.

The string re-writing kernel measures the similarity be-
tween two string re-writings through the re-writing rules that
can be applied into them. Formally, given re-writing rule set
R and wildcard domain D, the string re-writing kernel (SRK)
is defined as

K((s1, t1),(s2, t2)) = 〈Φ(s1, t1),Φ(s2, t2)〉 (1)

where Φ(s, t) = (φr(s, t))r∈R and

φr(s, t) = nλ
i (2)

where n is the number of contiguous substring pairs of (s, t)
that re-writing rule r matches, i is the number of wildcards
in r, and λ ∈ (0,1] is a factor punishing the occurrence of
wildcard.

A re-writing rule is defined as a triple r = (βs,βt ,τ) where
βs,βt ∈ (Σ∪{∗})∗ denote source and target string patterns and
τ ⊆ ind∗(βs)× ind∗(βt) denotes the alignments between the
wildcards in the two string patterns. Here ind∗(β) denotes the
set of indexes of wildcards in β .

We say that a re-writing rule (βs,βt ,τ) matches a string pair
(s, t) if and only if string patterns βs and βt can be changed
into s and t respectively by substituting each wildcard in the
string patterns to an element in the wildcard domain D , and
the characters substituting βs[i] and βt [j] are same if there is
an alignment (i, j) ∈ τ .

For example, the re-writing rule in Fig. 1 (A) can be for-
mally written as r =(β s,β t,τ) where β s=(∗,wrote,∗), β t =

(∗,was,written,by,∗) and τ = {(1,5),(3,1)}. It matches
with the string pair in Fig. 1 (B).

String re-writing kernel is a class of kernels controlled by
re-writing rule set R and wildcard domain D. For example,
pairwise k-spectrum kernel (ps-SRK) citeLes:02 is SRK un-
der R = {(βs,βt ,τ)|βs,βt ∈ Σk,τ = /0} and any D. Pairwise k-
wildcard kernel (pw-SRK) [Leslie and Kuang, 2004] is SRK
under R = {(βs,βt ,τ)|βs,βt ∈ (Σ∪{∗})k,τ = /0} and D = Σ.
Both of them can be decomposed as the product of two ker-
nels defined separately on strings s1,s2 and t1, t2, and that is to
say that they do not consider the alignment relations between
the strings.

4 K-gram Bijective String Re-writing Kernel
Next we propose an instance of string re-writing kernel,
called the k-gram bijective string re-writing kernel (kb-SRK).
As will be seen, kb-SRK can be computed efficiently, al-
though it is defined on two pairs of strings and cannot be
decomposed.

4.1 Definition
The kb-SRK has the following properties:
• A wildcard can only substitute a single character, de-

noted as “?”.
• The two string patterns in a re-writing rule are of length

k.
• The alignment relation in a re-writing rule is bijective,

i.e., there is a one-to-one mapping between the wildcards
in the string patterns.

A kb-SRK is uniquely determined by the re-writing rule set
R and the wildcard domain D. Formally, the k-gram bijective
string re-writing kernel Kk is defined as a string re-writing
kernel under the re-writing rule set R = {(βs,βt ,τ)|βs,βt ∈
(Σ∪{?})k,τ is bijective} and the wildcard domain D = Σ.

Since each re-writing rule contains two string patterns of
length k and each wildcard can only substitute one character,
a re-writing rule can only match k-gram pairs in (s, t). We can
rewrite Eq. (2) as

φr(s, t) = ∑
αs∈k-grams(s)

∑
αt∈k-grams(t)

φ̄r(αs,αt) (3)

where φ̄r(αs,αt) = λ i if r(with i wildcards) matches (αs,αt),
otherwise φ̄r(αs,αt) = 0.

For ease of computation, we re-write kb-SRK as
Kk((s1, t1),(s2, t2))

= ∑
αs1 ∈ k-grams(s1)
αt1 ∈ k-grams(t1)

∑
αs2 ∈ k-grams(s2)
αt2 ∈ k-grams(t2)

K̄k((αs1 ,αt1),(αs2 ,αt2)) (4)

where K̄k = ∑
r∈R

φ̄r(αs1 ,αt1)φ̄r(αs2 ,αt2) (5)

4.2 Algorithm for Computing Kernel
A straightforward computation of kb-SRK would be in-
tractable. In this section, we will introduce an efficient al-
gorithm by example . A detailed explanation can be found
in [Bu et al., 2012]. We will first show how to compute K̄k
(Eq. 5) and then show how to get Kk from K̄k (Eq. 4).

α𝑠1 = abbccbb ; α𝑠2 = abcccdd;

α𝑡1 = cbcbbcb ; α𝑡2 = cbccdcd;

Figure 2: Example of two k-gram pairs.

α𝑠
D = (a, a), (b, b), (𝐛, 𝐜), (c, c), (c, c), (𝐛, 𝐝), (𝐛, 𝐝)

α𝑡
D = (c, c), (b, b), (c, c), (𝐛, 𝐜), (𝐛, 𝐝), (c, c), (𝐛, 𝐝)

Figure 3: The pair of double lists transformed from the two
k-gram pairs in Fig. 2. Non-identical doubles are in bold.

Computing K̄k

First, we transform the computation of re-writing rule match-
ing on k-gram pairs into the computation on re-writing rule
matching on pairs of double lists. For the two k-gram pairs
in Fig. 2 , we transform them into the pair of double lists in
Fig. 3. Specifically, double (a,a) is from the first positions of
αs1 and αs2 , double (b,b) is from the second positions of αs1
and αs2 , and so on. We require each re-writing rule for double
lists only consists of identical doubles (i.e. doubles consist of
the same characters) and wildcards. It can be shown that this
transformation establishes a one-to-one mapping from the set
of re-writing rules matching two k-gram pairs such as those in
Fig. 2 to the set of re-writing rules matching pairs of double
lists such as that in Fig. 3.

Now, we just need to compute the number of re-writing
rules matching the obtained pair of double lists. Instead
of enumerating all possible re-writing rules and checking
whether they can match the pair of double lists, we calculate
the number of possibilities of “generating” re-writing rules
from the pair of double lists, which can be carried out effi-
ciently. It is easy to see that the number of all generations de-
pends only on the number of times each double occurs. Thus,
we build a counting vector for each double list, as shown in
Fig 5.

In each generation, the identical doubles in the two double
lists αD

s and αD
t can be either or not substituted by an aligned

wildcard pair in the re-writing rule, and all the non-identical
doubles in αD

s and αD
t must be substituted by aligned wild-

card pairs (to ensure the one-to-one mapping). Next, we will
show how to compute K̄k of the example in Fig 5. For iden-
tical double (c,c), it can only be used to generate 0,1, and
2 pairs of aligned wildcards. When we use it to generate i
pairs of aligned wildcards, we select i times of (c,c) from
αD

s , i times of (c,c) from αD
t and try all possible align-

ments. Since each occurrence of a wildcard is penalized
by λ , (c,c) contributes (1+ 6λ 2 + 6λ 4). The situations are
similar for (a,a) and (b,b). For non-identical double (b,d),
since all occurrences of it must be substituted by wildcards,
we must use all of them, which results in 2!λ 4. The situa-
tion is similar for (b,c). Finally, by the rule of product, we
have Kk = (1)(1+λ 2)(λ 2)(2!λ 4)(1+6λ 2 +6λ 4). It can be
proved that this process can be carried out in O(k).

 a b *1 c a b ? c c ? ? (a,a) (b,b) ? (c,c) (c,c) ? ?

 c b c ? ? c ? (c,c) (b,b) (c,c) ? ? (c,c) ?
(A) (B)

Figure 4: For re-writing rule (A) matching both k-gram pairs
shown in Fig. 2, there is a corresponding re-writing rule (B)
matching the pair of double lists shown in Fig. 3.

 #Σ×Σ(α𝑠
D) = {(a, a): 1, (b, b): 1, (𝐛, 𝐜): 1, (𝐛, 𝐝): 2, (c, c): 2}

 #Σ×Σ(α𝑡
D) = {(a, a): 0, (b, b): 1, (𝐛, 𝐜): 1, (𝐛, 𝐝): 2, (c, c): 3}

Figure 5: Countering vectors #Σ×Σ(·) for the pair of double
lists shown in Fig. 3. Doubles not appearing in both αD

s and
αD

t are omitted.

Computing Kk

To compute Kk in Eq. 4, we need in principle enumerate all
possible combinations of αs1 , αs2 , αt1 , αt2 , compute K̄k and
sum them up. Therefore, a naive implementation Kk would
call K̄k for O(n4) times.

Fortunately, not all combinations are necessary to be con-
sidered. We prune the search space based on the following
two facts.

First, K̄k((αs1 ,αt1),(αs2 ,αt2)) = 0, if any non-identical
double appears different times in αD

s and αD
t , where αD

s and
αD

t are composed from αs1 , αs2 and αt1 , αt2 . This is because a
re-writing rule for double lists only consists of identical dou-
bles and wildcards and the wildcard alignment within it is
bijective. Therefore, we can group together those αD

s and
αD

t which have the same occurrences of non-identical dou-
bles and make enumeration inside each group.

Second, #Σ×Σ(α
D
s) and #Σ×Σ(α

D
t) provide sufficient statis-

tics for computing K̄k((αs1 ,αt1),(αs2 ,αt2)). That is to say,
we can enumerate αs1 , αs2 and store different #Σ×Σ(α

D
s) with

their counts. Then we can enumerate αt1 , αt2 and store dif-
ferent #Σ×Σ(α

D
t) with their counts and finally compute K̄k by

enumerating different #Σ×Σ(α
D
s) and #Σ×Σ(α

D
t).

With these two facts we design an algorithm which calls
K̄k for only O(n2) times for computing K̄k. It first enumerates
αs1 , αs2 and groups different #Σ×Σ(α

D
s) by their non-identical

double statistics. Then it does the same thing on αt1 and αt2 .
Finally, it enumerates different #Σ×Σ(α

D
s) and #Σ×Σ(α

D
t) in-

side each group and sums them up. The detailed description
of the algorithm can be found in [Bu et al., 2012].

5 Experiments
We evaluated the performances of the three types of string
re-writing kernels on paraphrase identification and recogniz-
ing textual entailment: pairwise k-spectrum kernel (ps-SRK),
pairwise k-wildcard kernel (pw-SRK), and k-gram bijective
string re-writing kernel (kb-SRK). We set λ = 1 for all ker-
nels. The performances were measured by accuracy.

In both experiments, we used LIBSVM with de-
fault parameters [Chang and Lin, 2011] as the clas-
sifier. All the sentences in the training and test
sets were segmented into words by the tokenizer at
OpenNLP (http://opennlp.sourceforge.net/). We further con-
ducted stemming on the words with Iveonik English Stem-
mer (http://www.iveonik.com/).

We normalized each kernel by K̃(x,y) = K(x,y)√
K(x,x)K(y,y)

and

then tried them under different window sizes k. We also tried
to combine the kernels with two lexical features “unigram
precision and recall” proposed in [Wan et al., 2006], referred
to as PR. For each kernel K, we tested the window size set-
tings of K1 + ...+Kkmax (kmax ∈ {1,2,3,4}) together with the
combination with PR and we report the best accuracies of
them in Table 1 and Table 2.

5.1 Paraphrase Identification
The task of paraphrase identification is to examine whether
two sentences have the same meaning. We trained and tested
all the methods on the MSR Paraphrase Corpus [Dolan and
Brockett, 2005; Quirk et al., 2004] consisting of 4,076 sen-
tence pairs for training and 1,725 sentence pairs for testing.

The experimental results on different SRKs are shown in
Table 1. It can be seen that kb-SRK outperforms ps-SRK and
pw-SRK. The results by the state-of-the-art methods reported
in previous work are also included in Table 1. kb-SRK signif-
icantly outperforms the existing lexical approach [Zhang and
Patrick, 2005] and kernel approach [Lintean and Rus, 2011].
It also works better than the other approaches listed in the ta-
ble, which use syntactic trees or dependency relations. Note
that the recent work in [Socher et al., 2011] achieves 76.8%
accuracy on this dataset. However, it uses additional data to
train the model, which is not directly comparable to the other
methods.

Fig. 6 gives detailed results of the kernels under different
maximum k-gram lengths kmax with and without PR. The re-
sults of ps-SRK and pw-SRK without combining PR under
different k values are all below 71%, and therefore they are
not shown for clarity. By comparing the results of kb-SRK
and pw-SRK we can see that the bijective property in kb-
SRK is really helpful for improving the performance (note
that both methods use wildcards). Furthermore, the perfor-
mances of kb-SRK with and without combining PR increase

Method Acc.
[Zhang and Patrick, 2005] 71.9
[Lintean and Rus, 2011] 73.6
[Heilman and Smith, 2010] 73.2
[Qiu et al., 2006] 72.0
[Wan et al., 2006] 75.6
[Das and Smith, 2009] 73.9
[Das and Smith, 2009](PoE) 76.1
Our baseline (PR) 73.6
Our method (ps-SRK) 75.6
Our method (pw-SRK) 75.0
Our method (kb-SRK) 76.3

Table 1: Comparison with state-of-the-arts on MSRP.

 a b *1 c

73.5

74

74.5

75

75.5

76

76.5

1 2 3 4

A
cc

u
ra

cy
 (

%
)

window size kmax

kb_SRK+PR

kb_SRK

ps_SRK+PR

pw_SRK+PR

PR

Figure 6: Performances of different kernels under different
maximum window size kmax on MSRP.

dramatically with increasing kmax and reach the peaks (bet-
ter than state-of-the-art) when kmax is four, which shows the
power of the lexical and structural similarity captured by kb-
SRK.

5.2 Recognizing Textual Entailment
Recognizing textual entailment is to determine whether a sen-
tence can entail the other sentence. We combined the devel-
opment set of RTE-3 and the datasets of RTE-1 and RTE-2 as
training data and took the test set of RTE-3 as test data. The
train and test sets contain 3,767 and 800 sentence pairs.

The results are shown in Table 2. Again, kb-SRK out-
performs ps-SRK and pw-SRK. As indicated in [Heilman
and Smith, 2010], the top-performing RTE systems are often
built with significant engineering efforts. Therefore, we only
compare with the six systems which involves less engineer-
ing. kb-SRK still outperforms most of those state-of-the-art
methods even if it does not exploit any other lexical semantic
sources and syntactic analysis tools.

6 Conclusion
In this paper, we have proposed a novel class of kernel func-
tions called string re-writing kernel (SRK). SRK measures
the lexical and structural similarity between two pairs of sen-
tences without using syntactic trees. The approach is theo-
retically sound and is flexible to formulations of sentences.
A specific instance of SRK, referred to as kb-SRK, has been
developed which can balance the effectiveness and efficiency
for sentence re-writing. Experimental results show that kb-
SRK achieves comparable results with state-of-the-art meth-
ods on paraphrase identification and recognizing textual en-
tailment.

Method Acc.
[Harmeling, 2007] 59.5
[de Marneffe et al., 2006] 60.5
M&M, (2007) (NL) 59.4
M&M, (2007) (Hybrid) 64.3
[Zanzotto et al., 2007] 65.75
[Heilman and Smith, 2010] 62.8
Our baseline (PR) 62.0
Our method (ps-SRK) 64.6
Our method (pw-SRK) 63.8
Our method (kb-SRK) 65.1

Table 2: Comparison with state-of-the-arts on RTE-3.

References
[Barzilay and Lee, 2003] R. Barzilay and L. Lee. Learning

to paraphrase: An unsupervised approach using multiple-
sequence alignment. In Proceedings of the 2003 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics on Human Language Technol-
ogy, pages 16–23, 2003.

[Basilico and Hofmann, 2004] J. Basilico and T. Hofmann.
Unifying collaborative and content-based filtering. In Pro-
ceedings of the twenty-first international conference on
Machine learning, 2004.

[Ben-Hur and Noble, 2005] A. Ben-Hur and W.S. Noble.
Kernel methods for predicting protein–protein interac-
tions. Bioinformatics, 21:i38–i46, 2005.

[Bu et al., 2012] Fan Bu, Hang Li, and Xiaoyan Zhu. String
re-writing kernel. In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics,
pages 449–458, 2012.

[Chang and Lin, 2011] C. Chang and C. Lin. Libsvm: A
library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2(3):27:1–27:27,
2011.

[Das and Smith, 2009] D. Das and N.A. Smith. Paraphrase
identification as probabilistic quasi-synchronous recogni-
tion. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of the
AFNLP, pages 468–476, 2009.

[de Marneffe et al., 2006] M. de Marneffe, B. MacCartney,
T. Grenager, D. Cer, Rafferty A., and C.D. Manning.
Learning to distinguish valid textual entailments. In Proc.
of the Second PASCAL Challenges Workshop, pages 468–
476, 2006.

[Dolan and Brockett, 2005] W.B. Dolan and C. Brockett.
Automatically constructing a corpus of sentential para-
phrases. In Proc. of IWP, 2005.

[Harmeling, 2007] S. Harmeling. An extensible probabilis-
tic transformation-based approach to the third recognizing
textual entailment challenge. In Proceedings of the ACL-
PASCAL Workshop on Textual Entailment and Paraphras-
ing, pages 137–142, 2007.

[Heilman and Smith, 2010] M. Heilman and N.A. Smith.
Tree edit models for recognizing textual entailments, para-
phrases, and answers to questions. In Proc. of Human Lan-
guage Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computa-
tional Linguistics, pages 1011–1019, 2010.

[Kashima et al., 2009] H. Kashima, S. Oyama, Y. Yaman-
ishi, and K. Tsuda. On pairwise kernels: An efficient al-
ternative and generalization analysis. Advances in Knowl-
edge Discovery and Data Mining, pages 1030–1037, 2009.

[Leslie and Kuang, 2004] C. Leslie and R. Kuang. Fast
string kernels using inexact matching for protein se-
quences. The Journal of Machine Learning Research,
5:1435–1455, 2004.

[Leslie et al., 2002] C. Leslie, E. Eskin, and W.S. Noble. The
spectrum kernel: a string kernel for svm protein classifica-
tion. In Pacific Symposium on Biocomputing, volume 575,
pages 564–575, 2002.

[Lin and Pantel, 2001] D. Lin and P. Pantel. Dirt-discovery
of inference rules from text. In Proc. of ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
2001.

[Lintean and Rus, 2011] M. Lintean and V. Rus. Dissimi-
larity kernels for paraphrase identification. In Proc. of
Twenty-Fourth International FLAIRS Conference, 2011.

[Lodhi et al., 2002] H. Lodhi, C. Saunders, J. Shawe-Taylor,
N. Cristianini, and C. Watkins. Text classification using
string kernels. The Journal of Machine Learning Research,
2:419–444, 2002.

[MacCartney and Manning, 2008] B. MacCartney and C.D.
Manning. Modeling semantic containment and exclusion
in natural language inference. In Proceedings of the 22nd
International Conference on Computational Linguistics,
volume 1, pages 521–528, 2008.

[Moschitti and Zanzotto, 2007] A. Moschitti and F.M. Zan-
zotto. Fast and effective kernels for relational learning
from texts. In Proceedings of the 24th Annual Interna-
tional Conference on Machine Learning, 2007.

[Qiu et al., 2006] L. Qiu, M.Y. Kan, and T.S. Chua. Para-
phrase recognition via dissimilarity significance classifica-
tion. In Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processing, pages 18–26,
2006.

[Quirk et al., 2004] C. Quirk, C. Brockett, and W. Dolan.
Monolingual machine translation for paraphrase genera-
tion. In Proceedings of EMNLP 2004, pages 142–149,
2004.

[Socher et al., 2011] Richard Socher, Eric H Huang, Jeffrey
Pennington, Andrew Y Ng, and Christopher D Manning.
Dynamic pooling and unfolding recursive autoencoders
for paraphrase detection. Advances in Neural Information
Processing Systems, 24:801–809, 2011.

[Wan et al., 2006] S. Wan, M. Dras, R. Dale, and C. Paris.
Using dependency-based features to take the “para-farce”
out of paraphrase. In Proc. of the Australasian Language
Technology Workshop, pages 131–138, 2006.

[Zanzotto et al., 2007] F.M. Zanzotto, M. Pennacchiotti, and
A. Moschitti. Shallow semantics in fast textual entailment
rule learners. In Proceedings of the ACL-PASCAL work-
shop on textual entailment and paraphrasing, pages 72–
77, 2007.

[Zhang and Patrick, 2005] Y. Zhang and J. Patrick. Para-
phrase identification by text canonicalization. In Proceed-
ings of the Australasian Language Technology Workshop,
pages 160–166, 2005.

