
On Process-Algebraic Proof Methods for
Fault Tolerant Distributed Systems

Morten Kühnrich1 and Uwe Nestmann2

1 Department of CS, Aalborg University, Denmark
2 School of EECS, Berlin Institute of Technology, Germany

Abstract. Distributed Algorithms are hard to prove correct. In settings
with process failures, things get worse. Among the proof methods pro-
posed in this context, we focus on process calculi, which offer a tight con-
nection of proof concepts to the actual code representing the algorithm.
We use Distributed Consensus as a case study to evaluate recent devel-
opments in this field. Along the way, we find that the classical assertional
style for proofs on distributed algorithms can be used to structure bisim-
ulation relations. For this, we propose the definition of uniform syntactic
descriptions of reachable states, on which state-based assertions can be
conveniently formulated. As a result, we get the best of both worlds: on
the one hand invariant-style representation of proof knowledge; on the
other hand the bisimulation-based formal connection to the code.

1 Introduction

Proof Methods for Distributed Algorithms. The wide-spread technique to de-
scribe algorithms in this field is using pseudo code, which is supposed to be self-
explanatory, although it usually lacks a precise semantics; this also holds for the
underlying communication network that connects distributed participants of the
algorithm. Specifications of desired properties are usually expressed in natural
language that often refers to terminology and concepts that are well-understood
in temporal logics. Proofs in this area usually are in semi-formal style, omitting
many details and reasoning steps; often, the involved proof structures are only
very loosely connected to the pseudo code that describes the algorithm. Another
technique to describe distributed algorithms employs automata (especially I/O-
automata [Lyn96]). Here, the setting is more formal, although the behavior of
the involved automata is still often only described via pseudo code. Proofs are
carried out by induction that preserve (global) invariants along system runs;
structured and hierarchical proofs are then realized through composition and
hierarchical simulation methods.

The loose connection of proofs to the algorithm’s description was the starting
point for us to try out more syntactic methods, in our case process algebras and
process calculi1. These come with a large set of compositional proof techniques
and a powerful coinductive proof method, known as bisimulation.
1 We prefer to use the term process calculus instead of process algebra, when we do

not use proper algebraic laws. However, many people use the terms as synonyms.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357548244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proof Methods in Process Algebra. In the context of process calculi, verification
usually boils down to prove an equation of the form

System ≈ Specification

where System represents a (much) more detailed description of what is prescribed
by the Specification, but where both are described within the same conceptual
and linguistic framework. The symbol ≈ denotes some kind of meaningful equiv-
alence or, better, congruence relation; often, notions of bisimilarity are chosen
due to their distinctive power and accompanying co-algebraic proof method.

Since System usually contains far too many observable details, one often
hides those implementation details from the outside observer to make it directly
comparable to the Specification. The standard restriction operator, usually de-
noted by P\a, hides observations on channel a, which might occur within P ,
and keeps them internal. Sometimes, even this simple hiding method is not good
enough. Then, it may come in handy to have an additional so-called wrapper code
sit next to the System that filters the behavior of the latter more intelligently
before it is rendered observable. Equations get the form

(System ‖ Wrapper)\{a1, . . . , an}︸ ︷︷ ︸
WrappedSystem

≈ SimpleSpecification

where ‖ means that Wrapper is run in parallel with System, communicating
with it, translating its outcome, such that it becomes comparable to the Speci-
fication. In fact, the actual specification may often be fully encoded within the
Wrapper such that the SimpleSpecification term may become trivial, e.g., just
checking for a success signal emanating from the Wrapper. While the complex-
ity of the specification seems to be only moved into the wrapper, without gain,
one may actually profit from this transfer, because the resulting equation shows
much less externally observable behavior; the remaining internal behavior of the
WrappedSystem is often much easier to deal with. The verification method via
wrappers is more or less standard [BH00] and proved helpful in the context of
security [SV00] and studies on the expressive power of process calculi [Fou98],
where wrappers are called relays and even firewalls.

A Proof Method for Fault Tolerance. Francalanza and Hennessy have recently
proposed a method based on the above approach that, in addition, applies to the
domain of fault-tolerant distributed algorithms [FH07]. Concretely, they work
in a setting where processes may fail-stop, i.e., without recovery, augmented
with so-called perfect failure detectors. The challenge in this setting is to verify
the correctness of distributed algorithms in the context of crashes. Let Γk .
Sys represent a system configuration; the environment Γk allows for k different
process crashes. Interesting instances of k are n−1 or dn−1

2 e, where n is the given
number of processes in the distributed system. Then, one contribution of [FH07]
is that a typical equation to be verified would be of the form:

(Γk . WrappedSystem) ≈ (Γ0 . SimpleSpecification)

with the side-condition that the WrappedSystem is to be composed using a non-
crashable wrapper code, while the SimpleSpecification is not subject to failures at
all. Based on this representation, an essential contribution of [FH07] concerning
proof methods is the discovery of a decomposition principle, which allows them
to split the right-above equation into two more easily provable parts:

(Γk .WrappedSystem)
(1)
≈ (Γ0 .WrappedSystem)

(2)
≈ (Γ0 . SimpleSpecification)

Here, (1) proves the fault tolerance of the WrappedSystem, while (2) does the ac-
tual verification w.r.t. the SimpleSpecification. This approach is appealing since
it allows to prove (2), called basic correctness, without having to consider process
failures. The authors exhibited this method on an arguably simple case study of
a round-based Distributed Consensus algorithm in the context of perfect failure
detectors (P, in the terminology of [CT96]).

A non-trivial case study in the context of imperfect failure detectors. Our own
previous work [NFM03] has been in the context of much weaker imperfect (or:
unreliable) failure detectors (♦S, as of [CT96]). Therefore we had to deal with a
much more complicated round-based Distributed Consensus algorithm. For its
verification, we used a tailor-made distributed process calculus, similar to the one
in [FH07], but at that time lacking a bisimulation theory. Moreover, to remain
close and comparable to the informal proofs of Chandra and Toueg in [CT96],
we did not use the traditional proof method sketched above, but followed the
track of reachability analysis, based on inductions as in [Lyn96].

Thus, inspired by Francalanza and Hennessy, we set out to see in how far
their bisimulation-based decomposition method also carries over to less trivial
algorithms in an imperfect setting. For this, we chose the setting with imperfect
failure detector S, whose imperfection lies just between2 the above-mentioned P
and ♦S. As a result, also the required algorithm to solve Distributed Consensus
has a complexity in between the ones mentioned above. To verify this algorithm,
we had to adapt the calculus of [FH07], mainly to incorporate imperfect failure
detection. Then, we tried the proof method of [FH07] on this case study. The
results of this undertaking is what the current paper is about.

Contributions. The main insights gained through this work are: (i) with imper-
fect failure detectors, the decomposition into equations (1) and (2) of [FH07]
does not seem to simplify proofs; (ii) to tame the complexity of non-trivial
state spaces, syntactic standard forms help characterizing the shape of reach-
able states3; (iii) we observe that invariants, as they are commonly used in tra-
ditional proofs on distributed algorithms, can be succinctly defined on the basis
of standard forms; (iv) those invariants can be used to conveniently define the
bisimulation relations that are used as witnesses in the respective proof method.

2 S requires the existence of some non-suspectable process from the beginning, while
♦S just needs to guarantee this eventually, after a phase of uncertainty.

3 This idea is already more or less visible in the Scheduler example of [Mil89].

Other Proof Methods. Fokkink et.al. [FGR04] pointed out that process algebras
need proof methodology, not just methods. Over the years, they developed such
a methodology centered on the notions of cones and foci, whose main use is
to tame complicated process behavior by the identification of states where the
specification and the system more directly “coincide”. This methodology also
includes assertional techniques and invariant proofs. However, their methodology
has not yet been carried over to contexts with process failure.

On the model-checking side, we just mention two closely related examples.
Kühnrich [Küh08] applies model-checking in the context of a model-driven deve-
lopment of an extension of the algorithm studied in the current paper. Tsuchiya
and Schiper [TS08] use the model checker Spin to verify asynchronous round-
based consensus algorithms. By abstraction, they manage to reduce the state
space (with infinite runs) to a finite one that can be model checked. However,
they can still only check correctness for fixed network sizes.

2 Distributed Process Calculi for Fault Tolerance

In this section, we introduce a distributed process calculus with process crashes
and failure detection, inspired by [NFM03,NF03,FH07,Hen07]. The process model
is standard, equipped with the following properties: (i) channel-based synchronous
passing of values, (ii) user defined functions, (iii) recursion through parameter-
ized process constants. Since there is no name-passing, the calculus is more like
CCS than the Pi Calculus. As a novelty, it incorporates both perfect (P) and
imperfect (S) failure detectors, as defined by Chandra and Toueg [CT96].

2.1 Syntax

We use four layers of the syntax (cf. Table 1): data values, guarded processes,
processes, and networks. We assume the existence of a countably infinite set of
channel, variable, and function names A = {a, b, c, ...} and a finite set Loc of
location names that contains the special name ?.

Data values and expressions. ⊥ denotes unknown values; integers are stan-
dard. Values can be paired and grouped into sets. V is the set of values derivable
from the non-terminal v in the grammar and A is disjoint with V. As a conse-
quence there is no name-passing within the calculus. The expression language
is composed of data values, variable patterns, pairing, and function application.
The meaning of function symbols f ∈ A is defined via a total Turing computable
function apply : A×V→ V that assigns meaning to function symbols f ∈ A.

Guarded processes. A message e is sent via the synchronous channel c by
c〈e〉.P with continuation P . Message reception on channel c is written c(X).P .
If a message v is sent on c then c(X).P becomes P with all instances of variables
in X instantiated with values from v. Pattern X must be linear. Process P(|k|).P
contacts a perfect failure detector and may only proceed as P when location k is
detected to be dead. Process S(|k|).P contacts an imperfect failure detector and
may proceed as P when location k is suspected to have crashed. Since failure

Data values V
v ::= ⊥, 0, 1, 2, 3, . . . | (v, v) | {v, . . . , v}

Variable pattern
X ::= x | (X,X), with x ∈ A

Expressions
e ::= v | X | (e, e) | f(e), with f ∈ A

Guarded processes G
G ::= 0 | c〈e〉.P | c(X).P | S(|k|).P | P(|k|).P

| G+G | if e then G else G

Processes P
P,Q ::= τ.P | G | K(e) | P ‖ P | P \ a

Networks N
M,N ::= 0 | ` [P] | N ‖ N | N \ a

Process equations

D def= {Kj(X) = Pj}j∈J a finite set of process definitions

Table 1. Syntax

detection is unreliable in this case, the process might incorrectly suspect location
k and proceed as P , even though k is actually live. Guarded choice G + G′ is
the choice between guarded processes G or G′. Branching if e then G else G′

evolves to G if e evaluates to an integer greater than zero, otherwise to G′.

Processes. The process 0 models inaction; process τ.P can perform a silent
transition and become P . Parallel composition P ‖ P ′ runs processes P and P ′

in parallel. Parameterized process constants have the form K(X); are defined
w.r.t. to a finite set of process equations D of the form {Kj(X) def= Pj}j∈J .

Networks. The network ? [P] is a process running at a location ?; it has the
property that it can never crash. The intention is to use this location for wrapper
code. The location ` [P] , ` 6= ? may however fail. An action a may be restricted
to N by N \ a. Networks can be put in parallel N ‖ N ; we write

∏
φN for the

parallel composition of a finite set of networks satisfying the logical predicate φ.

The substitution of value v for a variable pattern X in expression e or process
P is written e{v/X} and P{v/X} respectively. The operator fn(·) defined on
processes and networks is defined as usual. Notice that only data values can
be substituted for names and that all variables of the pattern X must be free
in P . We write c〈e〉 for c〈e〉.0 and c.P for c(x).P , x /∈ fn(P) and c for c〈⊥〉.
Restriction is generalized to sets of names in the obvious way. Lists are defined
via right-recursive pairing and we write let X = e in P for the local binding of
X to e in P , formally defined by a process constant (K(X) def= P) ∈ D. Finally
define a@i(x).P to denote a(x).P + S(|i|).P{⊥/x}, x ∈ fn(P) meaning: either
receive a value on channel a or suspect location i.

Some notational conventions: R1R2 is the composition of relations R1 and
R2; R∗ is the transitive closure of a relation R. |M | is the cardinality of the
finite multiset M . We occasionally omit binders e.g. if (x, y) ∈ S where S is a
set and y is unused we write (x, ·) ∈ S.

2.2 Semantics

The semantics (see Table 2) of our calculus is mostly standard. It is based on
configurations consisting of a book-keeping environment and process networks.
The terminology of trusted immortals was introduced in [NF03,NFM03] to sup-
port a simple and direct definition of the failure detector properties of [CT96].
The essence is that the process ti ∈ Loc, ti 6= ? can neither crash (immortal)
nor be suspected by any other process (trusted).

Definition 1 (Configurations). Configurations C have either of the two forms
(L, n) . M or (L, n) .ti M , where L ⊆ Loc is a finite set of locations, n ∈ N and
M is a network. We define C as the set of all configurations.

We define the projection dead(·) by dead((L, n)) = Loc \ L and a predicate
live(·, ·) in the following way: live(?, Γ) is true for all Γ ; live(`, (L, n)) is true if
` ∈ L. Let JeK denote the evaluation of expression e, defined in the standard way.

Definition 2 (Evaluation of networks). Let > be the evaluation relation
defined on configurations (assuming live(`, Γ) everywhere), closed under restric-
tion, parallel composition, reflexivity, transitivity and the following rules:

Γ .ti ` [c〈e〉.P] > Γ .ti ` [c〈JeK〉.P]
Γ .ti ` [K(e)] > Γ .ti ` [P{JeK/X}] , (K(X) def= P) ∈ D
Γ .ti ` [if e then P else Q] > Γ .ti ` [P] , JeK > 0
Γ .ti ` [if e then P else Q] > Γ .ti ` [Q] , JeK = 0.

Definition 3. Structural congruence ≡ is the least equivalence relation defined
on configurations, satisfying commutative monoid laws for (N, |,0), closed under
restriction and parallel composition and the rules:

(Nil) Γ .ti ` [0] ≡ Γ .ti 0 (New) Γ .ti ` [P \ a] ≡ Γ .ti ` [P] \ a
(Location) Γ .ti ` [P ‖ Q] ≡ Γ .ti ` [P] ‖ ` [Q]
(Scope) Γ .ti M ‖ (N \ a) ≡ Γ .ti (M ‖ N) \ a, a /∈ fn(M)

Let V denote the relation >≡.
We write C Vᵀ C ′, if C V∗ C ′ and 6 ∃C ′′ 6≡C ′ : C ′ > C ′′.

Actions α ∈ Act are of the form α ::= τ | cv | cv. The transition relation
−→ ⊆ C×Act×C is the smallest relation generated by the rules of Table 2.
Rule (TI) non-deterministically selects a trusted immortal. It is the rule that must
be applied initially; this is necessary in interplay with (Susp) (see below). Rule
(Stop) stops a live process from running if the total number of allowed failures
is not zero. Rule (PSusp) models perfect failure detection. Rule (Susp) models

(TI) ti ∈ L \ {?}
(L, n) . M

τ−→ (L, n) .ti M

(Stop) ` 6= ti ∧ ` ∈ L
(L, n+1) .ti M

τ−→ (L\{`}, n) .ti M

(PSusp) live(`, Γ) ∧ ¬live(k, Γ)

Γ .ti ` [P(|k|).P]
τ−→ Γ .ti ` [P]

(Susp) live(`, Γ) ∧ k 6= ti ∧ k 6= `

Γ .ti ` [S(|k|).P]
τ−→ Γ .ti ` [P]

(Tau) live(`, Γ)

Γ .ti `[τ.P]
τ−→ Γ .ti `[P]

(SumL) live(l, Γ) ∧ Γ .ti ` [G1]
α−→ Γ ′ .ti ` [P]

Γ .ti ` [G1 +G2]
α−→ Γ ′ .ti ` [P]

(Par) Γ .ti M
α−→ Γ ′ .ti M

′

Γ .ti M ‖ N
α−→ Γ ′ .ti M

′ ‖ N
(SumR) live(l, Γ) ∧ Γ .ti ` [G2]

α−→ Γ ′ .ti ` [P]

Γ .ti ` [G1 +G2]
α−→ Γ ′ .ti ` [P]

(Snd) live(`, Γ)

Γ .ti ` [c〈v〉] cv−→ Γ .ti 0

(Rcv) live(`, Γ)

Γ .ti ` [c(X).P]
cv−→ Γ .ti ` [P{v/X}]

(Com) Γ .ti M
α−→ Γ .ti M

′ Γ .ti N
α−→ Γ .ti N

′

Γ .ti M ‖ N
τ−→ Γ .ti M

′ ‖ N ′
, α, α 6= τ

(Red) C V C1
α−→ C2 V s′

C
α−→ C′

(Res) Γ .ti M
α−→ Γ ′ .ti M

′

Γ .ti M \ a
α−→ Γ ′ .ti M

′ \ a
, α 6= av, av

Table 2. Structural Operational Semantics

imperfect failure detection: processes never suspect themselves, nor the trusted
immortal; every other process may be suspected at any time (see [CT96,NF03]).
Rules for communication, sum and parallel composition are all standard. Rule
(Red) describes the one way reduction of terms using value evaluations.

On the set of configurations, we define weak bisimilarity “up to”. For this, let
=⇒def= τ−→

∗
. Then, C α̂=⇒ C ′ is C =⇒ C ′, if α = τ , otherwise C =⇒ α−→=⇒ C ′.

Definition 4. Let U and R be binary relations over C. We call R a weak
bisimulation up to U if, whenever C1 R C2 then

– if C1
α−→ C ′1 then there is C ′2 with C2

α̂=⇒ C ′2 and C ′1 (URU) C ′2.

– if C2
α−→ C ′2 then there is C ′1 with C1

α̂=⇒ C ′1 and C ′1 (URU) C ′2.

Two configurations C1 and C2 are said to be weakly bisimilar up to U , written
C1 ≈U C2, if there is a weak bisimulation (up to U) R such that C1 R C2.

If U is the identity, then we get the standard bisimilarity ≈. If U = ≡, then we
get a well-known proof technique for the standard bisimilarity.

2.3 Proof Methods and Methodology

Referring to the Introduction, the environment Γk would be represented in our
calculus as (L, k) for some L ⊆ Loc; likewise (L, 0) represents a (from now on)
failure-free environment. Francalanza and Hennessy [FH07] managed to set up
wrapper codes (one for each property to prove) such that SimpleSpecification

boiled down to the trivial process ok running at the immortal location ?, the
location of the wrapper code. The two equations in their methodology are then:

(Loc, 0) . (Sys ‖ Wrapper) \R ≈ (Loc, 0) . ?[ok] (1)
(Loc, 0) . (Sys ‖ Wrapper) \R ≈ (Loc, n−1) . (Sys ‖ Wrapper) \R (2)

Using transitivity of weak bisimilarity, they may be composed into:

(Loc, n−1) . (Sys ‖ Wrapper) \R ≈ (Loc, 0) . ?[ok] (3)

In the context of the chosen case study of [FH07], proving Equation 1 and 2
was easier than proving Equation 3 directly. That context was mainly corre-
sponding to our calculus—except that only perfect failure detection was around.
The difference, though, is crucial. With perfect failure detectors (P), there is a
gain when the correctness proof is split, as showed above. The proof of basic
correctness (i.e., of Equation 1) is much simpler, because all its sub-expressions
of the form P(|k|).P +Q are then equivalent to Q: no crash failures may occur,
which means that no suspicion can be carried out at all. The proof of basic
correctness hence eliminates all code after P(|k|) prefixes for any k ∈ L. With
imperfect failure detectors (S), this is no longer the case. Expressions of the
form S(|i|).P +Q cannot simply be rewritten to Q since the failure detector can
make mistakes, even if no process crashes may occur! This has the implication
that basic correctness (i.e., Equation 1) is hard to prove. We claim that, in the
context of imperfect failure detectors, proving Equation 1 is even just as hard as
proving Equation 3. So, in the remainder of this paper, we thus tackle Equation
3 directly for our case study.

3 Applying the Methodology to the Case Study

Distributed consensus is the following well-known problem: a fixed number n of
agents each initially propose a value vi, 1 ≤ i ≤ n; then, eventually, the agents
must agree on a common value vi ∈ {v1, . . . , vn}. The precise specification of
the problem comprises three properties with temporal logic flavor: Termination:
Every live process eventually decides some value. Agreement: No two processes
decide differently. Validity: If a process decides value v, then v was proposed by
some process. Table 3 presents an algorithm by Chandra and Toueg [CT96] that
is supposed to solve Distributed Consensus in the context of failure detector S.

Definition 5 (Vectors). A n-vector is a map from set {1, . . . , n} to set V. Let
⊥̃ denote the n-vector (⊥,⊥, . . . ,⊥). Define an order ≤ on n-vectors by V ≤ V ′
if for every ∀1 ≤ i ≤ n : V (i) = ⊥ ∨ V (i) = V ′(i). We read V ≤ V as: V ′ holds
at least the knowledge of V .

The algorithm proceeds in three phases, during which it manipulates two
particular vectors of each process. The vector Vp holds the current knowledge
of agent p (the knowledge vector). If Vp(i) = v then agent p knows that agent i
proposed value v. The vector ∆p is used to relay knowledge from the previous

1: Pseudo code for agent p
2: Vp ← ⊥̃, Vp(p)← vp
3: ∆p ← Vp, Mp ← ∅
4:
5: Phase 1:
6: for all rp ← 1 to n−1 do
7: send P1(p, rp,∆p) to all

8: ∆p ← ⊥̃
9: block until

10: for all 1 ≤ q ≤ n
11: receive m = P1(q, rp,∆)
12: Mp ←Mp ∪ {m}
13: or suspect S(|q|)
14: for all q ← 1 to n do
15: if Vp(q) = ⊥ and ∃∆′ ∈Mp

16: with ∆′(q) 6= ⊥ then

17: Vp(q)← ∆′(q)
18: ∆p(q)← ∆′(q)
19:
20: Phase 2:
21: send P2(Vp) to all
22: block until
23: for all 1 ≤ q ≤ n do
24: receive m = P2(V)
25: Mp ←Mp ∪ {m}
26: or suspect S(|q|)
27: for all q ← 1 to n do
28: if ∃V ′ ∈Mp : V ′(q) = ⊥
29: then Vp(q)← ⊥
30:
31: Phase 3:
32: decide = min {q | Vp(q) 6= ⊥}

Table 3. Distributed Consensus [CT96]

round (the relay vector). Each agent has a round variable r which allows agents
to order messages. Variable q is used to iterate through all agent 1 . . . n. Variable
Mp is a multiset which serves as a store for all received messages. Initially, every
agent p knows its own value, i.e. Vp(p) = vp, ∆p equals Vp and store Mp is empty.

Phase 1 — obtaining knowledge. The agents broadcast and update their
knowledge during n−1 rounds. When a received message contains a previously
unknown value then both knowledge and relay vector will be updated. Newly
learned values are relayed once because of the boolean predicate in line 15 and
the fact that the relay vector is reset in the start of each round. It can be proven
that every agent p that completes Phase 1 at least has the same knowledge as ti
(the trusted immortal, that is the live and never wrongly suspected agent).

Phase 2 — correcting knowledge. If Vi(j) = ⊥ for some agent i and j then
either agent i has suspected agent j to have crashed or j stopped before sending
messages to i. Such “not-known” values are distributed among all the partici-
pants. An agent k that receives knowledge vector Vi corrects coordinate j to ⊥,
i.e. Vk(j) = ⊥. Destruction of knowledge in this fashion happens in line 29. It
can be proved that every agent p that reaches the end of Phase 2 has the same
⊥’s as ti. As an effect it holds that Vti = Vp for any such p at the end of Phase 2.

Phase 3 — selecting the final value. The two phases above ensure that the
knowledge vector of every live agent is equal to Vti. The first non-zero value in the
knowledge vector is chosen. Since process ti knows it’s own value i.e. Vti(ti) = vti

this value cannot be ⊥. So, every agent will agree on some number in the end.

3.1 Encoding the Case Study

In Table 5, we formulate system Sys in our calculus with a formalization of (i) the
behavior of each agent, (ii) the communication between agents and (iii) failure

apply(data, (r,M)) def= {∆ | (∆, r′, i) ∈M ∧ r = r′}
apply(data,M) def= {V | (V, i) ∈M}.
apply(senders, (r,M)) def= {i | (∆, r′, i) ∈M ∧ r = r′}
apply(senders,M) def= {i | (V, i) ∈M}.
apply(update, (r,M, V,W)) def= W ′

where W ′(j) =

∆r ,∆ ∈ data(r,M) and

V (j) = ⊥0 6= ∆(j),

W (j) , otherwise

apply(correct, (M,V)) def= W

where W (i) =

⊥ , V ′ ∈ data(M) and

V ′(i) = ⊥0

V (i) , otherwise

Table 4. Auxiliary function declarations

detection. We identify agents via numbers, i.e. Loc def= {?, 1, . . . , n}. Agents and
each phase of the algorithm are modeled via parameterized process constants.

To ease the correctness proof we need a way of expressing that a value vi
was learned in round ri. Without changing the algorithm we extend the knowl-
edge vector with round numbers: (vr11 , . . . , v

rn
n) where vr is shorthand for (v, r).

We still compare vectors V ≤ V ′ by comparing the unannotated versions of V
and V ′. The initial knowledge vector I0

i for agent i is a map defined by I0
i (i) = v0

i

and I0
i (j) = ⊥0 for j 6= i. The initial relay vector Ii(i) for agent i is a map defined

by Ii(i) = vi and Ii(j) = ⊥ for j 6= i.
We define functions for the internal computation at each agent. First there

are simple functions supporting primitive operations such as multiset manipula-
tion, manipulation of vectors, and operations related to integers such as compar-
ison and addition. The maximum of a finite multiset M of numbers is written
max(M). Function getfst(V) returns first non-zero component of V . If no such
entry exists the value ⊥ is returned. In Table 4 we define more advanced func-
tions. The functions data and senders are used to project information on sent
data and sender identities from a given multiset of messages M . We may call the
function with a round number r as filter. The function update updates vector
W with respect to current knowledge V , round number r and received messages
M corresponding to Phase 1, lines 14–18 in Table 3. Function correct corrects
the knowledge vector V with respect to received messages M , corresponding to
Phase 2 in lines 27–29 in Table 3. The process constant P1p(r, V,∆,M) cor-
responds to an agent p in Phase 1 which broadcasts its current knowledge and
waits for incoming messages by process constant C1p(r, V,M) (that defines the
gathering of answers and updates of knowledge in Phase 1). Symbol r is the
current round number, V is the current knowledge vector and ∆ is the current
communication vector and M is the (possibly empty) multiset of received mes-
sages for round r. Phase 2 is modeled by P2p(V) and C2p(V,M) corresponds to

1: Sys def=
2:

(∏n
i=1 i

[
P1i(1, I

0
i , Ii, ∅)

])
3: P1p(r, V,∆,M) def=
4: if (r < n) then
5:

∏
1≤i≤n ap,i,r〈∆〉 ‖ C1p(r, V,M)

6: else P2p(V,M)

7: C1p(r, V,M) def=
8: let i = 1 + max(senders(r,M))) in
9: if i ≤ n then

10: ai,p,r@i(∆).

11: C1p
(
r, update(r,M, V, V),

12: M+(∆, r, i)
)

13: else
14: P1p

(
r + 1, V,

15: update(r,M, V, ⊥̃),M
)

16: P2p(V,M) def=
17:

∏
1≤i≤n bp,i〈V 〉 ‖ C2p(V,M)

18: C2p(V,M) def=
19: let i = 1 + max(senders(M)) then
20: if i ≤ n then
21: bi,p@i(V

′).C2p(V,M + (V ′, i))
22: else
23: P3p(correct(M,V),M)

24: P3p(V,M) def=
25: cp〈getfst(V), V,M〉

26: Wrap(i, v) def=
27: if (i ≤ n) then
28: P(|i|).Wrap(i+ 1, v) +
29: ci(v

′, V,M).
30: if (v=⊥ ∨ v==v′) then
31: Wrap(i+ 1, v′) else 0
32: else if (i == n+ 1) then ok

Table 5. Encoding of the algorithm of Table 3

the gathering of information in Phase 2 analogously. Phase 3 is modeled by the
process constant P3p(V).

Constant Wrap(i, v) is the wrapper code that checks for agreement. It collects
all the decision values agent by agent and checks that they agree. If they all agree,
then ok is released. Otherwise the checker becomes 0. The wrap code has to use
perfect failure detectors since unreliable failure detectors may cause incorrect
answers. For convenience, let R def= {ai,j,k, bi,j , ci}1≤i,j,k≤n.

Trying to formalize some intuitions about the algorithm, we quickly get to
the point where we need to formulate properties that refer to the respective
states of the processes, not their actions. Process calculi do not directly support
this, except when we refer to the process constants—and their parameters—
that we used to write down the code. To enable this kind of reasoning, we define
dedicated syntactic forms that also capture the complete message space.

Definition 6. A standard form Cξ is a configuration of the form:

Γ .
ti

(∏
(p,r,i)∈Πout

1

p
[
ap,i,r〈∆p,r 〉

]
‖
∏

(p,i)∈Πout
2

p
[
bp,i〈 V P2

p 〉
]
‖∏

p∈Πout
3

p
[
cp〈 vp , V P3

p , MP3
p 〉

]
‖∏

(p,r)∈Πcol
1

p
[
C1p

(
r, V P1

p , MP1
p

)]
‖
∏
p∈Πcol

2

p
[
C2p

(
V P2
p , MP2

p

)]
∏
c∈dead(Γ) c [Qc] ‖ Wrap

[
Wrap(j , w)

])
\R

where dead(Γ) is disjoint with Πout
1 , Πout

2 , Πout
3 , Πcol

1 , Πcol
2 . Parameter ξ is a

data structure consisting of all the boxed values above. We refer to its entities
“by name”, ı.e., using boxed symbols. We will often write ξ instead of Cξ.

Our standard form is defined w.r.t. process constants. By the semantics, they are
not necessarily fully unfolded. Since unfoldings may take place independently in
different parts of terms, different process constants may be unfolded at different
degrees, some too far, some too little. It requires a subtle definition to precisely
relate any reachable configuration to some standard form.

Definition 7. A configuration C with C Vᵀ C ′ has standard form Cξ if there
exist a vector family ξ such that Cξ V C ′.

The connection of configurations to standard forms cannot be lost in transition.

Lemma 1 (Preservation of Standard Forms).
If C → C ′ and C has a standard form, then C ′ also has a standard form.

3.2 Weak Bisimulation Relations via Invariants

Definition 6 suggests that the reachable state space of Chandra and Touegs
algorithm is reasonably complex. Agents may be in different phases, have dif-
ferent knowledge and different sets of relay vectors. Learning from Chandra and
Toueg’s proof sketch [CT96], we capture this combinatorial space via invariants.

Definition 8. An invariant I is a boolean predicate defined on configurations
such that I(C) and C α−→ C ′ imply I(C ′) for α ∈ {τ, ok}.

Invariants provide an abstraction from actual states to classes of states. It is this
characteristic that we use when we give witness relations for our weak bisimu-
lation relations. With the convention that Spec = Wrap[ok] we require that it
accepts the initial configuration and that success eventually is reached:

I

(
(Loc, n−1) . (Sys ‖ Wrap(1,⊥)) \R

)
. (4)

If I(ξ) then ξ
ok=⇒ 0 (5)

That enables us to construct a witness relationR ⊆ C×C for Equation 3 (closed
under symmetry) of the form:

R =
{(
ξ, (Loc, 0) . Wrap[ok]

)
| I(ξ)

}
(6)

Lemma 2. R is a weak bisimulation up to V if I satisfies Equation 4 and 5.

Equation 6 and the requirements to invariant I prepare for a proof of Equation 3.

Definition 9. Let predicate I be the conjunction of the predicates (all defined
below): control, validity, relay, receive1, learn, preknow, receive2 and know.

The predicate control defines control criteria to the algorithm, e.g. agent p can-
not be in Phase 1 and Phase 2 at the same time or agent p cannot be in two
different rounds at the same time in Phase 1 etc.

Definition 10 (Control flow). Define the predicate control(ξ) as the conjunc-
tion of the expressions below:

1. if (p1, ·) ∈ Πcol
1 and p2 ∈ Πcol

2 and p3 ∈ Πout
3 then p1 6= p2 and p1 6= p3

and p2 6= p3.
2. if (p, r) ∈ Πcol

1 and (p′, r′) ∈ Πcol
1 and p = p′ then r = r′.

3. 1 ≤ j ≤ n+ 1

4. ∀r : |senders(r, MP1
p)| = max

(
senders

(
r, MP1

p

))
5. |senders

(
MP2
p

)
| = max

(
senders

(
MP2
p

))
6. If ∃p : (p, ·) /∈ Πcol

1 and p /∈ Πcol
2 and p /∈ Πout

3 then p < j .

The next predicate formally describes what we mean by validity: all values
in knowledge and relay vectors have been proposed by someone.

Definition 11 (Validity). Let U be a vector which holds the initially proposed
value by participant i, i.e. U(i) = vi for 1 ≤ i ≤ n and define the predicate
validity(ξ) as the conjunction of the expressions below:
1. ∀p : V P1

p (p) = v0
p, 2. ∀(p, r, i) ∈ Πout

1 : ∆p,r ≤ U
3. If (p, r) ∈ Πcol

1 or p ∈ Πcol
2 or (p, i) ∈ Πout

2 or p ∈ Πout
3 then

V P
p ≤ U for P ∈ {P1,P2,P3}.

4. ∀(∆, r, i) ∈ MP1
p ∪ MP2

p ∪ MP3
p : ∆ ≤ U

5. ∀(V, i) ∈ MP2
p ∪ MP3

p : V ≤ U , if V 6= ⊥

6. If p ∈ Πout
3 then vp = getfst

(
V P3
p

)
7. 1 ≤ j ≤ n+ 1 ∧ ∃i : w = vi ∨ w = ⊥, 8. If j = 1 then w = ⊥

The next predicate says that values learned in round r are relayed in round r+1.

Definition 12 (Relays of knowledge, Phase 1). Define the predicate relay(ξ)
by the following: If (p, ·) ∈ Πcol

1 and V P1
p (j) = vr

′
, v 6= ⊥ for some j and

r′ ≤ n− 2 then it holds that

1. if (p, r, ·) ∈ Πout
1 and r 6= r′ + 1 then ∆p,r (j) = ⊥

2. if (p, r, ·) ∈ Πout
1 and r = r′ + 1 then ∆p,r (j) = v

Knowledge propagates from ti to all live agents of the protocol.

Definition 13 (Received messages, Phase 1). Define the predicate receive1(ξ)
by the following:

If (a) (ti, ·) ∈ Πcol
1 and (b) V P1

ti (j) = vr 6= ⊥ for some j

then 0 ≤ r ≤ n− 2 and r′ = r + 1 implies (∆, r′, ti) ∈ MP1
p and ∆(j) = v.

Maybe the most important property: all agents learn from the trusted immortal.

Definition 14. Define the predicate learn(ξ) by the following:

If (a) (ti, ·) ∈ Πcol
1 , (b) V P1

ti (j) = vr 6= ⊥ for some j, and (c) (p, r′) ∈ Πcol
1

then (a) if 0 ≤ r ≤ n− 2 and r′ ≥ r + 1 then V P1
p (j) = vr

′′
for some r′′.

(b) if r = n− 1 then V P1
p (j) = vr

′′
for some r′′.

The property that all agents learn from the trusted immortal also holds at the
beginning of Phase 2 where every agent at least has the same knowledge as ti.

Definition 15. Define predicate preknow(ξ) by: ∀(p, ·) ∈ Πout
2 : V P2

ti ≤ V P2
p .

The predicate below states that all agents receive from ti in Phase 2.

Definition 16. Define the predicate receive2(ξ) as follows: if all of 1. p ∈ Πcol
2 ,

2. i := max(senders(MP2
p)), and 3. ti < i, then ∃V : (V, ti) ∈MP2

p .

The effect is that everyone has the same knowledge as ti at the end of Phase 2
(or beginning of Phase 3), which is stated in the following predicate:

Definition 17. Define the predicate know(ξ) by 1. ∀p ∈ Πout
3 : V P3

ti = V P3
p

and 2. If p ∈ Πout
3 and 0 < j < n+ 1 then w = vp .

The following important theorem tells that I is an invariant.

Theorem 1. I is an invariant which satisfies Equation 4.

The proof that “I(ξ) implies that ξ ok=⇒ 0” uses a progress measure as tem-
poral distance of any agent i to termination. Our main theorem follows directly.

Theorem 2. The relation in Equation 6 is a weak bisimulation up to V with
invariant I defined as in Definition 9.

In summary, we have proved the required Consensus properties: Validity
holds since it is part of the global invariant; Termination follows from the above-
mentioned progress analysis ending up in a state where the wrapper code comes
to an end; from the argument that the wrapped system is weakly bisimilar to
ok, we get Agreement, obviously due to the design of the wrapper code.

4 Conclusion and Future Work

Our case study may offer several insights. The strategy, or: methodology, that
worked quite nicely in our case, may be summarized as follows. The usage of
a process calculus helps to keep a tight connection to the algorithm’s code, so
our proofs are meaningful. The formulation of the proof goal by wrappers is,

although not a new idea, very useful in the context of fault tolerance. A novelty
in our approach was the combination of imperfect failure detectors (as neces-
sarily assumed by the case study) and perfect failure detectors (as idealistically
assumed to have the wrapper code function properly). The introduction of stan-
dard forms to manage the complexity of state spaces is not a new idea either;
it has mostly been used implicitly and often only in toy examples, but it seems
to scale quite well. The reason we propose to turn standard forms explicitly
into a method is that they provide a well-suited means to express the typical
assertional state-based proof knowledge as invariants. Again, the mere use of
invariants is not at all a new idea. However, their systematic integration within
the bisimulation method seems novel.

Future work on this case study may involve confluence-oriented proof meth-
ods, as employed in [FH07,PM06], and to investigate in what flavor they appear
in our invariant-oriented method. Likewise, it might support our claims to also
carry out our proof case study on a non-wrapped equation, that is, to contrast
our approach of this paper with a bisimulation-based proof of an equation with-
out hiding that much external behavior in wrapper code.

References

[BH00] Martin Berger and Kohei Honda. The two-phase commitment protocol in an
extended pi-calculus. Electr. Notes Theor. Comput. Sci., 39(1), 2000.

[CT96] Tushar D. Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2), 1996.

[FGR04] Wan Fokkink, Jan Friso Groote, and Michel Reniers. Process algebra needs
proof methodology. EATCS Bulletin, 82:109–125, February 2004.

[FH07] Adrian Francalanza and Matthew Hennessy. A fault tolerance bisimulation
proof for consensus. In Proceedings of ESOP, 2007.

[Fou98] Cédric Fournet. The Join-Calculus: A Calculus for Distributed Mobile Pro-
gramming. PhD thesis, École Polytechnique, Paris, France, 1998.

[Hen07] Matthew Hennessy. A Distributed Pi-Calculus. Cambridge University Press,
2007. ISBN: 0-521-87330-4.

[Küh08] Morten Kühnrich. Formal model-driven design of distributed algorithms.
Annual Doctoral Workshop on Mathematical and Engineering Methods in
Computer Science. November 2008.

[Lyn96] Nancy Lynch. Distributed Algorithms. Kaufmann Publishers, 1996.
[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
[NF03] U. Nestmann and R. Fuzzati. Unreliable failure detectors via operational

semantics. In Vijay A. Saraswat, editor, ASIAN, volume 2896 of Lecture
Notes in Computer Science, pages 54–71. Springer, 2003.

[NFM03] U. Nestmann, R. Fuzzati, and M. Merro. Modeling consensus in a process
calculus. In Proceedings of CONCUR, 2003.

[PM06] Anna Philippou and George Michael. Verification techniques for distributed
algorithms. In Proceedings of OPODIS 2006, volume 4305. 2006.

[SV00] Peter Sewell and Jan Vitek. Secure composition of untrusted code: Wrappers
and causality types. In CSFW, pages 269–284, 2000.

[TS08] Tatsuhiro Tsuchiya and André Schiper. Using bounded model checking to
verify consensus algorithms. LNCS, 2008.

