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Step Responses of Liquid L i e s With 
Frequency-Dependent Effects of Viscosity 
Universal step-response plots are given from theoretical considerations for rigid cylin-
drical lines containing a compressible Newtonian laminar-flow liquid. The pressure 
and flow step inputs and pressure and flow outputs for semi-infinite lines can, with the 
principle of superposition, be used to estimate the responses of a network of lines, ter-
minations, and so on, for any transient input. Where possible, analytic expressions 
were found for these step responses, but in a certain region of each curve complex 
numerical routines based on the analytic frequency response were necessary. Analyti-
cal expressions are based on propagation and characteristic impedance operators 
published earlier by one of the authors. 

Introduction 

T« ! HE primary purpose of this paper is to present com-
plete plots of the step responses of liquid-filled lines as an aid to 
designers of fluid systems. The secondary purpose is to place 
these results in context by brief!}' reviewing other available design 
aids. The tertiary purpose is to very briefly indicate the analytic 
techniques which were used, and which are detailed elsewhere 
for anyone who might wish to check the results or solve related 
problems. 

The effective wall-shear resistance to fluid flow in a pipe in-
creases monotonically with the frequency of the excitation. This 
well-known fact can be understood in terms of the velocity pro-
files. For laminar flow at low frequency the profile is parabolic, 
whereas at high frequency it approaches a slug-flow distribution 
with a thin boundary-layer. Since resistance is defined as the 
ratio of axial pressure-gradient changes to flow rate changes, a 
thin boundary-layer implies a high resistance. 

Iberall [l]1 and Nichols [2] derived the correct frequency-
dependent propagation function and characteristic impedance 
function, which adequately describe the phenomenon, assuming 
small disturbances in a laminar flow in a rigid tube with either a 
Newtonian liquid or Stokesian perfect gas. The primary or 
longitudinal mode of motion alone was considered and correspond-

1 Numbers in brackets designate References at end of paper. 
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ing limitations stated, but for pipes with a large length-to-diame-
ter ratio the higher modes are rarely of interest. 

Simultaneous with Nichols one of the present authors derived 
the following Laplacian propagation and characteristic impedance 
operators [3], using identical assumptions: 

T(s) = T0s 1 - 2/iO'a V s / v o ) 
ja y/s/vo Jo (ja s/;s/vo)-

zc(s) = Zc0T(s) 

" A 
(1) 

(2) 

Substitution of the imaginary frequency /co, for the Laplacian 
operator s, gives identically Iberall's and Nichols' results, whereas 
the reverse substitutions are not evident. These results, which 
are only for liquids,2 contain the nominal delay time To for a wave 
to travel from the upstream station to the downstream station at 
the unimpeded wave speed 

= V P / p (3) 

where /3 and p are the effective bulk modulus3 and density of the 
fluid, respectively; the Bessel functions J0 and Ji\ the internal 
radius of the pipe a; the kinematic viscosity of the fluid i/0; and 
the nominal value of the surge impedance4 

2 Dispersion in air is considerably greater than in a liquid as a result 
of heat transfer; for results see references [1-5] . 

3 T h e entire analysis can be applied with small error to nonrigid 
pipes b y appropriately decreasing the effective bulk modulus /3. 

4 Some authors use volume flow rather than mass flow and con-
sequently introduce the density p into the numerator of equation 
(4). 

-Nomenclature-

e 
F 
Ot 

H 

Jo, Ji = 
j = 

L = 

radius of pipe, in. 
coefficients of solution to prob-

lem, Fig. 13 
isentropic speed of sound, 

in/sec 
2.718.. . 
integrand for step response 
coefficients of low-frequency se-

ries approximations of T and Zc 

frequency-dependent transfer 
function, lb/in.3 or lb sec/in. 

Bessel functions of first kind 
unit imaginary number 
distance between upstream and 

downstream stations, in. 
pressure, lb/in.2 

Put Vd — upstream and downstream pres-
sures, respectively, lb/in.2 

q = pressure response, Fig. 13, 
lb/in.2 

r = pressure response, Fig. 13, 
lb/in.2 

s = Laplace operator, sec - 1 

To = nominal delay time between 
stations for waves traveling at 
speed Co, sec 

t = time from generation of step, 
sec 

wu, wd = upstream and downstream flows, 
respectively, lb sec/in. 

Zc = characteristic or surge imped-
ance of line, 1/in-sec 

Zco = nominal value of characteristic 

0 r 

I 
Vo 

p 

T 

To 

fi = 

impedance at high frequen-
cies, 1/in-sec 

bulk modulus of fluid, lb/in.2 

propagation function or opera-
tor 

step response (pressure or flow) 
complex number 
kinematic viscosity of liquid, 

in2/sec 
density of liquid, lb sec2/in.4 

nondimensional time; see equa-
tion (13) 

nondimensional delay time; see 
equation (6) 

nondimensional frequency; see 
equation (5) 

frequency, sec - 1 
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Fig. 2 Phase veloci ty a n d magn i tude of characteristic impedance 1000 

Fig. 1 At tenuat ion of pressure or f low sinusoidal disturbances 

For completeness the frequency-response results for liquids, as 
calculated by the authors, are plotted in Figs. 1-3. Nondimen-
sionalizations include the frequency 

The ordinate of Fig. 1 is proportional to the log amplitude ratio 
of the downstream to upstream pressures or flows, which is re-
lated to the propagation function T(jw) by 

, I Pd O ) tj T"Y • \ ,ns 
In — — - = - Re FOw) (7) 

I Pu (]<») 
This applies for waves in one direction only, which implies per-
haps a semi-infinite line, or at least no reflection of waves. The 
phase relationship, given in Fig. 2, is also related to the propaga-
tion function: 

phase / y j j u ) „ . 
/ —77— = Im F OOJ) (8) 

angle [_PJjf;>) 

Fig. 3 Phase of characteristic impedance 

Also given in Figs. 2 and 3 are the magnitude and phase angle of 
the characteristic or surge impedance Zc which represents the actual 
impedance seen bjr a pressure or flow source. 

The advantage of the Laplacian forms F(s) and Zc(s) is the 
ability to calculate transient responses from them. The initial 
portions of the step and impulse responses, for both liquids and 
air, were given in the same paper [3]. More complete results are 
also available [4, 5], These calculations were based on high-
frequency approximations to equations (1) and (2), as shown in 
Appendix A. Unfortunately, these series become inexact when 

Fig. 4 Pressure ( f low) responses to step of pressure ( f low) 
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extended further, and significant regions of the step responses re-
main uncalculated. 

The next step was to utilize exact low-frequency approxima-
tions for r(s) and Zc(s), as also given in Appendix A. This 
allowed a large portion of the tails of the step responses to be cal-
culated, but serious convergence limitations left a significant gap 
between the calculated "heads" and "tails" of the responses, 
corresponding to a middle-frequency range for which neither ap-
proach was useful. As a last resort it was suggested [4] that the 
known and easily calculable frequency-response results be con-
verted to the step response in this difficult region. 

Implementation of this idea was based on results given by 
Leonhard [6]. The response to a step input is 

(6) The flow response downstream to an upstream step of flow. 
(c) The flow response to a step of pressure. 
(d) The pressure response to a Step of flow. 
Tj'pes (a) and (b) have identical responses, given by the inverse 

transform of 
1 
— e 
s 

• r(s) 

Types (c) and (d) are given by, respectively, 

1 

m = J Jo 
2 HeH(jco) 

sZc(s) 

Zc(s) 
sin cot dco (9) 

- r (s ) 

-r(») 

(10) 

( 1 1 ) 

(12) 

where H(jco) is the appropriate frequency-dependent transfer 
function. The results herein for the "gap" region were calculated 
numerically, using a digital computer, by replacing do) with ap-
propriate discrete Aw, summing over an appropriate range, and 
so on. Details of what proved to be a very complex and tricky 
business are discussed briefly in Appendix A, and more thoroughly 
in a thesis by one of the authors [7]. Interestingly, the "gap" 
region is the only one in which this numerical approach was feasi-
ble. 

Results 
The results as given herein are step responses for uniform semi-

infinite lines; that is, waves are traveling in one direction only, 
with no reflections from terminations, and so on. Of course, most 
physical applications of these results do in fact involve reflections, 
but the basic linearity allows use of the principle of superposition 
to account for these effects. Moreover, any arbitrary distur-
bance can be subdivided into a series of steps with any desired 
degree of refinement. (Steps, incidentally, are usually more con-
venient than impulses, since a period of constant pressure or flow 
can be represented by a single step.) 

Four basic types of responses are of interest: 

(a) The pressure response downstream to an upstream step of 
pressure. 

All responses are given as a function of the nondimensional time 

vol 
a-

(13) 

Types (a) and (6) are given in Fig. 4. For short distances down-
stream, the response is nearly a step, with a slight rounding. 
Further downstream, an extraordinarily long tail becomes very 

P i g . 5 P r e s s u r e ( f l o w ) r e s p o n s e s f o s t e p o f p r e s s u r e ( f l o w ) , a s y m p t o t i c 

r e s u l t s a s r o —>- 03 ( g e n e r a l l y v a l i d w h e n To > 2 ) 

F i g . 6 F l o w r e s p o n s e s t o s t e p o f p r e s s u r e 

100 
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Fig. 9 Front portions of step and impulse responses, 
pressure for pressure or f l o w for f low 

Fig. 11 Front portions of step a n d impulse responses, pres-
sure for f low 
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significant as the front end of the response is smoothed, attenu-
ated, and delayed in excess of the nominal speed-of-sound delay. 
Ultimately, the response approaches the limiting shape (without a 
limiting position on the plot) of a diffusive R-C line. This limit 
is shown in more detail in Fig. 5, where a new abscissa results 
in a unique curve. 

Types (c) and (cZ) are plotted in Figs. 6 and 7, respectively. 
For a step in pressure the flow at all stations along the line must 
ultimately decay to nothing, since an infinitely long line has an 
infinite resistance to steady flow. Similarly, for a step in flow the 
pressure at all stations must increase until the pipe bursts. Note 
that the driving-point responses, for which F = 0, are included. 
The limiting cases of the diffusive R-C line, nearly valid forr0 > 2, 
are given in Fig. 8. In all cases the accuracy is at least within 
± 1 percent. 

a = Z 0 1 3 in 

Va= 8.11 X I 0 ~ * i n 2 / s e c . 

p-- 8 4 4 X 1 0 " 5 lb— s e c 2 / i n 4 

c 0= 4 4 7 0 f t . / s e c . 
( c o r r e c t e d (or w o ! 

s u d d e n c l o s u r e of 
i n i t i a l l y w i d e o p e n 
go l e v a l v e 

200 
p ( p s i ) I 

100 -

2 3 4 5 6 
I sec. 

Fig. 12 W a t e r - h a m m e r problem 

The semilog and log-log coordinates of these plots, as well as 
the respective nondimensionalizations, were chosen simply to fit 
all the. results into a reasonable space. Unfortunately, this tends 
to obscure the physical meaning of the results. For example, the 
rapid deterioration of the front end of the responses is obscured 
and the great length of the tails foreshortened. Some of the plots 
given earlier by one of the authors [3, 4, 5], showing in more detail 
the front portion of the step responses and their derivatives, or 
impulse responses, are reproduced in Figs. 9-11. Note that the 
width of a pulse is very nearly proportional to the square of the 
distance it has traveled. 

Applications Involving Reflections 
Two examples are given in the following in which the principle 

of superposition is used to account for reflected waves. These 
are of course very special problems and are intended merely to 
be suggestive of possible approaches to other cases. 

The first problem, shown in Fig. 12, is the classical water-ham-
mer rapid-shutdown of a valve in a line leading from a reservoir. 
The pressure response to the flow step is plotted. Since the 
waves are totally reflected, in like sense at the blocked end and 
unlike sense at the open end, only the addition and subtraction is 
required of the pressure as seen at the imaginary distances down 
a semi-infinite line of 2L, 4L, 6L, etc. 

Reflection at a semiblocked termination, such as the nozzle in 
Fig. 13 which has the indicated nonlinear pressure-flow character-
istic, is considerably more complex. In this problem the pressure 
at the right-hand end of the line is raised suddenly to a new fixed 
value. The resulting pressure at the left-hand end, assuming that 
the nozzle is blocked, is shown in part (6) of the figure. But of 
course the nozzle is not blocked; it has the pressure-flow charac-
teristic of part (d). Thus, flow-step waves of appropriate am-
plitude are introduced into the line at the nozzle end to give the 
proper correction. The pressure at the nozzle resulting from a 
single such wave is given in part (c). All pressures and flows are 

N O Z Z L E 

S T E P A P P R O X I M A T I O N 

1 /P , 

I - D E L A Y T I M E T 0 = 0 . 5 

( a ) FLUID L I N E W I T H N O Z Z L E 

J PRESSURE 
T ~ S T E P p0 

( b ) P R E S S U R E A T N O Z Z L E E N D 
IF N O Z Z L E W E R E B L O C K E D 

1 . 8 

r / P 0 

1.4 

1.0 

xT 
[x 

n/Po 

oi-
r , / P o 

-0 .02 

-0.04 

- 0 . 0 6 

0.1 0 .2 0 . 3 

(
c

: P R E S S U R E AT N O Z Z L E END 
FOR FLOW S T E P p 0 / R 0 I N T O 
N O Z Z L E E N D 

P / P „ 

/ , , 
/ 

" - w R o 

•f P o 

SL0PE= 
0.6 0.7 

T r o / P | 

( d ) N O Z Z L E C H A R A C T E R I S T I C ( e ) R E S U L T S AT N O Z Z L E 
WITH S O L U T I O N 

Fig. 13 M e t h o d of handl ing part ia l reflections 
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approximated by a series of steps. For the nth step the change 
of pressure is 

P„ = ?„ - (V„ + h?•„_! + • •. + 6„-ir2 + 6„n) (14) 

All of the terms on the right side are known except the last; this 
is found graphically, as shown in part (d) for the second step. 
Incidentally, a bookkeeping table of the components of the re-
sponse is easily and appropriately constructed, and if desired the 
whole process can be computerized. 

Conclusions 
Complete step responses for small-signal disturbances in 

Newtonian liquid-filled laminar-flow circular lines have been 
given. The results are rounded curves, due to the frequency de-
pendency of the wall shear. Although the step responses have 
not been verified directly, the corresponding frequency responses 
closely match experimental data [S]. Moreover, since the three 
independent mathematical techniques which were employed 
match with each other, little question remains regarding the valid-
ity of the solutions. 

Considerable basic work is yet to be either performed or re-
ported. Complete step responses have not been found for air or 
other gases. N. B. Nichols is strongly encouraged to publish his 
work on the higher modes of motion of fluids in cylindrical con-
tamers. In collaboration with one of the authors, D. M. Aus-
lander has written a thesis [9] in which predictions are made for 
the frequency responses for small disturbances in a grossly turbu-
lent flow in both smooth and rough-walled tubes. The dispersion 
is much greater than in laminar flow. This work should be pub-
lished more broadly, and experimental corroboration attempted. 
The present paper heuristically shows how the step-response 
results can be used to estimate closely the response of a compli-
cated network to any transient. However, simpler and more 
powerful techniques for the analysis of systems of lines are pos-
sible and should have great utility. Adequate computational 
approaches to problems involving complex interactions between 
fluid and walls and large-amplitude disturbances5 have yet to be 
developed except in very special cases. 
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A P P E N D I X A 
High and Low-Frequency Approximations 

For |£| > 3 , the asymptotic series 

is quite good [10]. This gives the approximations 

r ( s ) » r„ s I + 
a2s 8 

3A" 

1 
JJ7) 

I 
•A SA" 

( 1 5 ) 

(16) 

(17) 

for a liquid, which were used to find the front portion of the step 
responses [4, 5, 6]. Similar expressions are available for a perfect 
gas in which the Prandtl number represents the dispersive effect 
of heat transfer. 

The traditional low-frequency exact expansion of the Bessel 
functions gives, for a liquid, 

5 In laminar flow of a liquid, essentially any normally encountered 
disturbance is " smal l " ; not so for a gas, however, or a liquid in tur-
bulent flow. 

r ( S ) = V s TO E Sk — 
k = 0 Vo 

Zc(s) = Zc0 X) Bh 
k = 0 

ft-' A 

(18) 

(19) 

in which 

Oo = 1 
= 8.333 X 10"2 

g2 = - 3 . 9 0 6 X 10-
Sa = 3.400 X 10"4 

iji = - 3 . 6 4 9 X 10-
g5 = 4.389 X 10~6 

go = - 5 . 6 6 8 X 10" 

Correspondmg series expressions for the three tj'pes of step re-
sponses have been found [7j but are too long to reproduce here. 
The values of g,. for air or other perfect gases have not been cal-
culated. 

Numerical Computation of the Mid-Region of the Step 
Responses Based on the Frequency Response 

For purposes of numerical evaluation, equation (7) was placed 
in the form 

<p(t) = 2F (0 )A0 (20) 

The general shapes of the function F(£l) for the three types of 
problems are shown in Fig. 14. After the first zero crossing these 
functions behave similarly, closely approximating the sum of a 
sinusoid with a short period and a sinusoid with a long period. 
The curves were divided into approximately 20 increments per 
cycle of the fast harmonic; trapezoidal approximations were 
then employed. Values of the accumulated area up to values of 
0 where both harmonics pass through a maximum or a minimum 
were stored; these points give the closest estimates of the correct 
answer. Successive values were compared, and the solution 
truncated when the deviation from the mean of the last four 
values was less than 0.4 percent of this mean. Details are 
available [7], 

A special problem arose for the pressure response to a flow step 
because the function Fd(V.) is infinity for Q, = 0. For very small 
values of O the following excellent approximation was utilized: 

Fdm 
4 t (1 - 4 T 0 y / A + 4T0

2O) 

7T V i i 
(21) 

0.001 0.1 
fi < 0.02 and fi < and fi < — 

2 T 0
2 T 

The portion of the step responses calculated with this numeri-
cal technique overlapped at one end the portion computed using 
the high-frequency Laplacian operators and at the other end the 

Uf l ) 

-a 
P r e s s u r e R e s p o n s e T o P r e s s u r e S t e p 

FC ( f t ) 

F 

F l o w R e s p o n s e T o P r e s s u r e S t e p 

F i g . 14 G e n e r a l s h a p e s o f F(S2) f o r s t e p r e s p o n s e s 
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pOt·tion computed using t.he low-frequency Laplacian operntors. 
Agreement in the regions of overlap was always withi n at Icast 
1 pCI·cent.. This lends considernblc confidence to the va lidity 
of the resu lts, since the three solut ions arc quite independent ex­
cept for reliance on the experimonta lly justified propagation nnd 
characterist.ic impedance opera.tors. 

References 
:\. S. Ibolnll , " Attenua tion of Oscillatory Pressures in Instru­

mcnt Lillcs, " JOIII'IW / of Research, Xalional Bureau of Siumlards, vol. 
·15, J ul.\', }950. TI. P. 21 15. 

2 )oJ. B. Nichols , " T he Lineal' Propcrties of Pnelllllatic T rans­
mission Lines," 18;1 Trallsactions. \"01. 1, 110. 1, J anua ry, H162. 

3 }'. T. nrowl1. "The T ransient liesponse of Fl uid Lines," 
JO UU1'>.\/' o ~' llMHC EXGI1'>EEIU NG, T nA::\S. AS3[E, Series D, \ '0 1. 8<1, 

1f)(12. p . 5'J7. 
" F. 1'. B rown, "Pnellmat.ic Pul se T rnnsmission Wilh Bis tnble­

Jet.-Heln.\' Recept ion and Am pl ification." SeD thesis. Engineering 
Projects Labol'tl.tory, Department of \ [ee han ical Engi ncering, \L l.T. , 
Ala)" 1962. 

5 F. T. Brown, " La Dispers iollc delle Ondc TrCtusitorie Nelle 
('omlotte," La Scuola ill ...! lione . -:\Iilnn. YO\. 14, Ap ril, 1903. 

6 A. Lconhnrd. "Deten uinntio ll of T ransient Response From F re­
quoliCY nespo nse"; n. Oldcllburgel'. Fi'C'lUCllcy Rcs])ollse, The i\lac­
mill:m Compnny, New York, N. Y., 1956. pnrt 5. 

7 S. E. Nelson, "Analysis of Viscous Dispersion EO-ects on Step 
Responses in Liquid-FiUed Transmission Lines." S:\ [ thesis , Engi­
neering Projects Labol'n to ry , \1.1.1' .. Cam bridge. \ [n5s., Jnnur.ry, 
19M. 

8 R. C . Fr.y, " Attenuat ion of SOlilld in Tubes," .Jou1'11l11 of lite 
Acoustical Society of Amcrica, yol. 12. 1>1). 62-67, WelO. 

9 D. -:\1. Auslander, "Frequenc .... !losponse of l~ l lIid Li nes With 
Turbuleni. Flow." S:\I tbesis. Engineering Projects Lnbornto ry, 
-:\ I.L1'.. i\ l ny. 196<1. 

10 G. N. Wat son, Theory of Bessel FUllctions, U ui\'ersity Press, 
Cambridge. ElIglnnd, 1952, pp. 202-205. 

510 / JUN E 1 965 Transact io ns of the ASME 

Downloaded From: https://fluidsengineering.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use




