
Recovering Transitive Traceability Links among

Software Artifacts

Kazuki Nishikawa, Hironori Washizaki

Yoshiaki Fukazawa

dept. Computer Science

Waseda University

Tokyo, Japan

t260g.v-max.7@ruri.waseda.jp

Keishi Ohshima, Ryota Mibe

Yokohama Research Laboratory

Hitachi, Ltd

Kanagawa, Japan

keishi.oshima.rj@hitachi.com

Abstract—Although many methods have been suggested to

automatically recover traceability links in software development,

they do not cover all link combinations (e.g., links between the

source code and test cases) because specific documents or artifact

features (e.g., log documents and structures of source code) are

used. In this paper, we propose a method called the Connecting

Links Method (CLM) to recover transitive traceability links

between two artifacts using a third artifact. Because CLM uses a

different artifact as a document, it can be applied to kinds of

various data. Basically, CLM recovers traceability links using the

Vector Space Model (VSM) in Information Retrieval (IR)

methods. For example, by connecting links between A and B and

between B and C, CLM retrieves the link between A and C

transitively. In this way, CLM can recover transitive traceability

links when a suggested method cannot. Here we demonstrate that

CLM can effectively recover links that VSM cannot using Open

Source Software.

Index Terms—traceability link recovery, transitive traceability

links, connecting links

I. INTRODUCTION

Traceability indicates that the relationship between two

objects can be traced. These relationships are known as

traceability links, and are used in various situations. In

software development, traceability links are used to understand

the relationships between software artifacts (e.g., requirements,

designs, source code and test cases), helping developers

discover demand and implementation errors. If requirements

are changed and the source code must be modified, the source

code can easily be rewritten if the relationship between the

requirements and the source code is known. Hence, traceability

leads to a reduction in development costs [4, 18, 19].

Previous methods to automatically recover traceability have

limited applications such as recovering traceability links

between specific artifacts [3, 7, 8, 13, 17, 20, 21, 22] because

they use specific documents or artifact features (e.g., log

documents or structures of source code). Herein we propose a

method, which is called the Connecting Links Method (CLM),

to recover transitive traceability links between two artifacts

using a third artifact (e.g., requirements, designs, source code,

and test cases). We call our proposed method the Connecting

Links Method (CLM). For example, by connecting links

between A and B and between B and C, CLM retrieves the link

between A and C transitively. These artifacts are found in

almost all software developments. Although it is uncertain

whether specific documents actually exist in software

development, if a different artifact is used, then this is not an

issue, which is why we assume that CLM is superior.

This paper aims to address the following Research

Questions:

RQ1 Is VSM limited on the kinds of data it can recover?

RQ2 Can CLM recover links that VSM does not?

RQ3 How much does the F-measure of CLM improve

compared to VSM?

This paper makes the following contributions.

 We propose a method, CLM, to automatically recover

traceability links using a different artifact.

 We demonstrate a situation in which CLM applies.

 We confirm the effectiveness of CLM under the

appropriate conditions.

This paper is organized as follows. Section 2 describes

background information about CLM. Information about our

approach is presented in section 3. Section 4 evaluates CLM by

conducting experiments on a target. Section 5 discusses related

works. Finally, the conclusion and future works are provided in

section 6.

II. BACKGROUND

A. VECTOR SPACE MODEL (VSM)

VSM [11] is an Information Retrieval (IR) [2, 10, 12]

method. IR methods research objective information from vast

amounts of information, and are typically used for site searches

on the Internet to find specific information. IR methods can

also recover traceability links. For example, VSM can find

similar documents, which are vectors in the space of terms, by

using their cosine distances to compute their textual similarity.

Then the documents are ranked by these similarities. There are

many IR methods [23]. However, many of these are difficult to

use because variables must be inputted. In contrast, VSM does

not require such variables. Consequently, CLM employs VSM.

B. MOTIVATING EXAMPLE

Figure 1 describes the data of CC_1, ID_1 and TC_1
1
 in

EasyClinic, which is a software program. UC, ID, CC, and TC

1
 These data numbers differ from real data.

indicate use cases, interaction diagrams, code classes, and test

cases, respectively. The link between CC_1 and TC_1 is a

correct link, but it is hard to recover using suggested methods

(e.g., log documents, or the source code structure) because the

link does not have a log document or source code details.

Although VSM can provide the link between CC_1 and TC_1,

the precision is low because there is not a strong relation word

between CC_1 and TC_1. This issue has motivated us to

expand the coverage using a method that employs a third

software artifact.

Fig. 1. Data of CC_1, ID_1 and TC_1

III. OUR APPROACH

A. Overview of CLM

Figure 2 overviews CLM. Artifact is a set of software

artifacts (e.g., requirements, designs, source code, and test

cases). In case of requirements, R indicates set of requirements

and r1 indicates an element of requirements. This is shown

R={r1, r2, ⋯, rh}. So Artifact A, B and C are defined A={a1, a2,

⋯, al}, B={b1, b2, ⋯, bm} and artifact C={c1, c2, ⋯, cn}. Unlike

VSM, which directly recovers traceability links between A and

C, CLM initially recovers the traceability links between A and

B and between B and C to determine the link between A and C.

Then these traceability links are connected to determine desired

link between A and C. Consequently, by connecting links,

CLM can recover links that VSM misses and indirectly

determine traceability links.

For example, in EasyClinic, CLM uses ID_1 to recover the

link between CC_1 and TC_1 because the relationship between

CC_1 and TC_1 is weak. In contrast, because the word

“GUIPrenotaVisita” in CC_1 and the word “Outpatient” in

TC_1 are included in ID_1, the relationships between CC_1

and ID_1 and between ID_1 and TC_1 are strong.

Consequently, the link between CC_1 and TC_1 is found by

connecting the link between CC_1 and ID_1 with the link

between ID_1 and TC_1. In this way, CLM can recover

missing links.

B. Process of CLM

Figure 3 depicts the CLM process. Artifact X={x1, x2, ⋯, xp},

Y={y1, y2, ⋯, yq} and Document Artifact Z={z1, z2, ⋯, zr} are

software artifacts. For explanation, we denote a link between

two elements ei and ej as link_eiej, such as link_x1y1. To

determine the traceability links between X and Y, the following

steps are implemented:

Step 1: Recover the traceability links between X and Z and

between Y and Z in VSM.

Step 2: Connect these two retrieved traceability links to

recover the traceability links between X and Y.

Step 1 uses TraceLab, which has been employed in various

projects [1, 6], to recover the traceability links in VSM.

TraceLab is an automatic traceability link recovery tool [9, 14]

by CoEST [24], an international organization founded in 2006

to tackle pervasive challenges of implementing effective

software and systems level traceability. By using TraceLab, we

recover the traceability links between X and Z and between Y

and Z in VSM. At the same time, we define the score of links

between X and Z and between Y and Z. The score, which is

calculated in VSM, is the value of link relationship. The max

value is 1.0, which means two artifacts are same. In contrast,

the minimum value is 0.0, which means no relationship.

Step 2 connects the links recovered in step 1. We define the

link between X and Y that relate to same Z. The score of this

link is calculated by multiplying the score of the link between

X and Z by the score of the link between Y and Z.

Links between X and Z and between Y and Z are ranked by

score. At first, we select the top link (e.g. link_xizj) between X

and Z. Next, we check links between Y and Z from top to

bottom. Then, if we find links (e.g. link_ykzj) relate to same z

(e.g. zj), links (e.g. link_xizj and link_ykzj) are connected and

search is stopped. This flow is repeated using from the next

link to last link between X and Z. Because lower ranking

results tend to contain incorrect links, only the top 10% of the

rankings by score for each retrieved traceability link are

evaluated in CLM. If multiple variables zf and zg are connected

to both xi and yk, then the highest link score of links with zf and

zg is selected. If there are multiple links between xi and zf and

between xj (i≠j) and zf related to one link between yk and zf,

then yk is connected to xi and xj.

For example, consider requirement R1, source code S1, and

source code S2. If a link between R1 and design D1 has a score

of 0.2 and a link between S1 and D1 has a score of 0.25, then

R1 and S1 can be linked through D1. The score of R1 and S1 is

0.05 (0.2x0.25). However, if there are links between R1 and

design D2 and between S1 and D2, which have scores of 0.4

and 0.25, respectively, the score of the link connected by D2 is

0.1 (0.4x0.25). In this case, the score of link between R1 and

S1 is not 0.05 but 0.1. In addition, if there is a link between

source code S2 and design D1, which has a score of 0.1, the

link between R1 and S2 can also be determined, and the score

of this link is 0.02 (0.2x0.1).

Fig. 2. Overview of CLM

Fig. 3. Process of CLM

IV. EVALUATION

To answer the three abovementioned research questions, we

conducted a case study and evaluated CLM.

A. Case Study

EasyClinic, a software system to manage a medical doctor’s

office, was used as the data source. It contains four software

artifacts: requirements, designs, source code, and test cases.

These data have correct links between artifacts.

B. Experiments

1) Result of VSM (RQ1)

Table 1 compares the links between various artifacts. It

should be noted that the listed F-measure is the maximum

value. UC-ID denotes the traceability links between UC and ID.

The max F-measures of ID-TC and ID-CC are 0.69 and 0.62,

respectively, which are high values. On the other hand, the max

F-measure of CC-TC is 0.45, which is low.

We also researched the documents for these links. The data

of ID_1 and TC_1 are connected by the word “Outpatient”. In

the 20 files of ID, this word appears 3 times, and in the 63 files

of TC, it appears 19 times. After calculating in IDF, the

importance of “Outpatient” in ID and TC is 1.82 and 1.52.

The data of ID_1 and CC_1 are connected by the word

“GUIPrenotaVisita”. In the 20 files of ID, this word appears

thrice, and in the 47 files of CC, it appears twice. After

calculating in IDF, the importance of “GUIPrenotaVisita” in ID

and CC is 1.82 and 2.37.

The data of TC_1 and CC_1 are connected by the words

“visit” and “reservation”. In the 63 files of TC, both words

appear 26 times. In the 47 files of CC, “visit” appears 21 times

and “reservation” appears 15 times. After calculating in IDF,

the importance of “visit” and “reservation” in TC are both 1.38

and the importance of “visit” and “reservation” in CC are 1.34

and 1.50, respectively.

TABLE I. COMPARISON OF LINKS BETWEEN VARIOUS ARTIFACTS BY THE

MAX F-MEASURE

Correct

links
All links Precision Recall F-Measure

UC-ID 26 600 0.362 0.808 0.5
UC-CC 93 1410 0.611 0.591 0.6
UC-TC 63 1890 0.466 0.54 0.5
ID-CC 69 940 0.661 0.594 0.62
ID-TC 83 1260 0.797 0.614 0.69
CC-TC 204 2961 0.4 0.52 0.45

2) Comparison of VSM and CLM (RQ2, RQ3)

Table 2 compares VSM and CLM. Correct links indicate

the number of correct links in each traceability link. All links

denote the total number of links restored by each method.

Because CLM connects incorrect links, but with a low rank,

we chose the top 20 precision and recall values in the max F-

measure of the restored links. UC-ID(CC) means the

traceability links between UC and ID in VSM and the

traceability links between UC and ID using document CC in

CLM. We selected cases of CC-TC(ID) and CC-TC(UC). The

precisions of VSM and CLM are 0.55 and 0.95 for CC-TC(ID),

respectively. The precisions of VSM and CLM are 0.55 and

0.35 in CC-TC(UC), respectively. These data are examples of

high and low precision using CLM for the same traceability

links such as CC-TC.

Figures 4 – 6 shows the precision, recall, and F-measure,

respectively, for CC-TC(ID) and CC-TC(UC). The vertical axis

denotes the index of the retrieved links, while the horizontal

axis indicates the number of retrieved links. CLM is more

effective than VSM for CC-TC(ID), but is ineffective for CC-

TC(UC).

Table 3 provides differences in the top 20 links between

VSM and CLM of CC-TC(ID) and CC-TC(UC). Correct links

and wrong links are the number of correct links and incorrect

links in the top 20 links recovered by VSM and CLM,

respectively. Unique links and common links denote the

number of unique links and common links, respectively, in the

correct links, wrong links, and all links. The number of unique

and correct links of CC-TC(ID) are 7 (15) in VSM (CLM). The

number of common links in all links of CC-TC(ID), where

CLM has a high effect, is 4. In contrast, the number of common

links in all links of CC-TC(UC), where CLM has a low effect,

is 8. In CC-TC(ID), the words used to connect links for CC-ID

and ID-TC are “GUIPrenotaVisita” and “Outpatient”, whereas

while in CC-TC(UC) the same word “patient” is used in CC-

TC(UC) to connect links for CC-UC and UC-TC.

Fig. 4. Precision results of CC-TC(ID) and CC-TC(UC)

Fig. 5. Recall results of CC-TC(ID) and CC-TC(UC)

Fig. 6. F-Measure results of CC-TC(ID) and CC-TC(UC)

C. DISCUSSION

RQ1 Is VSM limited on the kinds of data it can recover?

The high F-measures are 0.69 and 0.62 for the ID-TC and

ID-CC data, respectively, while that for the CC-TC is low at

0.45. The values of IDF for the word “Outpatient” used to

connect the ID-TC links are 1.82 in ID and 1.52 in TC. The

values of IDF of the word “GUIPrenotaVisita” used to connect

ID-CC links are 1.82 in ID and 2.37 in CC. The values of IDF

of the words “visit” and “reservation” used to connect the TC-

CC links are respectively 1.38 and 1.38 in ID and 1.34 and 1.50

in CC.

These results indicate that links using highly important

words by VSM yield high F-measures. Words with high

importance tend to be proper nouns, such as file names and

class names. VSM can recover a lot of correct links with words

of high importance, but not with words of low importance.

Traceability links without a highly important word yield low F-

measures using VSM. These results indicate that VSM is

unsuited to recover links without highly important words.

RQ2 Can CLM recover links that VSM does not?

The precision of VSM (CLM) is 0.55 (0.95) for the top 20

links of CC-TC(ID), but is 0.55 (0.35) for the top 20 links of

CC-TC(UC), demonstrating that CLM is more (less) effective

than VSM for CC-TC(ID) (CC-TC(UC)). The number of

unique and correct links of CC-TC(ID) is 7 (15) in VSM

(CLM). The number of common links in all links of CC-

TC(ID) is 4, whereas that of CC-TC(UC) is 8.

CLM recovers links that are not recovered by VSM in CC-

TC(ID), but not in CC-TC(UC). We conjecture that the

difference in the effectiveness in CLM is related to the

connected links. In CC-TC(ID), because the words used to

connect links CC-ID and ID-TC are “GUIPrenotaVisita” and

“Outpatient”, there are few common links. However, in CC-

TC(UC) both use the word “patient” to connect links CC-UC

and UC-TC, resulting in many common links. Consequently,

CLM recovers different links than VSM when CLM

determines links in a different manner than VSM.

TABLE II. COMPARISON BETWEEN VSM AND CLM IN THE MAX F-MEASURE

VSM CLM

 Correct links All links Precision Recall All links Precision Recall
UC-ID(CC) 26 600 0.4 0.308 177 0.4 0.308
UC-ID(TC) 26 600 0.4 0.308 107 0.45 0.346
UC-CC(ID) 93 1410 0.85 0.183 204 0.75 0.161
UC-CC(TC) 93 1410 0.85 0.183 263 0.3 0.065
UC-TC(ID) 63 1890 0.55 0.175 274 0.15 0.048
UC-TC(CC) 63 1890 0.55 0.175 618 0.55 0.175
ID-CC(UC) 69 940 0.9 0.261 160 0.75 0.217
ID-CC(TC) 69 940 0.9 0.261 185 0.4 0.116
ID-TC(UC) 83 1260 0.8 0.193 184 0.65 0.157
ID-TC(CC) 83 1260 0.8 0.193 504 0.95 0.229
CC-TC(UC) 204 2961 0.55 0.054 542 0.35 0.034
CC-TC(ID) 204 2961 0.55 0.054 375 0.95 0.093

TABLE III. DIFFERENCES IN THE TOP 20 LINKS BETWEEN VSM AND CLM OF CC-TC(ID) AND CC-TC(UC)

Correct Wrong All

Correct

links
Wrong

links
Unique

links
Common

links
Unique

links
Common

links
Unique

links
Common

links

CC-TC(ID)
VSM 11 9 7 4 9 0 16 4
CLM 19 1 15 4 1 0 16 4

CC-TC(UC)
VSM 11 9 7 4 5 4 12 8
CLM 7 13 3 4 9 4 12 8

RQ3 How much does the F-measure of CLM improve

compared to VSM?

This experiment confirms that CLM is effective under

certain conditions. CLM can recover links that VSM cannot,

but CLM is not applicable to all data, especially when VSM

sufficiently restores the links. However, CLM can recover

transitive traceability links that VSM cannot directly determine

when different words are used in each connected link.

D. Threats to Validity

This experiment used only one open source software,

EasyClinic. However, CLM should be applicable to various

situations. In the future, we plan to inspect the effectiveness of

CLM for other data in software development. In addition, we

connected links using 10% of the whole to secure a sufficient

number of links. However, this number was determined

sensuously. In the future, we plan to change the number of

links.

V. RELATED WORD

Many methods have been proposed to automatically

recover traceability links. Some methods use development log

to find related links [17, 20, 21, 22]. This approach is effective

if the development logs are well written. However, some

software developments lack logs, limiting the applicability of

such methods. In contrast, CLM does not require a specific

document because it uses artifacts (e.g., requirements, designs,

source code, and test cases). Hence, CLM may be applicable to

software developments without development logs.

Other methods use the summons relations of the source

code in the traceability links recovery methods [3, 7, 8, 13]. In

these methods, source code using method A is relevant to

source code with method A as only source code information is

used. Although methods using the summons relations are

applicable to many software developments, only the

traceability links with source code are recovered. These

methods cannot recover other traceability links. On the other

hand, CLM does not require a specific artifact.

VI. CONCLUSION AND FUTURE WORK

We propose a method called CLM to recover transitive

traceability links, and applied it to an open source software,

EasyClinic. CLM requires a document from another software

artifact to recover transitive traceability links. CLM effectively

recovered traceability links in cases where VSM did not. Thus,

under these conditions, CLM is more effective than VSM.

In the future we intend to apply CLM to other data.

Additionally, we plan to vary the number links used in order to

determine the suitable number of links to connect the

traceability links recovered in CLM. Moreover, this concept of

connecting links may be applicable with other suggested

methods. We intend to investigate the effects of applying CLM

with other link recovery methods. These future studies should

improve the functionality and applicability of CLM.

REFERENCES

[1] A. Czauderna, M. Gibiec, G. Leach, Y. Li, Y. Shin, E. Keenan,

and J. Cleland-Huang, “Traceability challenge 2011: Using

tracelab to evaluate the impact of local versus global idf on trace

retrieval,” In 6th TEFSE’11, volume 6, Honolulu, HI, USA,

May, 2011.

[2] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S.

Panichella, “Improving ir-based traceability recovery using

smoothing filters,” in Proceedings of the 19th International

Conference on Program Comprehension, pp.21-30, June, 2011.

[3] A. Ghabi, and A. Egyed, “Code patterns for automatically

validating requirements-to-code traces,” the 27th IEEE/ACM

International Conference on Automated Software Engineering

(ASE’12), pp.200-209, 2012.

[4] A. Kannenberg, H. Saiedian, “Why software requirements

traceability remains a challenge,” The Journal of Defense

Software Engineering, pp.14-19, 2009.

[5] A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto,

D. Poshyvanyk, A. De Lucia. “When and How Using Structural

Information to Improve IR-Based Traceability Recovery”. 17th

European Conference on Software Maintenance and

Reengineering (CSMR), 2013.

[6] B. Dit, E. Moritz, and D. Poshyvanyk, “A tracelab-based

solution for creating, conducting, and sharing feature location

experiments,” In 20th IEEE ICPC’12, p.203-208, Passau,

Germany, June, 2012.

[7] C. McMillan, D. Poshyvanyk, M. Revelle, “Combining textual

and structural analysis of software artifacts for traceability link

recovery,” Traceability in Emerging Forms of Software

Engineering, 2009. TEFSE'09. ICSE Workshop on. IEEE, May,

2009.

[8] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, and Q. Xie,

“Exemplar: A source code search engine for finding highly

relevant applications,” IEEE Transactions on Software

Engineering, vol. 99, pp.1069-1087, August, 2011.

[9] E. Keenan, A. Czauderna, G. Leach, J. Cleland-Huang, Y. Shin,

E. Moritz, M. Gethers, D. Poshyvanyk,J. Maletic, J. H. Hayes, A.

Dekhtyar, D. Manukian, S. Hussein, and D. Hearn, “Tracelab:

An experimental workbench for equipping researchers to

innovate, synthesize, and comparatively evaluate traceability

solutions,” In 34th IEEE/ACM ICSE’12, pp 1375–1378, June,

2012.

[10] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia and E. Merlo,

“Recovering traceability links between code and

documentation,” IEEE Transactions on Software Engineering,

vol.28, no.10, pp.970-983, 2002.

[11] G. Salton, A. Wong, and C. S. Yang, “A Vector Space Model

for Automatic Indexing,” Communications of the ACM, vol.18,

no.11, pp.613–620, November, 1975.

[12] G. Salton and M. J. McGill, “Introduction to modern

information retrieval,” McGraw-Hill, New York, June, 1983.

[13] H. Eyal-Salman, A.-D. Seriai, and C. Dony, “Feature-to-code

traceability in a collection of software variants: combining

formal concept analysis and information retrieval,” the 14th

IEEE International Conference on Information Reuse and

Integration (IRI’13), pp.209-216, August, 2013.

[14] J. Cleland-Huang, A. Czauderna, A. Dekhtyar, G. O., J.

Huffman Hayes, E. Keenan, G. Leach, J. Maletic, D.

Poshyvanyk, Y. Shin, A. Zisman, G. Antoniol, B. Berenbach, A.

Egyed, and P. Maeder, “Grand challenges, benchmarks, and

tracelab: Developing infrastructure for the software traceability

research community,” In 6th TEFSE2011, May, 2011.

[15] J.H. Hayes, A. Dekhtyar, and S.K. Sundaram, “Advancing

Candidate Link Generation for Requirements Tracing: The

Study of Methods”, IEEE Trans. Software Eng., vol. 32, no. 1,

Jan. 2006.

[16] J. Ramos, "Using tf-idf to determine word relevance in

document queries." Proceedings of the first instructional

conference on machine learning, December, 2003.

[17] M. Kassab, O. Ormandjieva, and M. Daneva, “A metamodel for

tracing non-functional requirements,” WRI World Congress on

Computer Science and Information Engineering (CSIE’09),

vol.7, pp.687-694, March, 2009.

[18] O. Gotel and A. Finkelstein, “An analysis of the requirements

traceability problem,” in Proc. of 1st International Conference

on Requirements Engineering, pp.94-101, April, 1994.

[19] P. Mäder and A. Egyed, “Assessing the effect of requirements

traceability for software maintenance,” the 28th IEEE

International Conference on Software Maintenance (ICSM’12),

pp.171-180, September, 2012.

[20] R. Tsuchiya, H. Washizaki, Y. Fukazawa, K. Oshima, and R.

Mibe, “Interactive recovery of requirements traceability links

using user feedback and configuration management logs,”

Proceedings of 27th International Conference on Advanced

Information Systems Engineering (CAiSE‘15), June, 2015.

[21] R. Tsuchiya, H. Washizaki, Y. Fukazawa, T. Kato, M.

Kawakami, and K. Yoshimura, “Recovering Traceability Links

between Requirements and Source Code in the Same Series of

Software Products,” Proceedings of 17th International Software

Product Line Conference (SPLC ‘13), Tokyo, August, 2013.

[22] R. Tsuchiya, H. Washizaki, Y. Fukazawa, T. Kato, M.

Kawakami and K. Yoshimura, “Recovering traceability links

between requirements and source code using the configuration

management log,” IEICE Transactions on Information and

Systems, Vol.98-D, 2015.

[23] T. Dasgupta, M. Grechanik, E. Moritz, B. Dit, and D.

Poshyvanyk, “Enhancing software traceability by automatically

expanding corpora with relevant documentation,” the 29th IEEE

International Conference on Software Maintenance (ICSM’13),

pp.320-329, September, 2013.

[24] CoEST, http://www.coest.org/

