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When the dimension of covariates in the regression model is high, one usually uses a submodel as a working model that contains
signi�cant variables. �ut it may be highly biased and the resulting estimator of the parameter of interest may be very poor when
the coefficients of removed variables are not exactly zero. In this paper, based on the selected submodel, we introduce a two-stage
remodeling method to get the consistent estimator for the parameter of interest. More precisely, in the �rst stage, by a multistep
adjustment, we reconstruct an unbiased model based on the correlation information between the covariates; in the second stage,
we further reduce the adjusted model by a semiparametric variable selection method and get a new estimator of the parameter of
interest simultaneously. Its convergence rate and asymptotic normality are also obtained. e simulation results further illustrate
that the new estimator outperforms those obtained by the submodel and the full model in the sense of mean square errors of point
estimation and mean square prediction errors of model prediction.

1. Introduction

Consider the following partially linear regression model:

𝑌𝑌 𝑌 𝑌𝑌𝑇𝑇𝑋𝑋 𝑋 𝑋𝑋𝑇𝑇𝑍𝑍 𝑋 𝑍𝑍 (𝑈𝑈) 𝑋 𝜀𝜀𝜀 (1)

where 𝑌𝑌 is a scalar response variable, 𝑋𝑋 and 𝑍𝑍 are, respec-
tively, 𝑝𝑝-dimensional and 𝑞𝑞-dimensional continuous-valued
covariates with 𝑝𝑝 being �nite and 𝑝𝑝 𝑝 𝑞𝑞, 𝑌𝑌 is the parameter
vector of interest and 𝑋𝑋 is the nuisance parameter vector
which is supposed to be sparse in the sense that ‖𝑋𝑋‖2 is
small, 𝑍𝑍(𝑓) is an unknown function satisfying 𝐸𝐸𝑍𝑍(𝑈𝑈) 𝑌 𝐸
for identi�cation, 𝜀𝜀 is the random error satisfying 𝐸𝐸(𝜀𝜀 𝐸
𝑋𝑋𝜀𝑍𝑍𝜀𝑈𝑈) 𝑌 𝐸. For simplicity, we assume that 𝑈𝑈 is univariate.
Let (𝑌𝑌𝑖𝑖𝜀 𝑋𝑋𝑖𝑖𝜀 𝑍𝑍𝑖𝑖𝜀 𝑈𝑈𝑖𝑖), 𝑖𝑖 𝑌 𝑖𝜀𝑖 𝜀 𝑖𝑖, be i.i.d. observations of
(𝑌𝑌𝜀𝑋𝑋𝜀𝑍𝑍𝜀𝑈𝑈) obtained from the above model.

A feature of themodel is that the parametric part contains
both the parameter vector of interest and nuisance parameter
vector.e reason for this coefficient separation is as follows.
In practice we oen use such a model to distinguish the main
treatment variables of interest from the state variables. For

instance, in a clinical trial, 𝑋𝑋 consists of treatment variables
and can be easily controlled, 𝑍𝑍 is a vector of many clinical
variables, such as patient ages and bodyweights.e variables
in 𝑍𝑍 may have an impact on 𝑌𝑌 but are not of primary
interest and the effects may be small. In order to make up
for potentially nonnegligible effects on the response 𝑌𝑌, the
nuisance covariate𝑍𝑍 are introduced into model (1); see Shen
et al. [1]. Model (1) contains all relevant covariates and in this
paper we call it full model.

e purpose of this paper is to estimate 𝑌𝑌, the parameter
of interest, when 𝑋𝑋𝑇𝑇𝑍𝑍 is removed from the model. e main
idea is remodeling based on the following working model:

𝑌𝑌 𝑌 𝑌𝑌𝑇𝑇𝑋𝑋 𝑋 𝑍𝑍 (𝑈𝑈) 𝑋 𝜂𝜂𝜂 (2)

As is known, 𝐸𝐸(𝜂𝜂 𝐸 𝑋𝑋 𝑌 𝐸𝐸𝜀𝑈𝑈 𝑌 𝐸𝐸) is a nonzero function
if 𝑋𝑋𝑇𝑇𝐸𝐸(𝑍𝑍 𝐸 𝑋𝑋𝜀𝑈𝑈) 𝐸 𝐸, which relies on two elements, one
is 𝐸𝐸(𝑍𝑍 𝐸 𝑋𝑋𝜀𝑈𝑈), related with the correlation between the
covariates of 𝑍𝑍 and (𝑋𝑋𝜀𝑈𝑈), the other is 𝑋𝑋, determined by
the nuisance parameter in the removed part. us the least
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squares estimator based on model (2) may be inconsistent.
In the following, we will make use of the above two ele-
ments. Speci�cally, in the �rst stage, we shall construct a
remodeled model by a multistep-adjustment to correct the
submodel bias based on the correlation information between
the covariates. is adjustment is motivated by Gai et al.
[2]. In the paper, they proposed a nonparametric adjustment
by adding a univariate nonparametric estimation to the
working model (2), and it can dramatically reduce the bias
of the working model. But this only holds in a subset of
the covariates, although the subset may be fairly large. In
order to obtain a globally unbiased working model for linear
regression model, Zeng et al. [3] adjusted the working model
bymultiple steps. Because only those variables in𝑍𝑍 correlated
with (𝑋𝑋𝑋𝑋𝑋𝑋may have impact on estimation of 𝛽𝛽, in each step
a univariate nonparametric part was added to the working
model and consequently a globally unbiased working model
was obtained.

However, when many components of 𝑍𝑍 are correlated
with (𝑋𝑋𝑋𝑋𝑋𝑋, the number of nonparametric functions added
in the aboveworkingmodel is large. Such amodel is improper
in practice. us, in the second stage, we further simplify
the above adjusted model by a semiparametric variable
selection procedure proposed by Zhao and Xue [4]. eir
method can select signi�cant parametric and nonparametric
components simultaneously under sparsity condition for
semiparametric varying coefficient partially linear models.
e relevant papers include Fan and Li [5], Wang et al. [6, 7],
among others. A�er two-stage remodeling, the �nal model is
conditionally unbiased. Based on this model, the estimation
and model prediction are signi�cantly improved.

e rest of this paper is organized as follows. In Section
2, a multistep adjustment and remodeled models are �rstly
proposed, then the models are further simpli�ed via the
semiparametric SCAD variable selection procedure. A new
estimator of the parameter of interest based on the simpli-
�ed model is derived, its convergence rate and asymptotic
normality are also obtained. Simulations are given in Section
3. A short conclusion and some remarks are contained in
Section 4. Some regular conditions and theoretical proofs are
presented in the appendix.

2. New Estimator for the Parameter of Interest

In this paper, we suppose that covariate𝑍𝑍 has zero mean, 𝑝𝑝 is
�nite and 𝑝𝑝 𝑝 𝑝𝑝, 𝐸𝐸(𝐸𝐸 𝐸 𝑋𝑋𝑋𝑍𝑍𝑋𝑋𝑋𝑋 𝐸 𝐸 and Var(𝐸𝐸 𝐸 𝑋𝑋𝑋𝑍𝑍𝑋𝑋𝑋𝑋 𝐸
𝜎𝜎2. We also assume that covariates𝑋𝑋 and𝑋𝑋 and parameter 𝛽𝛽
are prespeci�ed, so that the submodel (2) is a �xed model.

2.1. Multistep-Adjustment by Correlation. In this subsection,
we �rst adjust the submodel to be conditionally unbiased by
a multistep-adjustment.

When𝑍𝑍 is normally distributed, the principal component
analysis (PCA)method will be used. Let Σ𝑍𝑍 be the covariance
matrix of 𝑍𝑍, then there exists an orthogonal 𝑝𝑝 𝑞 𝑝𝑝 matrix
𝑄𝑄 such that 𝑄𝑄Σ𝑍𝑍𝑄𝑄

𝑇𝑇 𝐸 Λ, where Λ is the diagonal matrix
diag(𝜆𝜆1𝑋 𝜆𝜆2𝑋… 𝑋 𝜆𝜆𝑝𝑝𝑋 with 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑝𝑝 ≥ 𝐸 being eigen-
values of Σ𝑍𝑍. Denote𝑄𝑄

𝑇𝑇 𝐸 (𝜏𝜏1𝑋 𝜏𝜏2𝑋… 𝑋 𝜏𝜏𝑝𝑝𝑋 and 𝑍𝑍
(𝑗𝑗𝑋 𝐸 𝜏𝜏𝑇𝑇𝑗𝑗 𝑍𝑍.

When 𝑍𝑍 is centered but nonnormally distributed, we
shall apply independent component analysis (ICA) method.
Assume that 𝑍𝑍 is generated by a nonlinear combination of
independent components 𝑍𝑍(𝑖𝑖𝑋, that is 𝑍𝑍 𝐸 𝑍𝑍(𝑍𝑍𝑋, where 𝑍𝑍(𝐹𝑋
is an unknown nonlinear mapping from 𝑅𝑅𝑝𝑝 to 𝑅𝑅𝑝𝑝, 𝑍𝑍 is an
unknown random vector with independent components. By
imposing some constraints on the nonlinearmixingmapping
𝑍𝑍 or the independent components 𝑍𝑍(𝑖𝑖𝑋, the independent
components 𝑍𝑍(𝑖𝑖𝑋 can be properly estimated. See Simas Filho
and Seixas [8] for an overview of the main statistical prin-
ciples and some algorithms for estimating the independent
components. For simplicity, in this paper we suppose that
𝑍𝑍 𝐸 (𝑍𝑍(1𝑋𝑋… 𝑋𝑍𝑍(𝑝𝑝𝑋𝑋𝑇𝑇 with 𝑍𝑍(𝑙𝑙𝑋 𝐸 Σ𝑝𝑝𝑗𝑗𝐸1𝑍𝑍𝑙𝑙𝑗𝑗(𝑍𝑍

(𝑗𝑗𝑋𝑋, 𝑙𝑙 𝐸 1𝑋… 𝑋 𝑝𝑝,
and 𝑍𝑍𝑙𝑙𝑗𝑗(𝐹𝑋 are scalar functions.

In the above two cases, 𝑍𝑍(𝑗𝑗𝑋’s are independent of each
other. Set 𝐾𝐾𝐸 to be the size of set 𝑀𝑀𝐸 𝐸 {𝑗𝑗 𝑗 𝐸𝐸(𝑍𝑍(𝑗𝑗𝑋 𝐸
𝑋𝑋𝑋𝑋𝑋𝑋 𝑋 𝐸𝑋 1 𝑋 𝑗𝑗 𝑋 𝑝𝑝𝑋. Without loss of generality, let 𝑀𝑀𝐸 𝐸
{1𝑋… 𝑋𝐾𝐾𝐸𝑋.

We construct the following adjusted model:

𝑌𝑌 𝐸 𝛽𝛽𝑇𝑇𝑋𝑋 𝑋
𝐾𝐾𝐸


𝑗𝑗𝐸1
𝑔𝑔𝑗𝑗 𝑍𝑍

(𝑗𝑗𝑋 𝑋 𝑓𝑓 (𝑋𝑋𝑋 𝑋 𝜁𝜁𝐾𝐾𝐸
𝑋 (3)

where 𝑔𝑔𝑗𝑗(𝑍𝑍
(𝑗𝑗𝑋𝑋 𝐸 𝐸𝐸(𝑌𝑌 𝐸 𝛽𝛽𝑇𝑇𝑋𝑋𝐸𝑓𝑓(𝑋𝑋𝑋 𝐸 𝑍𝑍(𝑗𝑗𝑋𝑋 𝐸 𝛾𝛾𝑇𝑇𝐸𝐸(𝑍𝑍 𝐸 𝑍𝑍(𝑗𝑗𝑋𝑋,

𝑗𝑗 𝐸 1𝑋… 𝑋𝐾𝐾𝐸 and 𝜁𝜁𝐾𝐾𝐸
𝐸 𝑌𝑌𝐸𝛽𝛽𝑇𝑇𝑋𝑋𝐸𝑔𝑔1(𝑍𝑍

(1𝑋𝑋𝐸⋯𝐸𝑔𝑔𝐾𝐾𝐸
(𝑍𝑍(𝐾𝐾𝐸𝑋𝑋𝐸

𝑓𝑓(𝑋𝑋𝑋. e model (3) is based on 𝑍𝑍’s population and depends
on the distributions of𝑋𝑋,𝑋𝑋 and𝑍𝑍. It is easy to see that model
(3) is conditionally unbiased, that is, 𝐸𝐸(𝜁𝜁𝐾𝐾𝐸

𝐸 𝑋𝑋𝑋𝑋𝑋𝑋 𝑍𝑍(𝑗𝑗𝑋𝑋 1 𝑋
𝑗𝑗 𝑋 𝐾𝐾𝐸𝑋 𝐸 𝐸.

e adjusted model (3) is an additive partially linear
model, in which 𝛽𝛽𝑇𝑇𝑋𝑋 is the parametric part, 𝑓𝑓(𝑋𝑋𝑋 and
𝑔𝑔𝑗𝑗(𝑍𝑍

(𝑗𝑗𝑋𝑋, 𝑗𝑗 𝐸 1𝑋… 𝑋𝐾𝐾𝐸, are the nonparametric parts and
𝜁𝜁𝐾𝐾𝐸

is the random error. Compared with the submodel (2),
the nonparametric parts 𝑔𝑔𝑗𝑗(𝑍𝑍

(𝑗𝑗𝑋𝑋, 𝑗𝑗 𝐸 1𝑋… 𝑋𝐾𝐾𝐸, may be
regarded as bias-corrected terms for the random error 𝜂𝜂. For
centered 𝑍𝑍, 𝐸𝐸(𝑔𝑔𝑗𝑗(𝑍𝑍

(𝑗𝑗𝑋𝑋𝑋 𝐸 𝐸, 𝑗𝑗 𝐸 1𝑋… 𝑋𝐾𝐾𝐸, the nonpara-

metric components 𝑔𝑔1(𝑍𝑍
(1𝑋𝑋𝑋… 𝑋 𝑔𝑔𝐾𝐾𝐸

(𝑍𝑍(𝐾𝐾𝐸𝑋𝑋 can be properly
identi�ed. In fact, centered 𝑍𝑍 can be relaxed to any 𝑍𝑍 such
that satis�es 𝛾𝛾𝑇𝑇𝐸𝐸(𝑍𝑍𝑋 𝐸 𝐸.

When 𝑍𝑍 is centered and normally distributed, the non-
parametric parts 𝑔𝑔𝑗𝑗(𝑍𝑍

(𝑗𝑗𝑋𝑋 𝐸 𝛼𝛼𝑗𝑗𝜏𝜏
𝑇𝑇
𝑗𝑗 𝑍𝑍 𝐸 𝛼𝛼𝑗𝑗𝑍𝑍

(𝑗𝑗𝑋, 𝑗𝑗 𝐸 1𝑋… 𝑋𝐾𝐾𝐸.
So the multistep adjusted model (3) is really a partially linear
model

𝑌𝑌 𝐸 𝛽𝛽𝑇𝑇𝑋𝑋 𝑋 𝛼𝛼𝑇𝑇𝑍𝑍𝐾𝐾𝐸
𝑋 𝑓𝑓 (𝑋𝑋𝑋 𝑋 𝜁𝜁𝐾𝐾𝐸

(4)

with 𝛼𝛼 𝐸 (𝛼𝛼1𝑋… 𝑋 𝛼𝛼𝐾𝐾𝐸
𝑋𝑇𝑇 and 𝑍𝑍𝐾𝐾𝐸

𝐸 (𝑍𝑍(1𝑋𝑋… 𝑋 𝑍𝑍(𝐾𝐾𝐸𝑋𝑋
𝑇𝑇
.

Specially, when 𝑓𝑓(𝑋𝑋𝑋 𝑓 𝐸, the full model is a linear model,
the multistep adjusted model is also a linear model

𝑌𝑌 𝐸 𝛽𝛽𝑇𝑇𝑋𝑋 𝑋 𝛼𝛼𝑇𝑇𝑍𝑍𝐾𝐾𝐸
𝑋 𝜁𝜁𝐾𝐾𝐸

. (5)
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But when the variables in 𝑍𝑍 are not jointly normal, the
nonparametric parts 𝑔𝑔𝑗𝑗 can be highly nonlinear, which are
similar to the results of marginal regression; see Fan et al. [9].

2.2. �o�e� �imp�i�cation. When the most of the features
in the full model are correlated, then 𝐾𝐾0 is very large and
even is close to 𝑞𝑞. In this case, the adjusted model (3)
is improper in practice, so we shall use the group SCAD
regression procedure, proposed by Wang et al. [6], and the
semiparametric variable selection procedure, proposed by
Zhao and Xue [4], to further simplify the model.

Let 𝑠𝑠 𝑠 𝑠𝑠∗𝑠with𝑠∗ 𝑠 {1 ≤ 𝑗𝑗 ≤ 𝐾𝐾0 ∶ 𝐸𝐸𝐸𝑔𝑔𝑗𝑗𝐸𝑍𝑍
𝐸𝑗𝑗𝑗𝑗𝑗

2
> 0},

and assume that the model (3) is sparse, that is, 𝑠𝑠 is small. We
de�ne the semiparametric penalized least squares as

𝐹𝐹 𝛽𝛽𝛽 𝑔𝑔 𝐸⋅𝑗 𝛽 𝑓𝑓 𝐸⋅𝑗𝑠
𝑛𝑛

𝑖𝑖𝑠1




𝑌𝑌𝑖𝑖 − 𝛽𝛽

𝑇𝑇𝑋𝑋𝑖𝑖 −
𝐾𝐾0


𝑗𝑗𝑠1
𝑔𝑔𝑗𝑗 𝑍𝑍

𝐸𝑗𝑗𝑗
𝑖𝑖  − 𝑓𝑓 𝑈𝑈𝑖𝑖





2

+ 𝑛𝑛
𝐾𝐾0


𝑗𝑗𝑠1
𝑝𝑝𝜆𝜆𝑗𝑗 𝑔𝑔𝑗𝑗 

𝑍𝑍𝐸𝑗𝑗𝑗 𝛽

(6)

where ‖𝑔𝑔𝑗𝑗𝐸𝑍𝑍
𝐸𝑗𝑗𝑗𝑗‖ 𝑠 𝐸𝐸𝐸𝐸𝑔𝑔𝑗𝑗𝐸𝑍𝑍

𝐸𝑗𝑗𝑗𝑗𝑗2𝑗1/2, and 𝑝𝑝𝜆𝜆𝐸⋅𝑗 is the SCAD
penalty function with 𝜆𝜆 being a tuning parameter de�ned as

𝑝𝑝′𝜆𝜆 𝐸𝑤𝑤𝑗 𝑠 𝜆𝜆𝐼𝐼 𝐸𝑤𝑤 ≤ 𝜆𝜆𝑗 +
𝐸𝑎𝑎𝜆𝜆 − 𝑤𝑤𝑗+
𝐸𝑎𝑎 − 1𝑗 𝜆𝜆

𝐼𝐼 𝐸𝑤𝑤 > 𝜆𝜆𝑗 𝛽 (7)

with 𝑎𝑎 > 2, 𝑤𝑤 > 0 and 𝑝𝑝𝜆𝜆𝐸0𝑗 𝑠 0. In (6), 𝑔𝑔𝐸⋅𝑗 denotes the
set {𝑔𝑔𝑗𝑗𝐸𝑍𝑍

𝐸𝑗𝑗𝑗𝑗𝛽 𝑗𝑗 𝑠 1𝛽𝑗 𝛽𝐾𝐾0}. Because 𝑔𝑔𝑗𝑗 are nonparametric
functions, thus they cannot be directly applied for minimiza-
tion. Here we will replace 𝑓𝑓𝐸⋅𝑗 and 𝑔𝑔𝐸⋅𝑗 by basis function
approximations. For 1 ≤ 𝑗𝑗 ≤ 𝐾𝐾0, let {Ψ𝑗𝑗𝑗𝑗𝛽 𝑗𝑗 𝑠 1𝛽𝑗 𝛽 𝑘𝑘} be
orthogonal basis functions satisfying

𝐸𝐸 Ψ𝑗𝑗𝑗𝑗Ψ𝑗𝑗𝑗𝑗 ≡ 
supp

Ψ𝑗𝑗𝑗𝑗 𝑍𝑍
𝐸𝑗𝑗𝑗Ψ𝑗𝑗𝑗𝑗 𝑍𝑍

𝐸𝑗𝑗𝑗 𝑟𝑟𝑗𝑗 𝑍𝑍
𝐸𝑗𝑗𝑗 𝑑𝑑𝑍𝑍

𝑠 𝛿𝛿𝑗𝑗𝑗𝑗 𝑠 
0𝛽 𝑗𝑗 𝑘 𝑗𝑗𝑘
1𝛽 𝑗𝑗 𝑠 𝑗𝑗𝛽

(8)

where 𝑟𝑟𝑗𝑗𝐸𝑍𝑍
𝐸𝑗𝑗𝑗𝑗 is the density function of 𝑍𝑍𝐸𝑗𝑗𝑗. Similarly,

let {Ψ0𝑗𝑗𝛽 𝑗𝑗 𝑠 1𝛽𝑗 𝛽 𝑘𝑘} be orthogonal basis functions
satisfying the above condition which is only replaced by
the support and density function of 𝑈𝑈. Denote Ψ𝑗𝑗𝐸𝑍𝑍

𝐸𝑗𝑗𝑗𝑗 𝑠

𝐸Ψ𝑗𝑗1𝐸𝑍𝑍
𝐸𝑗𝑗𝑗𝑗𝛽𝑗 𝛽Ψ𝑗𝑗𝑘𝑘𝐸𝑍𝑍

𝐸𝑗𝑗𝑗𝑗𝑗
𝑇𝑇
, Ψ0𝐸𝑈𝑈𝑗 𝑠 𝐸Ψ01𝐸𝑈𝑈𝑗𝛽𝑗 𝛽Ψ0𝑘𝑘𝐸𝑈𝑈𝑗𝑗

𝑇𝑇.
en 𝑔𝑔𝑗𝑗𝐸𝑍𝑍

𝐸𝑗𝑗𝑗𝑗 and 𝑓𝑓𝐸𝑈𝑈𝑗 can be approximated by

𝑔𝑔𝑗𝑗 𝑍𝑍
𝐸𝑗𝑗𝑗 ≈ 𝜃𝜃𝑇𝑇𝑗𝑗 Ψ𝑗𝑗 𝑍𝑍

𝐸𝑗𝑗𝑗 𝛽 𝑓𝑓 𝐸𝑈𝑈𝑗 ≈ 𝜈𝜈𝑇𝑇Ψ0 𝐸𝑈𝑈𝑗 . (9)

Denote ‖𝜃𝜃𝑗𝑗‖2 𝑠 𝐸𝜃𝜃𝑇𝑇𝑗𝑗 𝜃𝜃𝑗𝑗𝑗
1/2, invoking that 𝐸𝐸𝐸Ψ𝑗𝑗𝐸𝑍𝑍

𝐸𝑗𝑗𝑗𝑗

⋅Ψ𝑇𝑇
𝑗𝑗 𝐸𝑍𝑍

𝐸𝑗𝑗𝑗𝑗𝑗 𝑠 𝐈𝐈𝑘𝑘 the identity matrix, we get

𝐹𝐹 𝛽𝛽𝛽 𝜃𝜃𝛽 𝜈𝜈 𝑠
𝑛𝑛

𝑖𝑖𝑠1
𝑌𝑌𝑖𝑖 − 𝛽𝛽

𝑇𝑇𝑋𝑋𝑖𝑖 − 𝜃𝜃
𝑇𝑇Ψ𝐢𝐢 − 𝜈𝜈

𝑇𝑇Ψ𝟎𝟎𝐢𝐢
2

+ 𝑛𝑛
𝐾𝐾0


𝑗𝑗𝑠1
𝑝𝑝𝜆𝜆𝑗𝑗 𝜃𝜃𝑗𝑗2 𝛽

(10)

where 𝜃𝜃 𝑠 𝐸𝜃𝜃𝑇𝑇1 𝛽𝑗 𝛽 𝜃𝜃𝑇𝑇𝐾𝐾0
𝑗
𝑇𝑇
, Ψ𝐢𝐢 ≡ Ψ𝐸𝑍𝑍𝑖𝑖𝑗 𝑠 Vec𝐸Ψ1𝐸𝑍𝑍

𝐸1𝑗
𝑖𝑖 𝑗𝛽

𝑗 𝛽Ψ𝐾𝐾0
𝐸𝑍𝑍𝐸𝐾𝐾0𝑗

𝑖𝑖 𝑗𝑗, Ψ𝟎𝟎𝐢𝐢 ≡ Ψ0𝐸𝑈𝑈𝑖𝑖𝑗.

Denote by 𝛽𝛽, 𝜃𝜃 𝑠 𝐸𝜃𝜃
𝑇𝑇
1 𝛽𝑗 𝛽 𝜃𝜃

𝑇𝑇
𝐾𝐾0
𝑗
𝑇𝑇

and 𝜈𝜈 the least
squares estimators based on the penalized function (10),
that is 𝐸𝛽𝛽𝛽 𝜃𝜃𝛽 𝜈𝜈𝑗 𝑠 𝜈𝜈𝜈𝜈𝜈𝜈𝛽𝛽𝛽𝛽𝛽𝑝𝑝𝛽𝜃𝜃𝑗𝑗𝛽𝛽𝛽𝑘𝑘𝛽𝜈𝜈𝛽𝛽𝛽𝑘𝑘𝐹𝐹𝐸𝛽𝛽𝛽 𝜃𝜃𝛽 𝜈𝜈𝑗. Let𝑔𝑔𝑗𝑗 ≡

𝑔𝑔𝑗𝑗𝐸𝑍𝑍
𝐸𝑗𝑗𝑗𝑗 𝑠 𝜃𝜃

𝑇𝑇
𝑗𝑗 Ψ𝑗𝑗𝐸𝑍𝑍

𝐸𝑗𝑗𝑗𝑗 and 𝑓𝑓 ≡ 𝑓𝑓𝐸𝑈𝑈𝑗 𝑠 𝜈𝜈𝑇𝑇Ψ0𝐸𝑈𝑈𝑗, then𝑔𝑔𝑗𝑗 is

an estimator of 𝑔𝑔𝑗𝑗𝐸𝑍𝑍
𝐸𝑗𝑗𝑗𝑗, 𝑓𝑓 is an estimator of 𝑓𝑓𝐸𝑈𝑈𝑗.

Let𝑠𝑛𝑛 𝑠 {1 ≤ 𝑗𝑗 ≤ 𝐾𝐾0 ∶ 𝜃𝜃𝑗𝑗 𝑘 0} and 𝐾𝐾𝑛𝑛 𝑠 𝑠𝑠𝑛𝑛𝑠.
For simplicity, we assume that𝑠∗ 𝑠 {1𝛽 2𝛽𝑗 𝛽 𝑠𝑠} and𝑠𝑛𝑛 𝑠
{1𝛽 2𝛽𝑗 𝛽𝐾𝐾𝑛𝑛}. So we get the following simpli�ed working
model

𝑌𝑌 𝑠 𝛽𝛽𝑇𝑇𝑋𝑋 +
𝐾𝐾𝑛𝑛


𝑗𝑗𝑠1
𝑔𝑔𝑗𝑗 𝑍𝑍

𝐸𝑗𝑗𝑗 + 𝑓𝑓 𝐸𝑈𝑈𝑗 + 𝜁𝜁𝐾𝐾𝑛𝑛
𝛽 (11)

where 𝑔𝑔𝑗𝑗𝐸𝑍𝑍
𝐸𝑗𝑗𝑗𝑗 𝑠 𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑍𝑍 𝑍 𝑍𝑍𝐸𝑗𝑗𝑗𝑗, 𝑗𝑗 𝑠 1𝛽𝑗 𝛽𝐾𝐾𝑛𝑛 and

𝜁𝜁𝐾𝐾𝑛𝑛
𝑠 𝑌𝑌 − 𝛽𝛽𝑇𝑇𝑋𝑋 − 𝑔𝑔1𝐸𝑍𝑍

𝐸1𝑗𝑗 − ⋯ − 𝑔𝑔𝐾𝐾𝑛𝑛
𝐸𝑍𝑍𝐸𝐾𝐾𝑛𝑛𝑗𝑗 − 𝑓𝑓𝐸𝑈𝑈𝑗.

Under the assumption of sparsity, the model (11) contains
all of signi�cant nonparametric functions and fully utilizes
both the correlation information of covariates and the model
sparsity on nuisance covariate.

If𝑍𝑍 is centered and normally distributed with covariance
matrix Σ𝑍𝑍 𝑠 𝐼𝐼𝑞𝑞 the identity matrix, then 𝜏𝜏𝑗𝑗 𝑠 𝑒𝑒𝑗𝑗, 𝑗𝑗 𝑠
1𝛽𝑗 𝛽 𝑞𝑞, where 𝑒𝑒𝑗𝑗 denotes the unit vector with 1 at position
𝑗𝑗, and 𝛼𝛼 is sparse with 𝛼𝛼𝑗𝑗 𝑠 𝐸𝐸𝑇𝑇𝜏𝜏𝑗𝑗 𝑠 𝐸𝐸𝑗𝑗. So the model
(4) is sparse. For model (5), the special case of model (4),
we can apply the SCAD penalty method proposed by Fan
and Li [5] to select variables in 𝑍𝑍𝐾𝐾0

and estimate parameters
𝛼𝛼 and 𝛽𝛽 simultaneously. e selected covariate and the
corresponding parameter are denoted by 𝑍𝑍𝐾𝐾𝑛𝑛

and 𝛼𝛼𝐾𝐾𝑛𝑛
, the

resulting parameter estimators are denoted by𝛼𝛼𝐾𝐾𝑛𝑛
and 𝛽𝛽,

respectively. Finally, we can use the simpli�ed model

𝑌𝑌 𝑠 𝛽𝛽𝑇𝑇𝑋𝑋 + 𝛼𝛼𝑇𝑇𝐾𝐾𝑛𝑛
𝑍𝑍𝐾𝐾𝑛𝑛

+ 𝜁𝜁𝐾𝐾𝑛𝑛
(12)

for model prediction. Under the condition of sparsity, its
model size is much smaller than those of the multistep
adjusted model (5) and the full model (1).

2.3. Asymptotic Property of Point Estimator. Let 𝛽𝛽0, 𝜃𝜃0, 𝜈𝜈0,
and 𝑔𝑔𝑗𝑗0𝐸⋅𝑗, 𝑓𝑓0𝐸⋅𝑗 be the true values of 𝛽𝛽, 𝜃𝜃, 𝜈𝜈, and 𝑔𝑔𝑗𝑗𝐸⋅𝑗,
𝑓𝑓𝐸⋅𝑗, respectively, in model (3). Without loss of generality, we
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assume that 𝑔𝑔𝑗𝑗𝑗(𝑍𝑍
(𝑗𝑗𝑗𝑗 = 𝑗, 𝑗𝑗 = 𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗𝑗𝑗𝑗, and 𝑔𝑔𝑗𝑗𝑗(𝑍𝑍

(𝑗𝑗𝑗𝑗,
𝑗𝑗 = 𝑗𝑗𝑗 𝑗 𝑗𝑗, are all nonzero components.

We suppose that 𝑔𝑔𝑗𝑗(𝑍𝑍
(𝑗𝑗𝑗𝑗, 𝑗𝑗 = 𝑗𝑗𝑗 𝑗𝑗𝑗𝑗 can be

expressed as ∑∞
𝑘𝑘=𝑗 𝜃𝜃𝑗𝑗𝑘𝑘Ψ𝑗𝑗𝑘𝑘(𝑍𝑍

(𝑗𝑗𝑗𝑗 and 𝑓𝑓(𝑓𝑓𝑗 can be expressed
as ∑∞

𝑘𝑘=𝑗 𝜈𝜈𝑘𝑘Ψ𝑗𝑘𝑘(𝑓𝑓𝑗, 𝜃𝜃𝑗𝑗 and 𝜈𝜈 belong to the Sobolev ellipsoid
𝑆𝑆(𝑆𝑆𝑗𝑆𝑆𝑗 = 𝑆𝜃𝜃 𝑆 ∑∞

𝑘𝑘=𝑗 𝜃𝜃
2
𝑘𝑘𝑘𝑘

2𝑆𝑆 ≤ 𝑆𝑆𝑗 𝑆𝑆 𝑀 𝑗𝑗 𝑆𝑆 𝑀 𝑗𝑀.
e following theorem gives the consistency of the

penalized SCAD estimators.

eorem 1. Suppose that the regularity conditions (C1)–(C5)
in the appendix hold and the number of terms 𝐿𝐿 =
𝑂𝑂𝑝𝑝(𝑛𝑛

𝑗/(2𝑆𝑆𝑗𝑗𝑗𝑗. en,

(i) ‖𝛽𝛽 𝛽 𝛽𝛽𝑗‖ = 𝑂𝑂𝑝𝑝(𝑛𝑛
𝛽𝑆𝑆/(2𝑆𝑆𝑗𝑗𝑗 𝑗 𝑎𝑎𝑛𝑛𝑗,

(ii) ‖𝑔𝑔𝑗𝑗(⋅𝑗 𝛽 𝑔𝑔𝑗𝑗𝑗(⋅𝑗‖ = 𝑂𝑂𝑝𝑝(𝑛𝑛
𝛽𝑆𝑆/(2𝑆𝑆𝑗𝑗𝑗 𝑗 𝑎𝑎𝑛𝑛𝑗𝑗 𝑗𝑗 = 𝑗𝑗𝑗 𝑗𝑗𝑗𝑗,

(iii) ‖ 𝑓𝑓(⋅𝑗 𝛽 𝑓𝑓𝑗(⋅𝑗‖ = 𝑂𝑂𝑝𝑝(𝑛𝑛
𝛽𝑆𝑆/(2𝑆𝑆𝑗𝑗𝑗 𝑗 𝑎𝑎𝑛𝑛𝑗,

where 𝑎𝑎𝑛𝑛 = max𝑗𝑗𝑆|𝑝𝑝
′
𝜆𝜆𝑗𝑗 (‖𝜃𝜃𝑗𝑗𝑗‖2𝑗| 𝑆 𝜃𝜃𝑗𝑗𝑗 ≠ 𝑗𝑀.

From the last paragraph of Section 2.2 we know that,
for linear regression model and normally distributed 𝑍𝑍, the
multistep adjustedmodel (5) is a linear model. By orthogonal
basis functions, such as power series, we have 𝑆𝑆 = ∞, then
‖𝛽𝛽 𝛽 𝛽𝛽𝑗‖ = 𝑂𝑂𝑝𝑝(𝑛𝑛

𝛽𝑗/2 𝑗 𝑎𝑎𝑛𝑛𝑗, implying the estimator 𝛽𝛽 has the
same convergence rate as that of the SCAD estimator in Fan
and Li [5].

eorem 2. Suppose that the regularity conditions (C1)–(C6)
in the appendix hold and the number of terms 𝐿𝐿 =
𝑂𝑂𝑝𝑝(𝑛𝑛

𝑗/(2𝑆𝑆𝑗𝑗𝑗𝑗. Let 𝜆𝜆max = max𝑗𝑗𝑆𝜆𝜆𝑗𝑗𝑀 and 𝜆𝜆min = min𝑗𝑗𝑆𝜆𝜆𝑗𝑗𝑀. If
𝜆𝜆max → 𝑗 and 𝑛𝑛𝑆𝑆/(2𝑆𝑆𝑗𝑗𝑗𝜆𝜆min → ∞ as 𝑛𝑛 → ∞, then, with
probability tending to 1,𝑔𝑔𝑗𝑗(⋅𝑗 ≡ 𝑗, 𝑗𝑗 = 𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗𝑗𝑗𝑗.

Remark 3. By Remark 1 of Fan and Li [5], we have that,
if 𝜆𝜆max → 𝑗 as 𝑛𝑛 → ∞, then 𝑎𝑎𝑛𝑛 → 𝑗. Hence from
eorems 1 and 2, by choosing proper tuning parameters, the
variable selection method is consistent and the estimators of
nonparametric components achieve the optimal convergence
rate as if the subset of true zero coefficients was already
known; see Stone [10].

Let 𝜃𝜃∗ = (𝜃𝜃𝑇𝑇𝑗 𝑗𝑗 𝑗 𝜃𝜃𝑇𝑇𝑗𝑗 𝑗
𝑇𝑇 be the nonzero components of 𝜃𝜃,

corresponding covariates are denoted by Ψ∗
𝑖𝑖 𝑗 𝑖𝑖 = 𝑗𝑗𝑗 𝑗 𝑛𝑛. In

addition, let

Σ =
𝑗
𝜎𝜎2𝑗𝑗𝑗

𝐸𝐸 𝑋𝑋𝑋𝑋𝑇𝑇 𝛽 𝐸𝐸 𝑋𝑋Ψ∗𝑇𝑇 𝐸𝐸𝛽𝑗 Ψ∗Ψ∗𝑇𝑇 𝐸𝐸 Ψ∗𝑋𝑋𝑇𝑇

𝛽𝐸𝐸 𝑋𝑋Ψ̆𝑇𝑇
𝑗  𝐸𝐸

𝛽𝑗 Ψ̆𝑗Ψ̆
𝑇𝑇
𝑗  𝐸𝐸 Ψ̆𝑗𝑋𝑋

𝑇𝑇 𝑗
(13)

where 𝜎𝜎2𝑗𝑗𝑗
= Var(𝜁𝜁𝑗𝑗𝑗𝑖𝑖𝑗 for homoscedastic case, Ψ̆𝑗 = Ψ𝑗 𝛽

𝐸𝐸(Ψ𝑗Ψ
∗𝑇𝑇𝑗𝐸𝐸𝛽𝑗(Ψ∗Ψ∗𝑇𝑇𝑗Ψ∗.

eorem 4. Suppose that the regularity conditions (C1)–(C6)
in the appendix hold and the number of terms 𝐿𝐿 =
𝑂𝑂𝑝𝑝(𝑛𝑛

𝑗/(2𝑆𝑆𝑗𝑗𝑗𝑗. If Σ is invertible, then

√𝑛𝑛 𝛽𝛽 𝛽 𝛽𝛽𝑗
𝒟𝒟⟶𝑁𝑁𝑗𝑗 Σ𝛽𝑗 𝑗 (14)

where “ 𝒟𝒟𝛽𝛽→” denotes the convergence in distribution.

Remark 5. From eorems 1 and 4, it can be found that the
penalized estimators have the oracle property. Furthermore,
the estimator of the parameter of interest has the same asymp-
totic distribution as that based on the correct submodel.

2.4. Some Issues on Implementation. In the adjusted model
(4), 𝜏𝜏𝑗𝑗𝑗 𝑗𝑗 = 𝑗𝑗𝑗 𝑗𝑗𝑗𝑗 are used. When the population
distribution is not available, they need to be approximated by
estimators. When 𝑍𝑍 is normally distributed and eigenvalues
𝑆𝑆𝑗𝑗𝑗 𝑗𝑗 = 𝑗𝑗𝑗 𝑗 𝑗𝑗 of the covariance matrix Σ𝑍𝑍 are different
from each other, then√𝑛𝑛(𝑛𝑛𝑗𝑗 𝛽 𝜏𝜏𝑗𝑗𝑗 is asymptotically𝑁𝑁(𝑁𝑁𝑗𝑁𝑁𝑗𝑗𝑗
with 𝑁𝑁𝑗𝑗 = ∑𝑗𝑗

𝑙𝑙 ≠ 𝑗𝑗(𝑆𝑆𝑗𝑗𝑆𝑆𝑙𝑙/(𝑆𝑆𝑗𝑗 𝛽 𝑆𝑆𝑙𝑙𝑗
2𝑗𝜏𝜏𝑙𝑙𝜏𝜏

𝑇𝑇
𝑙𝑙 , where 𝑛𝑛𝑗𝑗 is the 𝑗𝑗th

eigenvector of 𝑆𝑆 = (𝑗/(𝑛𝑛 𝛽 𝑗𝑗𝑗∑𝑛𝑛
𝑖𝑖=𝑗(𝑍𝑍𝑖𝑖 𝛽 𝑍𝑍𝑗(𝑍𝑍𝑖𝑖 𝛽 𝑍𝑍𝑗𝑇𝑇

with 𝑍𝑍 = (𝑗/𝑛𝑛𝑗∑𝑛𝑛
𝑖𝑖=𝑗 𝑍𝑍𝑖𝑖; see Anderson [11]. For the case

when the population size is large and comparable with the
sample size, if the covariance matrix is sparse, we can use
the method in Rütimann and Bühlmann [12] or Cai and Liu
[13] to estimate the covariance matrix. So we can use 𝑛𝑛𝑗𝑗 to
approximate 𝜏𝜏𝑗𝑗. When 𝜏𝜏𝑗𝑗 in model (4) are replaced by these
consistent estimators, one can see that the approximation
error can be neglected without changing the asymptotic pro-
perty.

e nonparametric parts 𝑔𝑔𝑙𝑙(𝑍𝑍
(𝑙𝑙𝑗𝑗 in the adjusted model

depend on the univariate variable 𝑍𝑍(𝑙𝑙𝑗, for 𝑙𝑙 = 𝑗𝑗𝑗 𝑗𝑗𝑗𝑗. So it
needs to choose the steps 𝑗𝑗𝑗 �rstly. In real implementation,
we compute all the 𝑗𝑗 multiple correlation coefficients of
𝑍𝑍(𝑙𝑙𝑗 (𝑙𝑙 = 𝑗𝑗𝑗 𝑗 𝑗𝑗) with 𝑋𝑋 and 𝑓𝑓. en we choose the
components 𝑅𝑅 = 𝑆𝑍𝑍(𝑙𝑙𝑗: |mcorr(𝑍𝑍(𝑙𝑙𝑗𝑗 (𝑋𝑋𝑗𝑓𝑓𝑗𝑗| 𝑋 𝑋𝑋𝑗 𝑙𝑙 =
𝑗𝑗𝑗 𝑗 𝑗𝑗𝑀 for given small number 𝑋𝑋 𝑀 𝑗, where mcorr(𝑛𝑛𝑗 𝑁𝑁𝑗
denotes the multicorrelation coefficient between 𝑛𝑛 and 𝑁𝑁
and can be approximated by its sample form; see Anderson
[11].

ere are some tuning parameters needing to choose in
order to implement the two-stage remodeling procedure. Fan
and Li [5] showed that the SCAD penalty with 𝑎𝑎 = 𝑎𝑎𝑎
performs well in a variety of situations. Hence, we use their
suggestion throughout this paper. We still need to choose
the positive integer 𝐿𝐿 for basis functions and the tuning
parameter 𝜆𝜆𝑗𝑗 of the penalty functions. Similar to the adaptive

lasso of Zou [14], we suggest taking 𝜆𝜆𝑗𝑗 = 𝜆𝜆/‖𝜃𝜃
(𝑗𝑗
𝑗𝑗 ‖2, where

𝜃𝜃
(𝑗𝑗
𝑗𝑗 is initial estimator of 𝜃𝜃𝑗𝑗 by using ordinary least squares
method based on the �rst term in (10). So the two remaining
parameters 𝐿𝐿 and 𝜆𝜆 can be selected simultaneously using the
leave-one-out CV or GCVmethod; see Zhao and Xue [4] for
more details.
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3. Simulation Studies

In this section, we investigate the behavior of the newly
proposed method by simulation studies.

3.1. Linear Model with Normally Distributed Covariates. e
dimensions of the full model (1) and the submodel (2)
are chosen to be 100 and 5, respectively. We set 𝛽𝛽 𝛽
(0.5, 3.5, 2.5, 1.5, 4.0)𝑇𝑇 and 𝛾𝛾 𝛽 (𝛾𝛾1, 𝛾𝛾2, 𝟎𝟎

𝑇𝑇
55)

𝑇𝑇
, where 𝛾𝛾2 ∼

Unif[−0.5, 0.5]30, a 30-dimensional uniform distribution on
[−0.5, 0.5]30, and 𝛾𝛾1 is chosen in the following ways:

Case (I). 𝛾𝛾1 ∼ Unif[0.5, 1.0]10.
Case (II). 𝛾𝛾1 𝛽 (1.0, 1.0, 1.0, 1.5, 1.5, 1.5, 2.0, 2.0, 2.0, 2.0).
We assume that (𝑋𝑋𝑇𝑇, 𝑍𝑍𝑇𝑇)

𝑇𝑇
∼ 𝑁𝑁((𝑁𝑁𝑇𝑇5 , 𝟎𝟎

𝑇𝑇
40, 𝑁𝑁

𝑇𝑇
55)

𝑇𝑇
, ΣΣ𝑇𝑇), where

Σ 𝛽 𝜎𝜎𝑖𝑖𝑖𝑖 , 𝜎𝜎𝑖𝑖𝑖𝑖 𝛽 𝜎𝜎𝑖𝑖𝑖𝑖 𝛽




1.0, 𝑖𝑖 𝛽 𝑖𝑖, 𝑖𝑖 𝛽 1,𝑗 , 𝑗𝑗 𝑗 𝑗𝑗𝑗
𝑐𝑐, 𝑖𝑖 𝛽 𝑖𝑖 𝑗 𝑗𝑗, 𝑖𝑖 𝛽 1, 3,𝑗 , 𝑗𝑗𝑗
0, otherwise,

(15)

with 𝑐𝑐 𝛽 0.5 or 𝑐𝑐 𝛽 0.𝑐. e error term 𝜀𝜀 is assumed to be
normally distributed as𝑁𝑁(0, 0.32).

Here we denote the submodel (2) as model (I), the
multistep adjusted linear model (5) as model (II), the two-
stage model (12) as model (III), and the full model (1) as
model (IV). We compare mean square errors (MSEs) of the
new two-stage estimator 𝛽𝛽TS based on model (III) with the
estimator 𝛽𝛽𝑆𝑆 based on model (I), the multistep estimator
𝛽𝛽𝑀𝑀 based on model (II), the SCAD estimator 𝛽𝛽SCAD and
the least squares estimator 𝛽𝛽𝐹𝐹 based on model (IV). We also
comparemean square prediction errors (MSPEs) of the above
mentioned models with corresponding estimators.

e data are simulated from the full model (1) with
sample size 𝑛𝑛 𝛽 100 and simulation times 𝑚𝑚 𝛽 1000. We
use the sample-based PCA approximations to substitute 𝜏𝜏𝑖𝑖’s.
e parameter 𝑎𝑎 in the SCAD penalty function is set to be 3.7
and 𝜆𝜆 is selected by leave-one-out CV method.

Table 1 reports the MSEs of point estimators on the
parameter 𝛽𝛽 and the MSPEs of model predictions. From the
table, we have the following �ndings: (1) 𝛽𝛽𝐹𝐹 has the largest
MSEs and 𝛽𝛽𝑆𝑆 takes the second place, nearly all the new
estimator 𝛽𝛽TS has the smallest MSEs. (2) When 𝑐𝑐 𝛽 0.5, the
MSEs of 𝛽𝛽SCAD are smaller than those of 𝛽𝛽𝑀𝑀, while when
𝑐𝑐 𝛽 0.𝑐 they are larger than those of 𝛽𝛽𝑀𝑀. ese show that if
the correlation between the covariates is strong, the MSEs of
𝛽𝛽SCAD are larger than those of 𝛽𝛽𝑀𝑀, the multistep-adjustment
is necessary, so the estimations and model predictions based
on two-stage model are signi�cantly improved. (3) In case (I)
and (II) the simulation results have the similar performance.
(�) Similar to the trend of theMSEs of the �ve estimators, the
MSPE of the two-stage adjusted model is the smallest among
the mentioned �ve models.

In summary, Table 1 indicates that the two-stage adjusted
linear model (12) performs much better than the full model,
and better than the submodel, the SCAD-penalized model
and the multistep adjusted model.

3.2. Partially Linear Model with Nonnormally Distributed
Covariates. e dimensions of the linear part in the full
model (1) and the submodel (2) are chosen to be 50 and
5, respectively. We set 𝛽𝛽 𝛽 (0.5, 3.5, 2.5, 1.5, 4.0)𝑇𝑇, 𝛾𝛾 𝛽
(𝛾𝛾1, 𝛾𝛾2, 𝟎𝟎

𝑇𝑇
25)

𝑇𝑇
, 𝑓𝑓(𝑓𝑓) 𝛽 𝑓𝑓2 ∗ sin(3𝑓𝑓), where

𝛾𝛾1 𝛽 (0.5, 0.1, 0.𝑐, 0.2, 0.5, 0.2, 0.6, 0.5, 0.1, 0.9),

𝛾𝛾2 ∼ Unif[−0.3, 0.3]10, a 10-dimensional uniform
distribution on [−0.3, 0.3].

We assume that the covariates are distributed in the
following two ways.

Case (I). (𝑋𝑋𝑇𝑇, 𝑍𝑍𝑇𝑇,𝑈𝑈)
𝑇𝑇

∼ 𝑡𝑡(𝟎𝟎𝑇𝑇51, ΣΣ
𝑇𝑇), a 51-dimensional

student distribution with degree of freedom df 𝛽 5, where

Σ 𝛽 𝜎𝜎𝑖𝑖𝑖𝑖 ,

𝜎𝜎𝑖𝑖𝑖𝑖 𝛽 𝜎𝜎𝑖𝑖𝑖𝑖 𝛽




1.0, 𝑖𝑖 𝛽 𝑖𝑖, 𝑖𝑖 𝛽 1,𝑗 , 𝑗𝑗 𝑗 𝑗𝑗 𝑗 1𝑗
0.95, 𝑖𝑖 𝛽 𝑖𝑖 𝑗 𝑗𝑗, 𝑖𝑖 𝛽 1, 2,𝑗 , 𝑗𝑗 𝑗 1𝑗
0.9, 𝑖𝑖 𝛽 𝑖𝑖 𝑗 𝑗𝑗 − 2, 𝑖𝑖 𝛽 1, 2,𝑗 , 𝑗𝑗 𝑗 3𝑗
0, otherwise.

(16)

Case (II).𝑋𝑋 𝛽 (1𝑋(1 𝑗 𝑐𝑐))(𝑋𝑋1 𝑗 𝑐𝑐𝑐𝑐), 𝑍𝑍 𝛽 (𝑍𝑍𝑇𝑇
1 , 𝑍𝑍

𝑇𝑇
2 , 𝑍𝑍

𝑇𝑇
3 , 𝑍𝑍

𝑇𝑇
4 )

𝑇𝑇

with 𝑍𝑍1 𝛽 (1𝑋(1 𝑗 𝑐𝑐))(𝑋𝑋2 𝑗 𝑐𝑐𝑐𝑐), 𝑍𝑍2 𝛽 𝑋𝑋3, 𝑍𝑍3 𝛽
(1𝑋(1 𝑗 𝑐𝑐))(𝑋𝑋4 𝑗 𝑐𝑐𝑐𝑐), 𝑍𝑍4 𝛽 𝑋𝑋5, 𝑈𝑈 𝛽 𝑋𝑋(1)

5 , where
𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4 ∼ Unif[−1.0, 1.0]5,𝑋𝑋5 ∼ Unif[−1.0, 1.0]30,
𝑐𝑐 ∼ Unif[−1.0, 1.0]5, uniform distributions on [−1.0, 1.0]
and constant 𝑐𝑐 𝛽 0.1. All 𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3, 𝑋𝑋4, 𝑋𝑋5, and 𝑐𝑐 are
independent.

e error term 𝜀𝜀 is assumed to be normally distributed as
𝑁𝑁(0, 0.32).

Here we denote the submodel (2) as model (I)′, the
multistep adjusted additive partially linear model (3) as
model (II)′, the two-stage model (11) as model (III)′ and
the full model (1) as model (IV)′. We compare mean square
errors (MSEs) of the new two-stage estimator 𝛽𝛽TS based on
model (III)′ with the estimator 𝛽𝛽𝑆𝑆 based on model (I)′, the
estimator 𝛽𝛽𝑀𝑀 based on model (II)′ and the least squares
estimator 𝛽𝛽𝐹𝐹 based on model (IV)′. We also compare the
mean average square errors (MASEs) of the nonparametric
estimators of 𝑓𝑓(𝑓) and the mean square prediction errors
(MSPEs) of different models with corresponding estimators.

e data are simulated from the full model (1) with
sample size 𝑛𝑛 𝛽 100 and simulation times 𝑚𝑚 𝛽 500. We use
the sample-based approximations of ICA, see Hyvärinen and
Oja [15]. e parameter 𝑎𝑎 in the SCAD penalty function is
set to be 3.7, the number 𝐿𝐿 and the parameter 𝜆𝜆 is selected by
GCV method. We use the standard Fourier orthogonal basis
as the basis functions.

Table 2 reports the MSEs of point estimators on the
parameter 𝛽𝛽, the MASEs of 𝑓𝑓(𝑓) and the MSPEs of model
predictions. From the table, we have the following results:
(1) 𝛽𝛽𝐹𝐹 has the largest MSEs, its MSEs are much larger than
the MSEs of the other estimators, and the new estimator 𝛽𝛽TS
always has the smallest MSEs. (2) e MASEs of 𝑓𝑓(𝑓) have
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T 1:MSEs on the parameter 𝛽𝛽 andMSPEs of the two-stage adjusted linearmodel (12) compared with the submodel, the SCAD-penalized
model, the multistep adjusted model and the full model.

No. Item 𝛽𝛽𝑆𝑆 𝛽𝛽SCAD
𝛽𝛽𝑀𝑀 𝛽𝛽TS

𝛽𝛽𝐹𝐹
0.3079 0.0457 0.0660 0.0571 1.6105 × 103

0.1763 0.0206 0.0346 0.0176 1.0940 × 103

Case (I) MSEs 0.1396 0.0481 0.0631 0.0461 4.2049 × 103

𝑐𝑐 𝑐 0.5 0.1870 0.0196 0.0349 0.0186 5.0183 × 103

0.1131 0.0517 0.0609 0.0430 6.2615 × 103

MSPEs 3.4780 1.1896 1.6512 1.0679 3.0499 × 102

0.1568 0.6191 0.0934 0.0826 1.2494 × 103

0.6239 0.1060 0.0090 0.0083 1.0456 × 102

Case (I) MSEs 0.8829 0.8173 0.0895 0.1039 2.6368 × 102

𝑐𝑐 𝑐 0.8 0.5882 0.0919 0.0107 0.0100 7.6452 × 101

1.0799 0.9829 0.0961 0.0929 1.1610 × 103

MSPEs 4.7930 2.6700 0.8354 0.7771 1.3223 × 102

0.4272 0.0660 0.0849 0.0557 4.3002 × 102

0.6371 0.0318 0.0499 0.0295 3.7893 × 103

Case (II) MSEs 0.4560 0.0715 0.0927 0.0588 1.2784 × 103

𝑐𝑐 𝑐 0.5 0.5926 0.0306 0.0491 0.0287 6.7354 × 103

0.9052 0.0734 0.0874 0.0583 2.5047 × 102

MSPEs 6.8634 1.5096 2.0780 1.2077 5.0464 × 103

0.6764 0.4263 0.1212 0.0960 1.3904 × 103

0.9721 0.1060 0.0107 0.0102 4.0743 × 102

Case (II) MSEs 0.6242 0.4756 0.1146 0.1003 1.0498 × 103

𝑐𝑐 𝑐 0.8 1.0282 0.0954 0.0112 0.0098 5.6031 × 102

1.3420 0.5474 0.1341 0.1124 9.9632 × 102

MSPEs 7.9928 2.1165 0.9514 0.8469 2.3110 × 102

T 2: MSEs on the parameter 𝛽𝛽, MASEs of 𝑓𝑓𝑓𝑓𝑓 and MSPEs of the two-stage adjusted model (11) compared with the submodel, multistep
adjusted model and the full model.

No. Item 𝛽𝛽𝑆𝑆 𝛽𝛽𝑀𝑀 𝛽𝛽TS
𝛽𝛽𝐹𝐹

0.4352 5.0403 0.3267 2.9753 × 101

0.6859 1.2820 × 101 0.3328 1.4593 × 101

MSEs 1.1152 8.1542 0.3723 1.4391 × 101

Case (I) 1.8489 7.2055 1.3194 2.4036 × 101

3.3079 1.6144 × 101 1.9989 4.8575 × 101

MASEs 3.0887 5.9814 3.0175 3.0633
MSPEs 4.6047 7.0331 × 101 3.5536 3.9648

0.0377 0.6144 0.0191 —1

0.0449 1.0876 0.0305 —
MSEs 0.0332 3.7510 0.0246 —

Case (II) 0.0396 0.4324 0.0238 —
0.0512 1.1995 0.0335 —

MASEs 0.4722 0.5220 0.4126 0.4380
MSPEs 0.9221 9.3068 0.8053 —

1
“—” denotes the algorithm collapsed and returned no value.

similar trend to the MSEs of the four estimators, while the
differences are not very noticeable. (3) Similar to the MSEs
of the estimators, theMSPEs of the two-stage adjusted model
are the smallest among the four models. (4) In Case (II), the
simulation results of models (I)′, (II)′ and (III)′, perform a

little better than those in Case (I) because of the correlation
structure among the covariates.

In summary, Table 2 indicates that the two-stage adjusted
model (11) performsmuch better than the full model and the
multistep adjusted model, and better than the submodel.
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4. Some Remarks

In this paper, the main objective is to consistently estimate
the parameter of interest 𝛽𝛽. When estimating the parameter
of interest, its bias is mainly determined by the relevant
variables, and its variancemay be impacted by other variables.
Because variable selection much relies on the sparsity of the
parameter, when we directly consider the partially linear
model, some irrelevant variables with nonzero coefficients
may be selected in the �nal model. is may affect the esti-
mation of the parameter 𝛽𝛽 on its efficiency and stability.us
based on the prespeci�ed submodel, a two-stage remodeling
method is proposed. In the new remodeling procedure, the
correlation among the covariates (𝑋𝑋𝑋𝑋𝑋𝑋 and the sparsity of
the regression structure are fully used. �o the �nal model is
sufficiently simpli�ed and conditionally unbiased. Based on
the simpli�ed model, the estimation and model prediction
are signi�cantly improved. �enerally, a�er the �rst stage
the adjusted model is an additive partially linear model.
erefore, the remodeling method can be applied to partially
linear regression model with linear regression model as a
special case.

From the remodeling procedure, we can see that it can
be directly applied to additive partially linear model, in
which the nonparametric function 𝑓𝑓(𝑓𝑓𝑋 has component-
wise additive form. As for general partially linear model
with multivariate nonparametric function, we should resort
to multivariate nonparametric estimation method. If the
dimension of covariate 𝑓𝑓 is high, it may be faced with “the
curse of dimensionality”.

In the procedure of model simpli�cation, orthogonal
series estimation method is used. is is only for tech-
nical convenience, because the semiparametric penalized
least squares (6) can be easily transformed into parametric
penalized least squares (10) and then the theoretic results are
obtained. Although other nonparametric methods such as
kernel and spline can be used without any essential difficulty,
they can not directly achieve this goal. Compared with kernel
method, it is somewhat difficult for seriesmethod to establish
the asymptotic normality result for the nonparametric com-
ponent 𝑓𝑓(𝑓𝑓𝑋 under primitive conditions.

Appendix

A. Some Conditions and Proofs

A.1. Regularity Conditions (C1)–(C6).

(C1) (𝑋𝑋𝑋𝑓𝑓𝑋 has �nite nondegenerate compact support,
denoted as supp(𝑋𝑋𝑋𝑓𝑓𝑋.

(C2) e density function 𝑟𝑟𝑗𝑗(𝑡𝑡𝑋 of 𝑋𝑋(𝑗𝑗𝑋 and 𝑟𝑟0(𝑡𝑡𝑋 of 𝑓𝑓
satis�es 0 < 𝐿𝐿1 ≤ 𝑟𝑟𝑗𝑗(𝑡𝑡𝑋 ≤ 𝐿𝐿2 < ∞ on its support
for 0 ≤ 𝑗𝑗 ≤ 𝑗𝑗0 for some constants 𝐿𝐿1 and 𝐿𝐿2, and it is
continuously differentiable.

(C3) 𝐺𝐺(𝑋𝑋𝑋𝑓𝑓𝑋 𝑍 𝑍𝑍(𝑋𝑋𝑋𝑋𝑇𝑇 ∣ 𝑋𝑋𝑋𝑓𝑓𝑋 and 𝑍𝑍(𝐸𝐸2𝑗𝑗0
∣ 𝑋𝑋𝑋𝑓𝑓𝑋 are

continuous. For given 𝑋𝑋 and 𝑢𝑢, 𝐺𝐺(𝑋𝑋𝑋 𝑢𝑢𝑋 is positive
de�nite, and its eigenvalues are bounded.

(C4) sup(𝑋𝑋𝑋𝑢𝑢𝑋𝑍supp(𝑋𝑋𝑋𝑓𝑓𝑋𝑍𝑍(𝐸𝑋𝑋𝐸
3 ∣ 𝑋𝑋 𝑍 𝑋𝑋𝑋𝑓𝑓 𝑍 𝑢𝑢𝑋 < ∞,

𝑍𝑍𝑓𝑓(𝑓𝑓𝑋 𝑍 0, the �rst two derivatives of 𝑓𝑓(𝑓𝑋 are
Lipschitz continuous of order one.

(C5) 𝑏𝑏𝑛𝑛 𝑍 max𝑗𝑗{𝑝𝑝
′′
𝜆𝜆𝑗𝑗 (𝐸𝜃𝜃𝑗𝑗0𝐸2𝑋 ∶ 𝜃𝜃𝑗𝑗0 ≠ 0} → 0 as 𝑛𝑛 → ∞.

(C6) lim inf𝑛𝑛→∞ lim inf𝐸𝜃𝜃𝑗𝑗0𝐸2 →0𝜆𝜆
−1
𝑗𝑗 𝑝𝑝

′
𝜆𝜆𝑗𝑗 (𝐸𝜃𝜃𝑗𝑗0𝐸2𝑋 > 0 for 𝑗𝑗 𝑍

𝑠𝑠 𝑠 1𝑋𝑠 𝑋𝑗𝑗0 where 𝑠𝑠 satis�es 𝛾𝛾
𝑇𝑇𝑍𝑍(𝑍𝑍(𝑋𝑋 ∣ 𝑋𝑋(𝑗𝑗𝑋𝑋𝑍𝑍(𝑋𝑋𝑇𝑇 ∣

𝑋𝑋(𝑗𝑗𝑋𝑋𝑋𝛾𝛾 > 0 for 1 ≤ 𝑗𝑗 ≤ 𝑠𝑠; 𝛾𝛾𝑇𝑇𝑍𝑍(𝑍𝑍(𝑋𝑋 ∣ 𝑋𝑋(𝑗𝑗𝑋𝑋𝑍𝑍(𝑋𝑋𝑇𝑇 ∣
𝑋𝑋(𝑗𝑗𝑋𝑋𝑋𝛾𝛾 𝑍 0 for 𝑠𝑠 < 𝑗𝑗 ≤ 𝑗𝑗0.

Conditions (C1)–(C3) are some regular constraints on
the covariates and condition (C4) is some constraints on the
regression structure as those in Härdle et al. [16]. Conditions
(C5)-(C6) are assumptions on the penalty function which are
similar to those used in Fan and Li [5] and Wang et al. [7].

A.2. Proof foreorem 1. Let 𝛿𝛿 𝑍 𝑛𝑛−𝑟𝑟𝑟(2𝑟𝑟𝑠1𝑋 𝑠𝑎𝑎𝑛𝑛, 𝛽𝛽 𝑍 𝛽𝛽0𝑠𝛿𝛿𝑇𝑇1,
𝜃𝜃 𝑍 𝜃𝜃0 𝑠 𝛿𝛿𝑇𝑇2, 𝜈𝜈 𝑍 𝜈𝜈0 𝑠 𝛿𝛿𝑇𝑇3 and 𝑇𝑇 𝑍 (𝑇𝑇𝑇𝑇1 𝑋 𝑇𝑇

𝑇𝑇
2 𝑋 𝑇𝑇

𝑇𝑇
3 𝑋

𝑇𝑇
. Firstly,

we shall prove that, ∀𝜖𝜖 > 0, ∃𝐶𝐶 > 0, 𝑃𝑃{inf𝐸𝑇𝑇𝐸𝑍𝐶𝐶𝐹𝐹(𝛽𝛽𝑋 𝜃𝜃𝑋 𝜈𝜈𝑋 >
𝐹𝐹(𝛽𝛽0𝑋 𝜃𝜃0𝑋 𝜈𝜈0𝑋} ≥ 1 − 𝜖𝜖.

Denote 𝐷𝐷(𝛽𝛽𝑋 𝜃𝜃𝑋 𝜈𝜈𝑋 𝑍 𝐿𝐿−1{𝐹𝐹(𝛽𝛽𝑋 𝜃𝜃𝑋 𝜈𝜈𝑋 − 𝐹𝐹(𝛽𝛽0𝑋 𝜃𝜃0𝑋 𝜈𝜈0𝑋}, then
we have

𝐷𝐷𝛽𝛽𝑋 𝜃𝜃𝑋 𝜈𝜈

𝑍
1
𝐿𝐿

𝑛𝑛

𝑖𝑖𝑍1
 𝑇𝑇𝑇𝑇1 𝑋𝑋𝑖𝑖 𝑠 𝑇𝑇

𝑇𝑇
2 Ψ 𝑋𝑋𝑖𝑖 𝑠 𝑇𝑇

𝑇𝑇
3 Ψ0 𝑓𝑓𝑖𝑖

× −2𝛿𝛿𝛿𝛿𝑖𝑖 𝑠 2𝛿𝛿 𝛽𝛽
𝑇𝑇
0 𝑋𝑋𝑖𝑖 𝑠 𝜃𝜃

𝑇𝑇
0 Ψ 𝑋𝑋𝑖𝑖 𝑠 𝜈𝜈

𝑇𝑇
0 Ψ0 𝑓𝑓𝑖𝑖

× 𝑇𝑇𝑇𝑇1 𝑋𝑋𝑖𝑖 𝑠 𝑇𝑇
𝑇𝑇
2 Ψ 𝑋𝑋𝑖𝑖 𝑠 𝑇𝑇

𝑇𝑇
3 Ψ0 𝑓𝑓𝑖𝑖

𝑠 𝛿𝛿2 𝑇𝑇𝑇𝑇1 𝑋𝑋𝑖𝑖 𝑠 𝑇𝑇
𝑇𝑇
2 Ψ 𝑋𝑋𝑖𝑖

𝑠𝑇𝑇𝑇𝑇3 Ψ0 𝑓𝑓𝑖𝑖
2


𝑠
𝑛𝑛
𝐿𝐿

𝑗𝑗0


𝑗𝑗𝑍1

𝑝𝑝𝜆𝜆𝑗𝑗 𝜃𝜃𝑗𝑗2 − 𝑝𝑝𝜆𝜆𝑗𝑗 𝜃𝜃𝑗𝑗02

≥ −
2𝛿𝛿
𝐿𝐿

𝑛𝑛

𝑖𝑖𝑍1
𝐸𝐸𝑗𝑗0𝑖𝑖 𝑠 𝑅𝑅 

𝑋𝑋𝑖𝑖𝑋 𝑓𝑓𝑖𝑖

× 𝑇𝑇𝑇𝑇1 𝑋𝑋𝑖𝑖 𝑠 𝑇𝑇
𝑇𝑇
2 Ψ 𝑋𝑋𝑖𝑖 𝑠 𝑇𝑇

𝑇𝑇
3 Ψ0 𝑓𝑓𝑖𝑖

𝑠
𝛿𝛿2

𝐿𝐿

𝑛𝑛

𝑖𝑖𝑍1
𝑇𝑇𝑇𝑇1 𝑋𝑋𝑖𝑖 𝑠 𝑇𝑇

𝑇𝑇
2 Ψ 𝑋𝑋𝑖𝑖 𝑠 𝑇𝑇

𝑇𝑇
3 Ψ0 𝑓𝑓𝑖𝑖

2

𝑠
𝑛𝑛
𝐿𝐿

𝑠𝑠

𝑗𝑗𝑍1

𝑝𝑝𝜆𝜆𝑗𝑗 𝜃𝜃𝑗𝑗2 − 𝑝𝑝𝜆𝜆𝑗𝑗 𝜃𝜃𝑗𝑗02

≡ 𝐼𝐼1 𝑠 𝐼𝐼2 𝑠 𝐼𝐼3𝑋
(A.1)
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where 𝑅𝑅𝑅𝑍𝑍𝑖𝑖, 𝑈𝑈𝑖𝑖) = ∑𝐾𝐾0
𝑗𝑗=𝑗 𝑅𝑅𝑗𝑗𝑅𝑍𝑍𝑖𝑖) + 𝑅𝑅0𝑅𝑈𝑈𝑖𝑖) with 𝑅𝑅𝑗𝑗𝑅𝑍𝑍𝑖𝑖) =

𝑔𝑔𝑗𝑗𝑅𝑍𝑍
𝑅𝑗𝑗)
𝑖𝑖 ) − 𝜃𝜃𝑇𝑇𝑗𝑗 Ψ𝑗𝑗𝑅𝑍𝑍

𝑅𝑗𝑗)
𝑖𝑖 ), 𝑗𝑗 = 𝑗,𝑗 ,𝐾𝐾0 and 𝑅𝑅0𝑅𝑈𝑈𝑖𝑖) = 𝑓𝑓𝑅𝑈𝑈𝑖𝑖) −

𝜈𝜈𝑇𝑇Ψ0𝑅𝑈𝑈𝑖𝑖).
By the conditions (C1) and (C2), the maximal squared

bias of 𝑔𝑔𝑗𝑗𝑅𝑍𝑍
𝑅𝑗𝑗)) is equal to

𝑅𝑅𝑗𝑗 𝑍𝑍
𝑅𝑗𝑗)

2
=

∞


𝑘𝑘=𝑘𝑘+𝑗
𝜃𝜃2𝑗𝑗𝑘𝑘 ≤

∞


𝑘𝑘=𝑘𝑘+𝑗
𝜃𝜃2𝑗𝑗𝑘𝑘

𝑘𝑘
𝑘𝑘

2𝑟𝑟
≤ 𝑀𝑀𝑘𝑘−2𝑟𝑟, (A.2)

so ‖𝑅𝑅𝑗𝑗𝑅𝑍𝑍
𝑅𝑗𝑗))‖ = 𝑂𝑂𝑅𝑘𝑘−𝑟𝑟). Similarly, ‖𝑅𝑅0𝑅𝑈𝑈)‖ = 𝑂𝑂𝑅𝑘𝑘

−𝑟𝑟). en,

𝑛𝑛

𝑖𝑖=𝑗
𝑅𝑅 𝑍𝑍𝑖𝑖, 𝑈𝑈𝑖𝑖 𝑇𝑇

𝑇𝑇
𝑗 𝑋𝑋𝑖𝑖 + 𝑇𝑇

𝑇𝑇
2 Ψ 𝑍𝑍𝑖𝑖 + 𝑇𝑇

𝑇𝑇
3 Ψ0 𝑈𝑈𝑖𝑖

= 𝑂𝑂𝑝𝑝 𝑛𝑛𝐾𝐾0𝑘𝑘
−𝑟𝑟 ‖𝑇𝑇‖ .

(A.3)

Noticing that 𝐸𝐸𝑅𝐸𝐸𝐾𝐾0
∣ 𝑋𝑋, 𝑍𝑍,𝑈𝑈) = 0, by Zhao and Xue [4], we

have

𝑗
√𝑛𝑛

𝑛𝑛

𝑖𝑖=𝑗
𝐸𝐸𝐾𝐾0𝑖𝑖 𝑇𝑇

𝑇𝑇
𝑗 𝑋𝑋𝑖𝑖 + 𝑇𝑇

𝑇𝑇
2 Ψ 𝑍𝑍𝑖𝑖 + 𝑇𝑇

𝑇𝑇
3 Ψ0 𝑈𝑈𝑖𝑖 = 𝑂𝑂𝑝𝑝 𝑅‖𝑇𝑇‖) .

(A.4)

So

𝐼𝐼𝑗 = −
2𝛿𝛿
𝑘𝑘
𝑂𝑂𝑝𝑝 𝑛𝑛𝐾𝐾0𝑘𝑘

−𝑟𝑟 ‖𝑇𝑇‖ + 𝑂𝑂𝑝𝑝 √𝑛𝑛 ‖𝑇𝑇‖

= 𝑂𝑂𝑝𝑝 𝑗 + 𝑛𝑛
𝑟𝑟𝑟𝑅2𝑟𝑟+𝑗)𝑎𝑎𝑛𝑛 ‖𝑇𝑇‖ .

(A.5)

Similarly, we have

0 < 𝐼𝐼2 = 𝑂𝑂𝑝𝑝 𝑛𝑛𝑘𝑘
−𝑗𝛿𝛿2‖𝑇𝑇‖2

= 𝑂𝑂𝑝𝑝 𝑗 + 2𝑛𝑛
𝑟𝑟𝑟𝑅2𝑟𝑟+𝑗)𝑎𝑎𝑛𝑛 + 𝑛𝑛

2𝑟𝑟𝑟𝑅2𝑟𝑟+𝑗)𝑎𝑎2𝑛𝑛 ‖𝑇𝑇‖
2.

(A.6)

By properly choosing a sufficiently large 𝐶𝐶, 𝐼𝐼2 dominates 𝐼𝐼𝑗
uniformly in ‖𝑇𝑇‖ = 𝐶𝐶.

Using Taylor expansion,

𝐼𝐼3 =
𝑠𝑠

𝑗𝑗=𝑗

𝑛𝑛
𝑘𝑘
𝑝𝑝′𝜆𝜆𝑗𝑗 𝜃𝜃𝑗𝑗02 𝜃𝜃𝑗𝑗02

′
𝛿𝛿𝑇𝑇2𝑗𝑗

+
𝑛𝑛
2𝑘𝑘

𝑝𝑝′′𝜆𝜆𝑗𝑗 𝜃𝜃𝑗𝑗02 𝜃𝜃𝑗𝑗02
′
𝛿𝛿𝑇𝑇2𝑗𝑗

2


× 𝑅𝑗 + 𝑜𝑜 𝑅𝑗))

≡ 𝐼𝐼3𝑗 + 𝐼𝐼32.

(A.7)

By simple calculations, we have that

𝐼𝐼3𝑗 ≤
𝑛𝑛
𝑘𝑘
𝛿𝛿𝑎𝑎𝑛𝑛𝑙𝑙𝑗

𝑠𝑠

𝑗𝑗=𝑗

𝑇𝑇2𝑗𝑗 ≤ √𝑠𝑠
𝑛𝑛
𝑘𝑘
𝛿𝛿𝑎𝑎𝑛𝑛𝑙𝑙𝑗 ‖𝑇𝑇‖

= 𝑂𝑂𝑝𝑝 𝑛𝑛
𝑟𝑟𝑟𝑅2𝑟𝑟+𝑗)𝑎𝑎𝑛𝑛 + 𝑛𝑛

2𝑟𝑟𝑟𝑅2𝑟𝑟+𝑗)𝑎𝑎2𝑛𝑛 ‖𝑇𝑇‖ ,

𝐼𝐼32 ≤
𝑛𝑛
2𝑘𝑘
𝛿𝛿2𝑏𝑏𝑛𝑛𝑙𝑙2

𝑠𝑠

𝑗𝑗=𝑗
𝑇𝑇2𝑗𝑗

2
≤

𝑛𝑛
2𝑘𝑘
𝛿𝛿2𝑏𝑏𝑛𝑛𝑙𝑙2‖𝑇𝑇‖

2,

(A.8)

where 𝑙𝑙𝑗 and 𝑙𝑙2 are some positive constants. We can �nd that
𝐼𝐼3𝑗 is also dominated by 𝐼𝐼2 uniformly in ‖𝑇𝑇‖ = 𝐶𝐶, and under
the condition (C5), we have

0 < 𝐼𝐼32 ≤ 𝑜𝑜𝑝𝑝 𝑗 + 2𝑛𝑛
𝑟𝑟𝑟𝑅2𝑟𝑟+𝑗)𝑎𝑎𝑛𝑛 + 𝑛𝑛

2𝑟𝑟𝑟𝑅2𝑟𝑟+𝑗)𝑎𝑎2𝑛𝑛 ‖𝑇𝑇‖
2. (A.9)

Hence, by choosing a sufficiently large 𝐶𝐶,
𝑃𝑃𝑃𝑃𝑃𝑃‖𝑇𝑇‖=𝐶𝐶𝐹𝐹𝑅𝐹𝐹, 𝜃𝜃, 𝜈𝜈) 𝐹 𝐹𝐹𝑅𝐹𝐹0, 𝜃𝜃0, 𝜈𝜈0)} ≥ 𝑗 − 𝜖𝜖, which
implies that with probability at least 𝑗 − 𝜖𝜖 there exists a local
minimum of 𝐹𝐹𝑅𝐹𝐹, 𝜃𝜃, 𝜈𝜈) in the ball 𝑃𝐹𝐹0 + 𝛿𝛿𝑇𝑇𝑗 ∶ ‖𝑇𝑇𝑗‖ ≤ 𝐶𝐶}.
Denote the local minimizer as 𝐹𝐹, then

𝐹𝐹 − 𝐹𝐹0 = 𝑂𝑂𝑝𝑝 𝑅𝛿𝛿) = 𝑂𝑂𝑝𝑝 𝑛𝑛
−𝑟𝑟𝑟𝑅2𝑟𝑟+𝑗) + 𝑎𝑎𝑛𝑛 . (A.10)

With the same argument as above, there exists a local
minimum in the ball 𝑃𝜃𝜃0 + 𝛿𝛿𝑇𝑇2 ∶ ‖𝑇𝑇2‖ ≤ 𝐶𝐶}, and the local
minimizer 𝜃𝜃 satis�es that

𝜃𝜃 − 𝜃𝜃0 = 𝑂𝑂𝑝𝑝 𝑛𝑛
−𝑟𝑟𝑟𝑅2𝑟𝑟+𝑗) + 𝑎𝑎𝑛𝑛 . (A.11)

For the nonparametric component 𝑔𝑔𝑅𝑔), noticing that

𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗0
2
= 𝐸𝐸𝑔𝑔𝑗𝑗 𝑍𝑍

𝑅𝑗𝑗) − 𝑔𝑔𝑗𝑗0 𝑍𝑍
𝑅𝑗𝑗)

2

= 𝐸𝐸Ψ𝑗𝑗 𝑍𝑍
𝑅𝑗𝑗) 𝜃𝜃𝑗𝑗 − Ψ𝑗𝑗 𝑍𝑍

𝑅𝑗𝑗) 𝜃𝜃𝑗𝑗0 + 𝑅𝑅𝑗𝑗0 𝑍𝑍
𝑅𝑗𝑗)

2

≤ 2𝐸𝐸Ψ𝑗𝑗 𝑍𝑍
𝑅𝑗𝑗) 𝜃𝜃𝑗𝑗 − Ψ𝑗𝑗 𝑍𝑍

𝑅𝑗𝑗) 𝜃𝜃𝑗𝑗0
2

+ 2𝐸𝐸𝑅𝑅𝑗𝑗0 𝑍𝑍
𝑅𝑗𝑗)

2

= 2𝜃𝜃𝑗𝑗 − 𝜃𝜃𝑗𝑗0
𝑇𝑇
𝜃𝜃𝑗𝑗 − 𝜃𝜃𝑗𝑗0 + 2𝐸𝐸𝑅𝑅𝑗𝑗0 𝑍𝑍

𝑅𝑗𝑗)
2
,

(A.12)

it is known that ‖𝑅𝑅𝑗𝑗𝑅𝑍𝑍
𝑅𝑗𝑗))‖ = 𝑂𝑂𝑅𝑘𝑘−𝑟𝑟), so

𝐸𝐸𝑅𝑅𝑗𝑗0 𝑍𝑍
𝑅𝑗𝑗)

2
= 𝑂𝑂𝑝𝑝 𝑛𝑛

−2𝑟𝑟𝑟𝑅2𝑟𝑟+𝑗) . (A.13)

us, we get

𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗0 = 𝑂𝑂𝑝𝑝 𝑛𝑛
−𝑟𝑟𝑟𝑅2𝑟𝑟+𝑗) + 𝑎𝑎𝑛𝑛 . (A.14)

Similarly, there exists a local minimizer 𝜈𝜈 satis�es that
‖𝜈𝜈 − 𝜈𝜈0‖ = 𝑂𝑂𝑝𝑝𝑅𝑛𝑛

−𝑟𝑟𝑟𝑅2𝑟𝑟+𝑗) + 𝑎𝑎𝑛𝑛). en we can get ‖ 𝑓𝑓 − 𝑓𝑓0‖ =
𝑂𝑂𝑝𝑝𝑅𝑛𝑛

−𝑟𝑟𝑟𝑅2𝑟𝑟+𝑗) + 𝑎𝑎𝑛𝑛).

A.3. Proof for eorem 2. When 𝜆𝜆max → 0, 𝑎𝑎𝑛𝑛 = 0 for large
𝑛𝑛 by the form of 𝑝𝑝′𝜆𝜆𝑅𝑤𝑤). en byeorem 1, it is sufficient to
show that: with probability tending to 𝑗 as 𝑛𝑛 → ∞, for any
𝐹𝐹, it satis�es ‖𝐹𝐹−𝐹𝐹0‖ = 𝑂𝑂𝑝𝑝𝑅𝑛𝑛

−𝑟𝑟𝑟𝑅2𝑟𝑟+𝑗)), 𝜃𝜃𝑗𝑗 satis�es ‖𝜃𝜃𝑗𝑗 −𝜃𝜃𝑗𝑗0‖ =
𝑂𝑂𝑝𝑝𝑅𝑛𝑛

−𝑟𝑟𝑟𝑅2𝑟𝑟+𝑗)) with 𝑗𝑗 = 𝑗,𝑗 , 𝑠𝑠, and 𝜈𝜈 satis�es ‖𝜈𝜈 − 𝜈𝜈0‖ =
𝑂𝑂𝑝𝑝𝑅𝑛𝑛

−𝑟𝑟𝑟𝑅2𝑟𝑟+𝑗)), for some small 𝜄𝜄𝑛𝑛 = 𝐶𝐶𝑛𝑛
−𝑟𝑟𝑟𝑅2𝑟𝑟+𝑗),

𝜕𝜕𝐹𝐹 𝐹𝐹, 𝜃𝜃, 𝜈𝜈
𝜕𝜕𝜃𝜃𝑗𝑗

𝐹 0, for 0 < 𝜃𝜃𝑗𝑗 < 𝜄𝜄𝑛𝑛, 𝑗𝑗 = 𝑠𝑠 + 𝑗,𝑗 ,𝐾𝐾0,

𝜕𝜕𝐹𝐹 𝐹𝐹, 𝜃𝜃, 𝜈𝜈
𝜕𝜕𝜃𝜃𝑗𝑗

< 0, for − 𝜄𝜄𝑛𝑛 < 𝜃𝜃𝑗𝑗 < 0, 𝑗𝑗 = 𝑠𝑠 + 𝑗,𝑗 ,𝐾𝐾0.

(A.15)
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So the minimizer of 𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐹 𝐹𝐹𝐹 is obtained at 𝐹𝐹𝑗𝑗 = 0𝐹 𝑗𝑗 = 𝑗𝑗 𝑗
1𝐹… 𝐹𝐾𝐾0.

In fact,

𝜕𝜕𝐹𝐹 𝐹𝐹𝐹 𝐹𝐹𝐹 𝐹𝐹
𝜕𝜕𝐹𝐹𝑗𝑗

= −2
𝑛𝑛

𝑖𝑖=1
Ψ𝑗𝑗 𝑍𝑍

𝐹𝑗𝑗𝐹
𝑖𝑖  𝑌𝑌𝑖𝑖 − 𝐹𝐹

𝑇𝑇𝑋𝑋𝑖𝑖 − 𝐹𝐹
𝑇𝑇Ψ 𝑍𝑍𝑖𝑖 − 𝐹𝐹

𝑇𝑇Ψ0 𝑈𝑈𝑖𝑖

𝑗 𝑛𝑛𝑛𝑛′𝜆𝜆𝑗𝑗 𝐹𝐹𝑗𝑗2 𝐹𝐹𝑗𝑗2
′

= −2
𝑛𝑛

𝑖𝑖=1
Ψ𝑗𝑗 𝑍𝑍

𝐹𝑗𝑗𝐹
𝑖𝑖  𝜁𝜁𝐾𝐾0𝑖𝑖 𝑗 𝑅𝑅 

𝑍𝑍𝑖𝑖𝐹 𝑈𝑈𝑖𝑖

− 2
𝑛𝑛

𝑖𝑖=1
Ψ𝑗𝑗 𝑍𝑍

𝐹𝑗𝑗𝐹
𝑖𝑖 𝑋𝑋𝑇𝑇

𝑖𝑖 𝐹𝐹0 − 𝐹𝐹

− 2
𝑛𝑛

𝑖𝑖=1
Ψ𝑗𝑗 𝑍𝑍

𝐹𝑗𝑗𝐹
𝑖𝑖  Ψ𝑇𝑇 𝑍𝑍𝑖𝑖 𝐹𝐹0 − 𝐹𝐹

− 2
𝑛𝑛

𝑖𝑖=1
Ψ𝑗𝑗 𝑍𝑍

𝐹𝑗𝑗𝐹
𝑖𝑖  Ψ𝑇𝑇

0 𝑈𝑈𝑖𝑖 𝐹𝐹0 − 𝐹𝐹

𝑗 𝑛𝑛𝑛𝑛′𝜆𝜆𝑗𝑗 𝐹𝐹𝑗𝑗2 𝐹𝐹𝑗𝑗2
′

= 𝑛𝑛𝜆𝜆𝑗𝑗



𝑂𝑂𝑛𝑛 𝜆𝜆

−1
𝑗𝑗 𝑛𝑛

−𝑟𝑟𝑟𝐹2𝑟𝑟𝑗1𝐹 𝑗 𝜆𝜆−1𝑗𝑗 𝑛𝑛
′
𝜆𝜆 𝐹𝐹𝑗𝑗2

𝐹𝐹𝑗𝑗
𝐹𝐹𝑗𝑗2




.

(A.16)

Under the conditions lim inf𝑛𝑛𝑛𝑛 lim inf‖𝐹𝐹𝑗𝑗0‖2 𝑛0𝜆𝜆
−1
𝑗𝑗 𝑛𝑛

′
𝜆𝜆𝑗𝑗

⋅𝐹‖𝐹𝐹𝑗𝑗0‖2𝐹 = 𝐶𝐶 𝐶 0 and 𝜆𝜆𝑗𝑗𝑛𝑛
𝑟𝑟𝑟𝐹2𝑟𝑟𝑗1𝐹 𝐶 𝜆𝜆min𝑛𝑛

𝑟𝑟𝑟𝐹2𝑟𝑟𝑗1𝐹 𝑛 𝑛,
then 𝜕𝜕𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐹 𝐹𝐹𝐹𝑟𝜕𝜕𝐹𝐹𝑗𝑗 = 𝑂𝑂𝑛𝑛𝐹𝑛𝑛𝜆𝜆𝑗𝑗𝐹𝐹𝐹𝑗𝑗𝑟‖𝐹𝐹𝑗𝑗‖2𝐹𝐹. So the sign of the
derivative is determined by 𝐹𝐹𝑗𝑗.

So with probability tending to 1, 𝐹𝐹𝑗𝑗 = 0, 𝑗𝑗 = 𝑗𝑗 𝑗 1𝐹… 𝐹𝐾𝐾0.

en under sup𝑍𝑍‖Ψ𝑗𝑗𝐹𝑍𝑍
𝐹𝑗𝑗𝐹𝐹‖ = 𝑂𝑂𝐹1𝐹,𝑔𝑔𝑗𝑗𝐹𝑍𝑍

𝐹𝑗𝑗𝐹𝐹 = 𝐹𝐹
𝑇𝑇
𝑗𝑗 Ψ𝑗𝑗𝐹𝑍𝑍

𝐹𝑗𝑗𝐹𝐹 ≡
0, 𝑗𝑗 = 𝑗𝑗 𝑗 1𝐹… 𝐹𝐾𝐾0.

A.4. Proof for eorem 4. By eorems 1 and 2, we know
that, as 𝑛𝑛 𝑛 𝑛, with probability tending to 1, 𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐹 𝐹𝐹𝐹
attains the local minimum value at 𝐹𝐹 and 𝐹𝐹𝐹

∗𝑇𝑇
𝐹 0𝐹𝑇𝑇 and 𝐹𝐹. Let

𝐹𝐹1𝑛𝑛𝐹𝐹𝐹𝐹 𝐹𝐹𝐹 𝐹𝐹𝐹 = 𝜕𝜕𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐹 𝐹𝐹𝐹𝑟𝜕𝜕𝐹𝐹, 𝐹𝐹2𝑛𝑛𝐹𝐹𝐹𝐹 𝐹𝐹𝐹 𝐹𝐹𝐹 = 𝜕𝜕𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐹 𝐹𝐹𝐹𝑟𝜕𝜕𝐹𝐹∗
and 𝐹𝐹3𝑛𝑛𝐹𝐹𝐹𝐹 𝐹𝐹𝐹 𝐹𝐹𝐹 = 𝜕𝜕𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐹 𝐹𝐹𝐹𝑟𝜕𝜕𝐹𝐹, then

1
𝑛𝑛
𝐹𝐹1𝑛𝑛 𝐹𝐹𝐹 𝐹𝐹

∗𝑇𝑇
𝐹 0

𝑇𝑇
𝐹 𝐹𝐹

=
1
𝑛𝑛

𝑛𝑛

𝑖𝑖=1
𝑋𝑋𝑖𝑖 𝑌𝑌𝑖𝑖 − 𝐹𝐹

𝑇𝑇
𝑋𝑋𝑖𝑖 − 𝐹𝐹

∗𝑇𝑇
Ψ∗
𝑖𝑖 − 𝐹𝐹

𝑇𝑇Ψ0𝑖𝑖 = 0𝐹
(A.17)

1
𝑛𝑛
𝐹𝐹2𝑛𝑛 𝐹𝐹𝐹 𝐹𝐹

∗𝑇𝑇
𝐹 0

𝑇𝑇
𝐹 𝐹𝐹

=
1
𝑛𝑛

𝑛𝑛

𝑖𝑖=1
Ψ∗
𝑖𝑖 𝑌𝑌𝑖𝑖 − 𝐹𝐹

𝑇𝑇
𝑋𝑋𝑖𝑖 − 𝐹𝐹

∗𝑇𝑇
Ψ∗
𝑖𝑖 − 𝐹𝐹

𝑇𝑇Ψ0𝑖𝑖

𝑗
𝑗𝑗

𝑗𝑗=1
𝑛𝑛′𝜆𝜆𝑗𝑗 

𝐹𝐹𝑗𝑗2
𝐹𝐹𝑗𝑗

𝐹𝐹𝑗𝑗2
= 0𝐹

(A.18)

1
𝑛𝑛
𝐹𝐹3𝑛𝑛 𝐹𝐹𝐹 𝐹𝐹

∗𝑇𝑇
𝐹 0

𝑇𝑇
𝐹 𝐹𝐹

=
1
𝑛𝑛

𝑛𝑛

𝑖𝑖=1
Ψ0𝑖𝑖 𝑌𝑌𝑖𝑖 − 𝐹𝐹

𝑇𝑇
𝑋𝑋𝑖𝑖 − 𝐹𝐹

∗𝑇𝑇
Ψ∗
𝑖𝑖 − 𝐹𝐹

𝑇𝑇Ψ0𝑖𝑖 = 0.
(A.19)

From (A.17), it yields that

1
𝑛𝑛

𝑛𝑛

𝑖𝑖=1
𝑋𝑋𝑖𝑖 𝐹𝐹0 − 𝐹𝐹

𝑇𝑇
𝑋𝑋𝑖𝑖 𝑗 𝐹𝐹

∗
0 − 𝐹𝐹

∗

𝑇𝑇
Ψ∗
𝑖𝑖

𝑗𝐹𝐹0 − 𝐹𝐹
𝑇𝑇Ψ0𝑖𝑖 𝑗 𝑅𝑅

∗ 𝑍𝑍𝑖𝑖𝐹 𝑈𝑈𝑖𝑖 𝑗 𝜁𝜁𝐾𝐾0𝑖𝑖 = 0𝐹

(A.20)

where 𝑅𝑅∗𝐹𝑍𝑍𝑖𝑖𝐹 𝑈𝑈𝑖𝑖𝐹 = ∑𝑗𝑗
𝑗𝑗=1 𝑅𝑅

∗
𝑗𝑗 𝐹𝑍𝑍𝑖𝑖𝐹 𝑗 𝑅𝑅0𝐹𝑈𝑈𝑖𝑖𝐹. Applying the

Taylor expansion, we get

𝑛𝑛′𝜆𝜆𝑗𝑗 
𝐹𝐹𝑗𝑗2

= 𝑛𝑛′𝜆𝜆𝑗𝑗 
𝐹𝐹𝑗𝑗02 𝑗




𝑛𝑛′′𝜆𝜆𝑗𝑗 

𝐹𝐹𝑗𝑗02
𝐹𝐹𝑗𝑗

𝐹𝐹𝑗𝑗2
𝑗 𝑜𝑜𝑛𝑛 𝐹1𝐹




𝐹𝐹

∗
− 𝐹𝐹∗0 .

(A.21)

Furthermore, condition (C5) implies that 𝑛𝑛′′𝜆𝜆𝑗𝑗 𝐹‖
𝐹𝐹𝑗𝑗0‖2𝐹 =

𝑜𝑜𝑛𝑛𝐹1𝐹, and noting that 𝑛𝑛′𝜆𝜆𝑗𝑗 𝐹‖
𝐹𝐹𝑗𝑗0‖2𝐹 = 0 as 𝜆𝜆max 𝑛 0, then

𝑛𝑛′𝜆𝜆𝑗𝑗 𝐹‖
𝐹𝐹𝑗𝑗‖2𝐹 = 𝑜𝑜𝑛𝑛𝐹𝐹𝐹

∗
− 𝐹𝐹∗0 𝐹. So from (A.18), it yields

1
𝑛𝑛

𝑛𝑛

𝑖𝑖=1
Ψ∗
𝑖𝑖 𝐹𝐹0 − 𝐹𝐹

𝑇𝑇
𝑋𝑋𝑖𝑖 𝑗 𝐹𝐹

∗
0 − 𝐹𝐹

∗

𝑇𝑇
Ψ∗
𝑖𝑖

𝑗𝐹𝐹0 − 𝐹𝐹
𝑇𝑇Ψ0𝑖𝑖 𝑗 𝑅𝑅

∗ 𝑍𝑍𝑖𝑖𝐹 𝑈𝑈𝑖𝑖 𝑗 𝜁𝜁𝐾𝐾0𝑖𝑖

𝑗 𝑜𝑜𝑛𝑛 𝐹𝐹
∗
0 − 𝐹𝐹

∗
 = 0.

(A.22)

Let Φ𝑛𝑛 = 𝑛𝑛
−1 ∑𝑛𝑛

𝑖𝑖=1 Ψ
∗
𝑖𝑖 Ψ

∗𝑇𝑇
𝑖𝑖 , Γ𝑛𝑛 = 𝑛𝑛

−1 ∑𝑛𝑛
𝑖𝑖=1 Ψ

∗
𝑖𝑖 𝑋𝑋

𝑇𝑇
𝑖𝑖 and Π𝑛𝑛 =

𝑛𝑛−1 ∑𝑛𝑛
𝑖𝑖=1 Ψ

∗
𝑖𝑖 Ψ

𝑇𝑇
0𝑖𝑖, then we have

𝐹𝐹
∗
− 𝐹𝐹∗0 = Φ𝑛𝑛 𝑗 𝑜𝑜𝑛𝑛 𝐹1𝐹

−1

× Γ𝑛𝑛 𝐹𝐹0 − 𝐹𝐹 𝑗 Π𝑛𝑛 𝐹𝐹0 − 𝐹𝐹

×
1
𝑛𝑛

𝑛𝑛

𝑖𝑖=1
Ψ∗
𝑖𝑖 𝑅𝑅

∗ 𝑍𝑍𝑖𝑖 𝑗 𝜁𝜁𝐾𝐾0𝑖𝑖 .

(A.23)
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Substituting (A.23) into (A.20), it yields

1
𝑛𝑛

𝑛𝑛

𝑖𝑖𝑖1
𝑋𝑋𝑖𝑖 Ψ0𝑖𝑖 − Π

𝑇𝑇
𝑛𝑛Φ

−1
𝑛𝑛 Ψ

∗
𝑖𝑖 

𝑇𝑇
𝛽𝛽 − 𝛽𝛽0

+𝑋𝑋𝑖𝑖 − Γ
𝑇𝑇
𝑛𝑛Φ

−1
𝑛𝑛 Ψ

∗
𝑖𝑖 

𝑇𝑇
𝜈𝜈 − 𝜈𝜈0

+ 𝑜𝑜𝑝𝑝 𝛽𝛽 − 𝛽𝛽0 + 𝑜𝑜𝑝𝑝 𝜈𝜈 − 𝜈𝜈0

𝑖
1
𝑛𝑛

𝑛𝑛

𝑖𝑖𝑖1
𝑋𝑋𝑖𝑖 𝜁𝜁𝐾𝐾0𝑖𝑖 + 𝑅𝑅

∗ 𝑍𝑍𝑖𝑖, 𝑈𝑈𝑖𝑖

−Ψ∗𝑇𝑇
𝑖𝑖 Φ−1

𝑛𝑛 + 𝑜𝑜𝑝𝑝 (1) Λ𝑛𝑛 ,

(A.24)

where Λ𝑛𝑛 𝑖 𝑛𝑛
−1 ∑𝑛𝑛

𝑖𝑖𝑖1 Ψ
∗
𝑖𝑖 (𝑅𝑅

∗(𝑍𝑍𝑖𝑖, 𝑈𝑈𝑖𝑖) + 𝜁𝜁𝐾𝐾0𝑖𝑖).
From (A.19), it yields that

1
𝑛𝑛

𝑛𝑛

𝑖𝑖𝑖1
Ψ0𝑖𝑖 𝛽𝛽0 − 𝛽𝛽

𝑇𝑇
𝑋𝑋𝑖𝑖 + 𝜃𝜃

∗
0 − 𝜃𝜃

∗

𝑇𝑇
Ψ∗
𝑖𝑖

+𝜈𝜈0 − 𝜈𝜈
𝑇𝑇Ψ0𝑖𝑖 + 𝑅𝑅

∗ 𝑍𝑍𝑖𝑖, 𝑈𝑈𝑖𝑖 + 𝜁𝜁𝐾𝐾0𝑖𝑖 𝑖 0.

(A.25)

Substituting (A.23) into (A.25), it yields

1
𝑛𝑛

𝑛𝑛

𝑖𝑖𝑖1
Ψ0𝑖𝑖 𝑋𝑋𝑖𝑖 − Γ

𝑇𝑇
𝑛𝑛Φ

−1
𝑛𝑛 Ψ

∗
𝑖𝑖 

𝑇𝑇
𝛽𝛽 − 𝛽𝛽0

+Ψ0𝑖𝑖 − Π
𝑇𝑇
𝑛𝑛Φ

−1
𝑛𝑛 Ψ

∗
𝑖𝑖 

𝑇𝑇
𝜈𝜈 − 𝜈𝜈0

+ 𝑜𝑜𝑝𝑝 𝛽𝛽 − 𝛽𝛽0 + 𝑜𝑜𝑝𝑝 𝜈𝜈 − 𝜈𝜈0

𝑖
1
𝑛𝑛

𝑛𝑛

𝑖𝑖𝑖1
Ψ0𝑖𝑖 𝜁𝜁𝐾𝐾0𝑖𝑖 + 𝑅𝑅

∗ 𝑍𝑍𝑖𝑖, 𝑈𝑈𝑖𝑖 − Ψ
∗𝑇𝑇
𝑖𝑖 Φ−1

𝑛𝑛 + 𝑜𝑜𝑝𝑝 (1) Λ𝑛𝑛 .

(A.26)

Noting that

𝑛𝑛−1
𝑛𝑛

𝑖𝑖𝑖1
Π𝑇𝑇
𝑛𝑛Φ

−1
𝑛𝑛 Ψ

∗
𝑖𝑖 Ψ

𝑇𝑇
0𝑖𝑖 − Ψ

∗𝑇𝑇
𝑖𝑖 Φ−1

𝑛𝑛 Π𝑛𝑛 𝑖 0,

𝑛𝑛−1
𝑛𝑛

𝑖𝑖𝑖1
Π𝑇𝑇
𝑛𝑛Φ

−1
𝑛𝑛 Ψ

∗
𝑖𝑖 𝜁𝜁𝐾𝐾0𝑖𝑖 + 𝑅𝑅

∗ 𝑍𝑍𝑖𝑖, 𝑈𝑈𝑖𝑖 − Ψ
∗𝑇𝑇
𝑖𝑖 Φ−1

𝑛𝑛 Λ𝑛𝑛 𝑖 0,

(A.27)

Equation (A.26) can be rewritten as

1
𝑛𝑛

𝑛𝑛

𝑖𝑖𝑖1
Ψ0𝑖𝑖�̆�𝑋

𝑇𝑇
𝑖𝑖 𝛽𝛽 − 𝛽𝛽0 + 𝑜𝑜𝑝𝑝 𝛽𝛽 − 𝛽𝛽0

+
1
𝑛𝑛

𝑛𝑛

𝑖𝑖𝑖1
Ψ̆0𝑖𝑖Ψ̆

𝑇𝑇
0𝑖𝑖 𝜈𝜈 − 𝜈𝜈0

+ 𝑜𝑜𝑝𝑝 𝜈𝜈 − 𝜈𝜈0

𝑖
1
𝑛𝑛

𝑛𝑛

𝑖𝑖𝑖1
Ψ̆0𝑖𝑖 𝜁𝜁𝐾𝐾0𝑖𝑖 + 𝑅𝑅

∗ 𝑍𝑍𝑖𝑖, 𝑈𝑈𝑖𝑖 − Ψ
∗𝑇𝑇
𝑖𝑖 Φ−1

𝑛𝑛 + 𝑜𝑜𝑝𝑝 (1) Λ𝑛𝑛 ,

(A.28)

where �̆�𝑋𝑖𝑖 𝑖 𝑋𝑋𝑖𝑖 − Γ
𝑇𝑇
𝑛𝑛Φ

−1
𝑛𝑛 Ψ

∗
𝑖𝑖 , Ψ̆0𝑖𝑖 𝑖 Ψ0𝑖𝑖 − Π

𝑇𝑇
𝑛𝑛Φ

−1
𝑛𝑛 Ψ

∗
𝑖𝑖 . Let Ξ𝑛𝑛 𝑖

𝑛𝑛−1 ∑𝑛𝑛
𝑖𝑖𝑖1 Ψ̆0𝑖𝑖Ψ̆

𝑇𝑇
0𝑖𝑖, then we have

𝜈𝜈 − 𝜈𝜈0 𝑖 Ξ−1𝑛𝑛
1
𝑛𝑛

𝑛𝑛

𝑖𝑖𝑖1
Ψ0𝑖𝑖�̆�𝑋

𝑇𝑇
𝑖𝑖 𝛽𝛽0 − 𝛽𝛽

+ Ξ−1𝑛𝑛
1
𝑛𝑛

𝑛𝑛

𝑖𝑖𝑖1
Ψ̆0𝑖𝑖 𝜁𝜁𝐾𝐾0𝑖𝑖 + 𝑅𝑅

∗ 𝑍𝑍𝑖𝑖, 𝑈𝑈𝑖𝑖 − Ψ
∗
𝑖𝑖 Φ

−1
𝑛𝑛 Λ𝑛𝑛

+ 𝑜𝑜𝑝𝑝 𝛽𝛽 − 𝛽𝛽0 .
(A.29)

Substituting (A.29) into (A.24), and noting that

𝑛𝑛−1
𝑛𝑛

𝑖𝑖𝑖1
Γ𝑇𝑇𝑛𝑛Φ

−1
𝑛𝑛 Ψ

∗
𝑖𝑖 𝑋𝑋𝑖𝑖 − Ψ

∗𝑇𝑇
𝑖𝑖 Φ−1

𝑛𝑛 Γ𝑛𝑛 𝑖 0,

𝑛𝑛−1
𝑛𝑛

𝑖𝑖𝑖1
Γ𝑇𝑇𝑛𝑛Φ

−1
𝑛𝑛 Ψ

∗
𝑖𝑖 𝜁𝜁𝐾𝐾0𝑖𝑖 + 𝑅𝑅

∗ 𝑍𝑍𝑖𝑖 − Ψ
∗𝑇𝑇
𝑖𝑖 Φ−1

𝑛𝑛 Λ𝑛𝑛 𝑖 0,

𝑛𝑛−1
𝑛𝑛

𝑖𝑖𝑖1
Ψ̆0𝑖𝑖𝑋𝑋

𝑇𝑇
𝑖𝑖 𝑖 𝑛𝑛

−1
𝑛𝑛

𝑖𝑖𝑖1
Ψ0𝑖𝑖�̆�𝑋

𝑇𝑇
𝑖𝑖 ,

(A.30)

it is easy to show that

Φ̆𝑛𝑛 − Υ
𝑇𝑇
𝑛𝑛 Ξ

−1
𝑛𝑛 Υ𝑛𝑛 + 𝑜𝑜𝑝𝑝 (1)√𝑛𝑛 𝛽𝛽 − 𝛽𝛽0

𝑖
1
√𝑛𝑛

𝑛𝑛

𝑖𝑖𝑖1
�̆�𝑋𝑖𝑖 − Υ

𝑇𝑇
𝑛𝑛 Ξ

−1
𝑛𝑛 Ψ̆0𝑖𝑖

× 𝜁𝜁𝐾𝐾0𝑖𝑖 + 𝑅𝑅
∗ 𝑍𝑍𝑖𝑖, 𝑈𝑈𝑖𝑖 − Ψ

∗𝑇𝑇
𝑖𝑖 Φ−1

𝑛𝑛 + 𝑜𝑜𝑝𝑝 (1) Λ𝑛𝑛

𝑖
1
√𝑛𝑛

𝑛𝑛

𝑖𝑖𝑖1

𝑋𝑋𝑖𝑖𝜁𝜁𝐾𝐾0𝑖𝑖

−
1
√𝑛𝑛

𝑛𝑛

𝑖𝑖𝑖1

𝑋𝑋𝑖𝑖Ψ
∗𝑇𝑇
𝑖𝑖 Φ−1

𝑛𝑛 + 𝑜𝑜𝑝𝑝 (1) Λ𝑛𝑛

+
1
√𝑛𝑛

𝑛𝑛

𝑖𝑖𝑖1

𝑋𝑋𝑖𝑖𝑅𝑅
∗ 𝑍𝑍𝑖𝑖, 𝑈𝑈𝑖𝑖

≡ 𝐼𝐼1 + 𝐼𝐼2 + 𝐼𝐼3,
(A.31)

where Φ̆𝑛𝑛 𝑖 𝑛𝑛−1 ∑𝑛𝑛
𝑖𝑖𝑖1 �̆�𝑋𝑖𝑖�̆�𝑋

𝑇𝑇
𝑖𝑖 , Υ𝑛𝑛 𝑖 𝑛𝑛−1 ∑𝑛𝑛

𝑖𝑖𝑖1 Ψ̆0𝑖𝑖𝑋𝑋
𝑇𝑇
𝑖𝑖 ,𝑋𝑋𝑖𝑖 𝑖 �̆�𝑋𝑖𝑖 −

Υ𝑇𝑇𝑛𝑛 Ξ
−1
𝑛𝑛 Ψ̆0𝑖𝑖.
Using the Central Limit eorem, we can obtain

𝐼𝐼1
𝒟𝒟⟶𝑁𝑁0, 𝜎𝜎2𝐾𝐾0

Σ0 , (A.32)

where “ 𝒟𝒟−−→” means the convergence in distribution and

Σ0 𝑖 𝐸𝐸 𝑋𝑋𝑋𝑋𝑇𝑇 − 𝐸𝐸 𝑋𝑋Ψ∗𝑇𝑇𝐸𝐸−1 Ψ∗Ψ∗𝑇𝑇 𝐸𝐸 Ψ∗𝑋𝑋𝑇𝑇

− 𝐸𝐸 𝑋𝑋Ψ̆𝑇𝑇
0  𝐸𝐸

−1 Ψ̆0Ψ̆
𝑇𝑇
0  𝐸𝐸 Ψ̆0𝑋𝑋

𝑇𝑇 .
(A.33)
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In addition, noting that ∑𝑛𝑛
𝑖𝑖𝑖𝑖 �̆�𝑋𝑖𝑖Ψ

∗𝑇𝑇
𝑖𝑖 𝑖 0 and ∑𝑛𝑛

𝑖𝑖𝑖𝑖 Ψ̆0𝑖𝑖Ψ
∗𝑇𝑇
𝑖𝑖 𝑖

0, we have 𝐼𝐼2 𝑖 0. Furthermore, we have

𝐼𝐼3 𝑖
𝑖
√𝑛𝑛

𝑛𝑛

𝑖𝑖𝑖𝑖
𝑋𝑋𝑖𝑖 − 𝐸𝐸 Γ

𝑇𝑇
𝑛𝑛  𝐸𝐸

−𝑖 Φ𝑛𝑛Ψ
∗
𝑖𝑖  𝑅𝑅

∗ 𝑍𝑍𝑖𝑖, 𝑈𝑈𝑖𝑖

+
𝑖
√𝑛𝑛

𝑛𝑛

𝑖𝑖𝑖𝑖
𝐸𝐸 Γ𝑇𝑇𝑛𝑛  𝐸𝐸

−𝑖 Φ𝑛𝑛 − Γ
𝑇𝑇
𝑛𝑛Φ

−𝑖
𝑛𝑛 Ψ

∗
𝑖𝑖 𝑅𝑅

∗ 𝑍𝑍𝑖𝑖, 𝑈𝑈𝑖𝑖

−
𝑖
√𝑛𝑛

𝑛𝑛

𝑖𝑖𝑖𝑖
Υ𝑇𝑇𝑛𝑛 Ξ

−𝑖
𝑛𝑛 Ψ̆0𝑖𝑖𝑅𝑅

∗ 𝑍𝑍𝑖𝑖, 𝑈𝑈𝑖𝑖

≡ 𝐼𝐼3𝑖 + 𝐼𝐼32 + 𝐼𝐼33.
(A.34)

Invoking 𝐸𝐸𝐸𝐸𝑋𝑋𝑖𝑖 − 𝐸𝐸𝐸Γ
𝑇𝑇
𝑛𝑛 )𝐸𝐸

−𝑖𝐸Φ𝑛𝑛)Ψ
∗
𝑖𝑖 ]Ψ

∗𝑇𝑇
𝑖𝑖 } 𝑖 0, then by Zhao

and Xue [4], we have

𝑖
√𝑛𝑛

𝑛𝑛

𝑖𝑖𝑖𝑖
𝑋𝑋𝑖𝑖 − 𝐸𝐸 Γ

𝑇𝑇
𝑛𝑛  𝐸𝐸

−𝑖 Φ𝑛𝑛Ψ
∗
𝑖𝑖 Ψ

∗𝑇𝑇
𝑖𝑖 𝑖 𝑂𝑂𝑝𝑝 𝐸𝑖) . (A.35)

is together with ‖Ψ𝑗𝑗𝐸𝑍𝑍
𝐸𝑗𝑗))‖ 𝑖 𝑂𝑂𝐸𝑖) and ‖𝑅𝑅𝐸𝑍𝑍,𝑈𝑈)‖ 𝑖 𝑍𝑍𝐸𝑖),

we get 𝐼𝐼3𝑖 𝑖 𝑍𝑍𝑝𝑝𝐸𝑖). Similarly, 𝐼𝐼32 𝑖 𝑍𝑍𝑝𝑝𝐸𝑖). Noting that
𝐸𝑖/√𝑛𝑛)∑𝑛𝑛

𝑖𝑖𝑖𝑖 Υ
𝑇𝑇
𝑛𝑛 Ξ

−𝑖Ψ∗
0𝑖𝑖Ψ

∗𝑇𝑇
𝑖𝑖 𝑖 0, so as above, we have 𝐼𝐼33 𝑖

𝑍𝑍𝑝𝑝𝐸𝑖). Hence, we get that 𝐼𝐼3 𝑖 𝑍𝑍𝑝𝑝𝐸𝑖).

By the law of large numbers, we have 𝐸𝑖/𝑛𝑛)∑𝑛𝑛
𝑖𝑖𝑖𝑖
𝑋𝑋𝑖𝑖𝑋𝑋

𝑇𝑇
𝑖𝑖

𝑃𝑃−→

Σ0, where “ 𝑃𝑃−→” means the convergence in probability.
en using the Slutsky theorem, we get √𝑛𝑛𝐸𝛽𝛽 − 𝛽𝛽0)

𝒟𝒟−−→
𝑁𝑁𝐸0, 𝑁𝑁2𝐾𝐾0

Σ−𝑖0 ).
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