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Abstract

Biomedical information extraction is
becoming an increasingly important
application of Computational Lin-
guistics research. We propose a
method for analyzing full-text arti-
cles on protein interactions that takes
a discourse-based approach to pro-
vide a means of ranking the bi-
ological validity of such interac-
tions. Specifically, we usdexical
chaining—strings of semantically re-
lated words—as an indicator of the
validity of the protein interactions ap-

Chrysanne Di Marco
School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
cdi mar co@wat erl 0o. ca

occur in the living cell. A researcher trying to es-
tablish the quality of the interactions identified in a
database could read the details of the experiments
in each related scientific article, but this is labouri-
ous and time-consuming. If the number of relevant
papers is high, it will be difficult or even impossi-
ble for a researcher to manually process all the arti-
cles to assess the value of the interactions. For ex-
ample, a text query in BIND for interactions of the
single protein Cdc42 will retrieve 512 records, far
too many to be easily read and analyzed by man-
ual methods—there is a clear need for an automated
information extraction system to assist researchers
in analyzing the online literature to better judge the
guality of biomolecular interactions.

pearing in the same textual context.

1.1 Natural Language Processing and

1 Introduction information extraction

Each living cell is rich in proteins that continu- Natural Language Processing (NLP) techniques are
ously interact with each other. Knowledge about theow widely used in biomedical information extrac-
identities and functions of interacting proteins contion (IE). The general approach to using natural
tributes significantly to the understanding of biologdanguage methods in automated information extrac-
ical processes by providing insight into the roles ofion involves a detailed analysis of basic grammat-
important genes, elucidating relevant pathways, aridal features (e.g., identifying each word’s part-of-
facilitating the identification of potential drug targetsspeech) and then a shallow analysis of deeper syn-
for use in developing novel therapies. tactic structure using targetted grammatical rules to
A large volume of protein-protein interactions haddentify simple syntactic patterns (‘templates’) or
been identified, and information about such interadasic grammatical units (e.g., noun phrases, verb
tions is now readily available in online databaseghrases) within the sentence.
such as BIND (Badert al, 2001). However, Representative approaches to extracting informa-
the information stored in current databases dod®n from biomedical texts include: using the fre-
not allow us to rank the biological validity of the quency of “discriminating words” to score paper
interactions—it may be the case that interactions o@abstracts to determine whether the paper is about
curring under laboratory conditions do not actuallyprotein interactions (Marcottet al., 2001); simple-
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template—based parsing of sentences to build net- has been shown that the degree to

works of protein interactions (Blaschlkeal., 1999); which interacting proteins are anno-
and a general-purpose information-extraction en- tated with the same functional cate-
gine using both symbolic and statistical Computa- gory is a measure of quality for the
tional Linguistic techniques to build a database of predicted interactions (von Merirgf
protein interactions (Thomast al, 2000). How- al. 2002).

ever, these approaches are inherently limited: th%

e may reasonably expect then to find biological
currently target only paper abstracts, they deal W.Itperms in the context surrounding a protein interac-

or_1|_y a single senter_1ce ‘.'ﬂ a tme, a_nd they use Smbn that indicate the common functions of these pro-
plified methods of linguistic analysis. As a conse-

. . teins. If we can determine such terms by an auto-
guence, these current approaches to biomedical in-

. . . . _mated method of linguistic analysis, we would have
formation extraction miss a great deal of the detaile " . ) . .
. . o . . . n additional means of discovering evidence in the
information on protein interactions that is containe

. iterature that the interaction is indeed biologicall
in the text. 9 y

. . . . valid
Potentially a great deal of additional information

o : . The idea of using semantically related strings of
on protein interactions could be extracted from SCirords to determine the topic structure of text is

entific articles if we were able to analyze the entirr‘r}nown aslexical chaining(Morris and Hirst, 1991)

text of the article to derive detailed linguistic |nfor—a method that fulfils our dual criteria of being both

mation such as lexical meanings, syntactic structur . o
) . gs, sy Giscourse-based and computationally efficient. We
semantic content, and discourse structure. However,

th t-d tate of C tational Linquist ropose to use lexical chains to retrieve additional
the present-day state of Lomputational LINGUISUCR¢ . ati0n on protein interactions by finding the
is still not sufficiently advanced to handle these dlf—b-

) _ ological terms in the passage surrounding an in-
ficult problems even for restricted sublanguages aq raction that form the theme structure of the text.

certainly not for the very large corpora needed fobur method requires readily available linguistic and

useful biomedical mformatlor_l extraction. Pr_eylou_‘cbiomedical resources: an online lexical thesaurus
systems have attempted to finesse these d|ﬁ|cultlg

b . thod of text \sis that imat 3.9.,WordNet; (Fellbaurat al., 1998)) and shallow
y using a method ot text analysis that approxXimaleg . e parsers, as well as biological and medical

full syntactic processing and that takes a heuriStigntologies (e.g., Unified Medical Language System,

approach to semantic analysis based on the reCQr%'tp://www.nlm.nih.gov/research/umls) which pro-
nition of interactions between proteins and other

lecules in the f f lat tchi _f_vide semantic and conceptual knowledge. By con-
molecuies in the form of templates matching Speci Igtructing the lexical chains related to protein inter-
linguistic patterns (cf. (Thomaet al., 2000; Puste-

iovsky et al. 2002 actions, we will not only extract additional impor-
Jovs yg a ): tant information about interactions from the litera-
) Iq this pa_per, we pro_pose a_m_ethod er E}XtraCtt'ure, but we hypothesize that we will also be able to
ing information on protein-protein interactions fromuse the strength of the chains to rank the apparent

online biological literature that aims to obtain more'quality of the interactions.

detailed knowledge than previous systems and that

uses both more-sophisticated Computational Lire Background and Related Work
guistic methods and computationally tractable algo- . ) .

rithms capable of handling large corpora. We bas%‘l Whatis Lexical Chaining?

our method on the inherent biological characteristid he notion of lexical chaining was first introduced
of protein-protein relationships, namely that interby Morris and Hirst (Morris and Hirst, 1991), and

acting proteins will tend to have similar biologicalderives from the concept of textual cohesion. The

functions: linguistic study of textual cohesion shows that a
text or discourse is not just a set of sentences, each
...Although proteins from differ- on some random topic; rather, the sentences and

ent groups of biological functions phrases of any sensible text tend to ‘stick together’

can still interact with each other, it by various means to form a unified whole. There



are a number of forms of textual cohesion, such adetection, hypertext generation, and text summariza-
grammatical cohesion (reference, substitution, etion. In this paper, we argue that lexical chains can
lipsis, conjunction) and lexical cohesion (i.e., sebe used in detailed information extraction from bio-

mantically related words). Lexical cohesion arisetogical literature, specifically, the assessment of the
from semantic relationships between words, and isiological validity of protein-protein interactions.

the most frequent and most easily identifiable type . . .
of cohesion. Halliday and Hasan (Halliday anc?'2 How to determine lexical chains

Hasan, 1976) classifed lexical cohesion into two catsenerally speaking, lexical chains can be computed
egories, reiteration and collocation. Reiteration inby grouping sets of words that are semantically re-
cludes not only repetition and reference, but alstated (words that have relationships such as iden-
superordinates, subordinates, synonyms, and hypé#ties, synonyms, and hypernyms/hyponynms). In
nyms/hyponyms. Collocation is defined as semantierms of actual computing procedures, most lexical-
relationships between words that often co-occur ighaining algorithms can be summarized by the fol-
the same lexical contexts. As an illustration, the following three steps:

lowing passage shows several types of lexical cohe- 1. Select a set of candidate words (i.e., all noun

sion. instances).
(1) John has a Jaguar. 2. For each candidate word, find an appropri-
ate chain relying on a relatedness criterion
(2) He loves the car. among members of the chains.
_ _ _ 3. If such a chain is found, insert the word in
(3) John works in the garage taking care of his the chain; otherwise a new chain is created.
Jaguar.

The difficult, and computationally costly, part
In this passage, the worthguarin sentence (1) of this process is that each candidate word must
and sentence (3) represents the simplest form of rbe assigned to exactly one lexical chain, and the
iteration: repetition;Jaguar and car form a part- words must be grouped in such an optimal way that
whole relationship that falls into the category of systhese groupings create the longest/strongest lexical
tematic semantic collocatiosar andgaragehave a chains. In our research, we will adapt the lexical-
nonsystematic semantic relationship. Lexical coheshaining algorithm developed by Silber and Mc-
sion occurs only between two terms, but may lea@oy (Silber and McCoy, 2002). Their linear-time
to sequences of related words.lékical chainmay algorithm was based on the complete method im-
then be defined as a sequence of related words plemented by Barzilay and Elhadad (Barzilay and
the text, spanning a topical unit of the text, be iElhadad, 1997) that runs in exponential time. Sil-
short (adjacent words or sentences) or long (entiteer and McCoy's method uses WordNet (Miller
text). In the passage above, a lexical chain wouldt al, 1990; Fellbaumet al., 1998), an online
be {Jaguar, car, garage Jaguar. In general, each lexical database as the knowledge source for the
document will contain many lexical chains, each ofexical semantic relationships used in constructing
which forms a portion of the cohesive structure othe lexical chains. In WordNet, lexical concepts
the document. are organized according to various semantic rela-
Lexical chains are important for computationaltions. Words (nouns, verbs, adjectives, and adverbs)
text understanding not only because they provide @e each organized into ‘synonym sets’, known as
context for resolving word ambiguity, but also be-synsets each of which represents the lexical con-
cause they indicate the discourse structure of theept underlying a group of words that are synonymic
text. Since lexical chaining was introduced in 1991¢or near-synonymic in a given context. Synsets
it has been successfully used in a number of Inforean be related by various lexical semantic relations:
mation Retrieval and Natural Language Processirgynonymy, antonymy, hyponymy/hypernymy (sub-
applications, such as term weighting, malapropisraolass/superclass, also known asld®erelation), and



meronymy (also known as holonymy, representing
various types opart-wholerelationships).

Silber and McCoy’s algorithm implicitly builds
all possible ‘metachains’ for each sense of a word
in WordNet; a single metachain represents all pos-
sible lexical chains for that core meaning. For each
noun in the document, for every sense of the noun
in WordNet, the noun sense is placed into every
metachain for which it has an identity, synonym, or
hypernym relation with that sense. After each noun
has been inserted into one or more metachains, the
next step is to find the single metachain for each
noun that the noun contributes to most, based on the
type of relation and distance factors. For example,
identity and synonymy are considered equally strong
contributors to a lexical chain over a passage of three
sentences, but hypernymy is considered less strong
over the same distance. When the algorithm com-
pletes, each noun will belong to only one metachain,
with all its occurrences in other metachains having
been removed. When all the nouns have been pro-
cessed, the optimal lexical chains will remain.

3 A Lexical Chaining Algorithm for
Ranking Protein Interactions

3.1 The algorithm
Our approach relies on a WordNet-like concept tax-

e Preprocessing:

1. Tokenize input text
2. Tag each token with appropriate part-of-speech

e Step 1: Find protein-interaction templates

for each sentence

1. Group sequences of terms into phrases (e.g.,
noun phrase, verb phrase) using cascaded finite
state machines

2. Determine phrases referring to protein entities or
interaction events using pattern-matching tech-
nigues

3. Link coreferring phrases (phrases that refer to
same protein)

4. Construct protein-interaction templates

e Step 2: Find protein-interaction lexical chains

for each paragraph
for context of current protein-interaction template

— Step 2a
for each biological-term instance
for each sense of the biological term
Compute all scored metachains
— Step 2b
for each biological-term instance
for each metachain to which the term belongs
Keep word instance in the metachain to
which
it contributes most
Update the scores of each other metachain

e Step 3: Compute rankings of protein interactions

according to strength of their lexical chains

onomy as the basis for automated discourse analyéziégure 1 A lexical chaining algorithm for protein

using lexical chaining to extract information abou
protein-protein interactions in biomedical literature.
Specifically, we adapt two existing algorithms for
lexical chaining and information extraction as the
basis of our method for analyzing biomedical texts .
related to protein interactions.

The first algorithm is Silber and McCoy’s lex-
ical chainer; the second is the general algorith
currently used in biomedical information extrac-
tion (e.g., (Thomaset al, 2000; Pustejovsky
et al, 2002)). Following the style of Thomas
et al. (Thomaset al, 2000) and Pustejovsket

ﬂnteraction texts

niques. A typical template would be: a noun phrase,
followed by a verb, a patrticle, then another noun
thrase, as in interacts with/binds to/associates
with B ((Thomaset al., 2000), p. 6).

We then integrate Silber and McCoy’'s lexical
chainer with this parsing framework to obtain strings

al. (Pustejovskyet al., 2002), the initial stages of (the ‘chains’) of semantically related words which
our algorithm use similar methods of shallow synindicate the topic structure of the passage of text sur-
tactic analysis in the form of tokenization, part-of-rounding a protein interaction. To do this, we mod-
speech tagging, and recognition of phrasal units by the original lexical-chaining algorithm to build
cascaded finite-state machines. Simple grammatioethains that are composed of biologically significant
‘templates’ of protein-protein interactions are therierms, specifically those related to protein functions.
constructed using statistical pattern-matching teclFhe resulting algorithm is shown in Figure 1.



3.2 Scoring lexical chains using Hirst and synsets connected by the antonymy relation
St.-Onge’s algorithm (e.g.,humanandobjec).

In Silber and McCoy’s algorithm, a critical compo-
nent involves determining the relatedness of words
making up a lexical chain. Initially, a noun is put
into a metachain if it is in some way related to the
sense with which the metachain is indexed. Subse-
quently, the degree to which the word contributes to
the metachain must be measured in order to decide

which metachains will be kept. In order to do this, Two words are said to be in a medium-strong re-

we need a means of measuring the semantic relatelayon If there exists an allovyable path connect-
ness of words Ing the synsets associated with each word. An al-

There are various WordNet-based word SimilarI_owable path involves certain patterns of links be-

ity measurements (e.g., (Hirst and St.-Onge, 199 ween synsets that may vary among upward (hyper-

Jiang and Conrath, 1997; Banerjee and Peders%n%:gﬁy?:; n;ﬁ:joﬂz:?zyg}]ti?\é\;?:’tv:r:jré;;/ponymy and

2002)). In this paper we adopt Hirst and St.- ) 4 St.-Onge’ h h h of
Onge’s (Hirst and St.-Onge, 1997) measure becauseIn Hirst and St.-Onge's scheme, the strength o

it is a simple and effective method easily used witt? IeX|cafI cr:alp IS t:).ased both (_m Its Iert;gth ar:Ed the
a manual form of corpus analysis. Hirst and st.ypes of relationships among its members. Extra-

Onge adapted Morris and Hirst's (Morris and Hirst,St"Ong relations have the highest weight, next in
eight are strong relations, and lowest are medium-

1991) semantic distance algorithm, which used RdY lai Unlik q |
gets Thesaurus, for use with WordNet. Theirs.trong relations. Unlike extra-strong and strong rela-

method views semantic relationships between word©ns: medmm-strong rglatlons have vgned weights
in terms of a graph, and correlates semantic rela@ccordmg to the following formula ((Hirst and St.-
edness between words with the nature of the corrgnge_’ 19?7)’ p. 308):

sponding path between concepts in the graph. Se-eight = C —path length —k number of changes
mantic relatedness is then determined based on tAkdirection(whereC' andk are constants)

path shape and distance between concepts using thd N€ overall strength (‘score’) of a lexical chain
relations connecting them in the WordNet taxonmMay then be taken to be the sum of weights assigned
omy. to each pair of semantic relations in the chain.

3. One of the words is a compound (or a phrase)
that includes the other, and there is any kind
of link at all between the synsets associ-
ated with each word (e.gschoolandprivate
schoo).

The Hirst and St.-Onge measure classifies Word- ] )
Net relations as having direction (upward, down# EXxperiment: Manual ranking of a
ward, or horizontal), and then establishes the relat- Sample corpus of protein interaction
edness between two conceptsand B by finding articles
a path that is neither too long nor that changes di;
recI[:)tion too often. Three kindgs of relations a?e defl'1 The corpus
fined: extra-strong (between a word and its repe//e applied our lexical-chaining algorithm for pro-
tition), strong (between two words connected by &ein interaction texts and method for ranking lexi-
WordNet relation), and medium-strong (when theal chains in an initial manual study. We selected

link between the synsets of the words is longer thah5 articles focussing on the identification of protein-

one and satisfies certain restrictions). protein interactions in yeast and analyzed these by
As an example, two words are strongly related ihand, first to determine the total number and na-
one of the following holds: ture of lexical chains in the contexts surrounding the

1. They are members of the same synset (e.g., 1C has value 8 and has value 1. (Graeme Hirst, personal
humanandperson. communication) In our examples, we set the weight of a strong

relation to be 7 (i.e., assuming a path length of one and no
) ] ) changes of direction). However, we set an extra-strongioela
2. They are associated with two differentto have a weight of 10, to reflect the special status of répatit



mention of protein interactions, then to test our rankeonstruction cell-building} and is then specialized
ing method on a sampling of the chains. In choosturther to cell-assembly From these primary con-
ing these articles, we aimed to represent a varietyepts, we built up the hierarchical structure by se-
of the research techniques used in studying proteitecting biologically significant concepts in the con-
protein interactions. In this way, we hoped to find dexts surrounding protein interactions and adding
good sampling of the kinds of biological terms likelythem into the taxonomy based on relations involving
to occur in protein-interaction contexts and whictsynonymy, antonymy, and hypernymy/holonymy.
would ultimately be included in our protein-related Because of the specialized nature of our lexical-
version of WordNet. chaining analysis, we adapted the meanings of the
. . . classical lexical semantic relations to be more tuned
4.2 Constructing a protein-related extension of
to our needs. Synonymy between terms, rather
WordNet than being a strict meaning relation based on truth-
We followed our algorithm as given in Figure 1 incondition—preserving substitution, is more usefully
analyzing by hand the lexical chains in the contextimterpreted as a relation between terms having a
surrounding protein-protein interactions in our samelose similarity in biological function. So, for ex-
ple corpus. By “context’, we mean a passage cdmple, the concepts afefect mutant and muta-
text within a single paragraph that ‘talks about’ &jon will all be in the same synset. Antonymy,
particular protein-protein interaction. In an autogas well, seems more appropriately defined for our
mated analysis, we would have to rely primarily omeeds as a contrast in terms of biological function;
overt discourse cues such as coreferential expregus, the concepisell-deathandcell-growthwill be
sions, rhetorical markers, and lexical meanings t@ntonyms of one another. A portion of a WordNet-

determine the topic structure of a text. In a manualke concept taxonomy for protein-related terms is
study, we used such cues but also used a deeper gien in Figure 2.

derstanding of the semantic content of the technical
material. At this stage, as our primary goal was tg 3 Enumerating lexical chains
collect and classify information on the regularities in
biological terminology that appear in protein-proteinJsing our concept taxonomy, we constructed lexical
interaction contexts, it seemed sound methodologghains for a sample corpus of protein-interaction ar-
to rely on our own human natural language procesécles using a manual version of our algorithm. The
ing ability; in further work, when we plan an analy-main difference between the formal algorithm and
sis of a much larger corpus, we will adhere to th@ur manual analysis is that we counted protein inter-
limitations inherent in automated processing, i.eactions which could be easily recognized by a hu-
the necessarily partial linguistic analysis providednan reader but that might be beyond the capability
by syntactic templates and cascaded finite state m@f-an automated system relying on a template-based
chines. method for recognizing interactions. The articles we
We modelled the basic structure of our concepinalyzed were all concerned with protein interac-
taxonomy for biological terms relevant to proteintions in yeast and covered a range of the experimen-
interactions on the existing concept structure itl techniques used to detect protein interactions. In
WordNet. For example, in WordNet, the concepprder to keep our sample corpus size manageable yet
assemblyhas in its synset the ternmonstruction still obtain a good number of protein interactions,
and building, while its superclasses comprise thave focussed on articles that were specifically about
more-general conceptsonstruction, buildingand finding novel interactions, rather than just detailed
the most-generic concegttivity. We based our tax- studies of specific interactions.
onomy on the topmost concepiological-activity For each article, we recorded the number of pro-
then created three hypernyms of this generic concefain interactions in each of the following categories,
based on the primary activities involving the cell:based on the number and nature of their lexical
cell-death cell-maintenanceandcell-development chains (biological terms in the examples below are
the conceptell-maintenancdas as its synsdcell-  shown in boldface):



Biological-activity /Biological-process/Process

AN ¥
E\ell—death cell-maintenance/ cell-development/cell-growth/growth
cell-construction/
cell-building celI-grovvth%controléceellll_-c%(ﬂae_-r%%%tlg)t%/o .
defect/ o telomere-maintenance
mutant/ cell-assembly/cell-organization
telomere-length-regulation

mutation/ ]
synthetic lethal actin-assembly o o
cell-division/ nuclear-division

septin-organization
cytokinesis

Glossary:
Y biological-pathway septum-formation

/= members of synset
degradation-pathway _ ) )
biological-synthesis

—= = hyponymy ﬁ
- -> =antonymy autophagy ¢
cell-synthesis

ndocytosis
DNA-synthesis

secrxtory-pathway DNA-repair

exocytosis protein-synthesis

RNA-splicing

Figure 2: A portion of a WordNet-like concept taxonomy footain-related terms



1. Bare mention of a protein interaction with no N-terminal region of Cdcl3p is in-

additional biologically related terms. volved intelomere maintenancéelom-
ere length regulationand cell growth
control through its_interactiorwith its
binding proteins. ((Hstet al., 2004),
p. 512)

(4) For example, two proteins of unknown
function, YGRO10W and YLR328W
(77% identical), were observed to
interactwith each other. ((Uetzt al,

2000), p. 625)
In addition, we recorded examples of protein inter-

2. Single-term occurrence of a biological termactions that were hedged (i.e., the authors expressed
in a protein-interaction context. uncertainty about the validity of the interaction),
negative (i.e., of the formrotein A does not interact
¥Vith protein B, and too difficult for the lay reader to
analyze. The results of our enumeration are shown
in Table . As may be observed in these results,
there was a wide range of distribution across the ar-

3. Single-theme lexical chain in which all thet'C_IeS in the types of protein interactions they con-

terms are semantically related to one anothe‘a'ned' The bulk of the protein-interaction instances
were ‘bare mentions’, i.e., simply stated, as might be

(6) We found that Msb2_interactsvith expected from the reporting style of most of these
Bni4, a protein that targets chitin depo-articles. Many of the articles did however include
sition to sites of polarizegyrowth by explanations about the nature of the protein interac-
linking chitin synthase to septins (De-tion, and it is these descriptive passages which were
Marini et al., 1997). Msb2 might co- picked up as single-theme and multiple-theme lexi-
ordinate cell wallgrowth with other cal chains.

Cdc42-regulatedprocesses ((Drees
et al, 2001), pp. 558-559) 4.4 Sample rankings of lexical chains

(5) A two-hybrid interactionbetween Cla4d
and Msb2 suggests that Msb2 is part o
the Cdc42 regulatorgathway. ((Drees
et al,, 2001), p. 558)

hWe propose that one way to assess the biological va-

lidity of a protein-protein interaction mentioned in a

related word. (in the example below, the scie_ntifi_c article is to use the strength of the lexical

different-themed lexical chains are shown inChaInS n the SU"PU”O““Q contgxt as a measure1 of

bold and italic.) the guallty of_the m'_teractlon. Hirst and St.-Onge’s

scoring algorithm gives us one such measure. We

(7) Inthe present work we show that the N-applied this algorithm to the sample passages in (4)
terminal region comprising amino acidsthrough (7) to arrive at the following resufttésum-
1-252 of Cdc13p interactsith Pollp, marized in Figure 3):

Sirdp, Zds2p and Imp4p. Moreover, Both passages (4) and (5) contain no lexical
CDC13deleted yeast cells expressingchains so receive scores of zero. This does not
Cdc13p lacking the N-terminal 1-252 necessarily mean that the protein interactions they
amino acids region or Cdcl3p with describe are not valid; rather, it indicates that the
point mutations in this region caused

defectsin progressivecell growth and 3The articles are listed in the order in which they were read.

: 4The weights we assign to medium-strong relations are de-

in cell cycle (_:Oﬂtro' These cells also rived from Hirst and St.-Onge’s formula. For example, in ex-
have defects in telomere length reg- ample (6), the medium-strong relation in the lexical chaie. (
ulation. Thus, we conclude that the {growth, processé$ is computed as follows:

- According to our concept taxonomy in Figure 2, the path be-

2\We accepted examples in this category in which one chaitweengrowthandprocesss a single-link relation in the upward

was a ‘null chain’ (i.e., a single term) as long as there was atirection (hypernymy), therefore:

least one other ‘real chain’ of two or more terms on a dislinct ~ weight = (8 — path length — number of changes of direction)

different theme. =8-1-0)=7

4. Multiple-theme lexical chains in which eac
chain forms a distinct string of semantically



Article Bare Single Single-theme Multiple-themeHedge | Negative| Too difficult
mention term lexical chain  lexical chain mention | to analyze

(Dreeset al., 2001) 25 18 14 25 (8) - -

(Uetzet al., 2000) 5 3 4 2 D Q) -

(Lu et al., 2003) 1 1 3 - (1) - 1)

(Cagneyet al.,, 2001) 12 1 1 - D - Q)

(Fromont-Racinest al., 2000) | 5 2 2 2 - () (2)

(Hsuet al., 2004) 9 11 5 4 - (14) (2)

(Printen and Sprague, 1994) 20 2 3 3 (5) (5) (2)

(Ito et al.,, 2001) 1 - 2 2 - - -

(Schwikowskiet al., 2000) 4 1 1 - - - -

(Ho et al., 2002) 11 11 7 2 - 1) -

(Zhenget al., 1995) 16 5 3 3 (5) (5) (5)

(Floreset al.,, 1999) 7 4 - - 4 4) (5)

(Tonget al.,, 2001) 2 4 4 6 D (2) -

(Ursicet al., 2004) 19 9 4 4 3 (6) (6)

(Yatherajamet al., 2003) 17 1 1 - 2) Q) (2)

Totals: 154 73 54 53 (31) (40) (26)

Table 1. Enumeration of various types of lexical chains imgle corpus of protein-interaction articles
(Numbers in parentheses are not included in totals)

supporting evidence for the quality of the interaclexical chains related to an interaction in a given
tion is weak (at least insofar as this fragment otontext in a single article and the strength of each
the article is concerned). Example (6) contains endividual lexical chain. If related lexical chains
strong singly-themed lexical chain, as evidenced bfpr the same protein-protein interaction could be de-
its score (17), and this serves to indicate a corréected across a corpus of articles, the evidence for
spondingly strong biological quality of the interac-the validity of that interaction would definitely be
tion. The last passage, example (7), contains twairengthened. More-specific protein-related terms
strong lexical chains, with a consequent very higin the concept taxonomy would also enhance the
overall score (50)indicating that the protein inter- scoring of the biological significance of the lexical
actions described herein have strongly supportive bthains. Most importantly, a large-scale corpus study
ological evidence. using an automated version of our algorithm will be
needed to evaluate the effectiveness of our method.

5 Discussion and Future Work
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Figure 3: Sample rankings of lexical chains for proteinrattions in examples (4) to (7)
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