
In the over-broken and effectively broken ranges, as the ratio 
increases, the radius of the chip also increases. However, in 
the region where tangled chips are produced the trend reverses 
itself. In this region, the chip radius decreases as the ratio 
increases. 

The results regarding the chip radius are interesting, but they 
do not provide much useful information for the machine op
erator who needs to know where to place a chip breaker to 
effectively control chips in a turning operation. In order to 
make the graph useful for this purpose, it has been broken 
down into three distinct regions by two vertical dashed line. 
The first line is located at the point where the ratio of breaker 
location to feed equals 13.5. To the left of this line the chips 
are over-broken. The second line is located at the point where 
the ratio is 29.5. To the right of this line the chips are all under-
broken. Between these lines lies the region where effective 
breakage was noted. The transitions from one type of chip to 
another are very distinct. This indicates that the ratio of breaker 
location to feed is a good measure for predicting and adjusting 
breaker location for proper chip control when turning 4150 
steel. 

Conclusions 
The data collected for this investigation indicates that it is 

possible to provide a practical means for a machine operator 
to predict where an obstruction type chip breaker should be 
placed for effective chip control when working with 4150 steel. 
The location of the breaker can be calculated using a ratio of 
breaker location to the feed which results in well-broken chips. 
Since the feed will have been set and is known to the operator, 
the proper breaker location can be calculated by multiplying 
the feed by the proper ratio. A good value of this ratio appears 
to be about 20, so for effective chip breaking with 4150 steel, 
the breaker should be located back from the primary cutting 
edge by a distance 20 times the feed. The beauty of this method 
is that the main cutting parameters need not be changed to get 
good chips. This means chip control is possible without de
creasing the efficiency of the process significantly. 

These experimental results also agree with the analysis in 
the sense that the ratio of the feed to the location of the chip 
breaker is indeed the most important parameter. The optimal 
ratio of chip breaker location to feed may also depend on other 
parameters such as tool geometry and materials as these vari
ables affect the cutting process. However, for a given tool 
geometry and materials, properly broken chips can be obtained 
over various machining conditions by maintaining the ratio at 
a constant value. 
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Vibration of Power Plant Piping 

C. (Raj) Sundararajan1 

Introduction 
Piping systems in operating power plants are sometimes 

observed to have unusual vibrations. If unchecked, such sus
tained, low-amplitude vibrations can induce fatigue failures in 
pipes. One possible cause for such piping vibrations is the 
operation of rotating equipment such as pumps. If the fre
quency of operation of the equipment is close to a piping 
frequency, the piping system may vibrate in resonance with 
the equipment. Piping frequencies may be computed and com
pared with the equipment frequency, and if they match closely 
either the piping or equipment frequency shall be changed to 
avoid further vibrations. So a knowledge of the piping fre
quencies is necessary. 

However, during power plant piping design, only static anal
yses are routinely carried out and piping frequencies are not 
computed (except in nuclear power plants). Though a number 
of piping vibration analysis computer programs are available, 
not every engineer who is doing piping design has such pro
grams readily available at hand. The frequency analysis method 
presented in this technical note does not require a vibration 
analysis program; the fundamental frequencies are hand-cal
culated in just a few minutes using the static analysis results. 

Methodology Development 
Consider a three-dimensional piping system. A finite element 

model is developed, and [K] and [M\ are the stiffness and mass 
matrices. Order of these square matrices is n, where n is the 
number of degrees of freedom. The mass matrix [M] is de
veloped on the basis of lumped-mass formulation. 

An approximate solution to the fundamental frequency, us
ing Rayleigh's method, is given by the following Eq. (1): 

OJ = T (1) 

{ + )T[M\[*) ' 
where 

co = fundamental frequency of vibration, 
{</> ] = an assumed vibrational-mode vector which satisfies 

the boundary conditions (order of the vector is n; 
each element of the vector represents a degree of 
freedom of the piping system) 

{ < j > } T = transpose of {0 j . 

Any deformation vector which satisfies the boundary con
ditions is acceptable as (<j> J. Let us use the static deformation 
shape of the piping system due to gravity loads in the X-
direction to compute the lowest frequency of vibration pre
dominantly in the X-direction. Such a deformation shape is 
acceptable as the ^-vector since it satisfies all the boundary 
conditions. Similarly, the deformation shapes due to gravity 
loads in the Y and Z direction may be used to compute the 
lowest frequencies in the Y and Z directions, respectively. 

Let the deformation shape due to gravity loads in the X-
direction be represented by an nth order vector {u). This vector 
contains the deformations (displacements and rotations) of the 
n degrees of freedom due to gravity in the X-direction. Sim
ilarly, the deformation shapes due to gravity loads in the Y 
and Z directions are represented by (v) and J w J, respectively. 

'Consultant, Houston, TX. 
Contributed by the Production Engineering Division for publication in the 

JOURNAL OF ENGINEERING FOR INDUSTRY. Manuscript received July 1991; revised 
Sept. 1991. Associate Technical Editor: S. C.-Y. Lu. 

Journal of Engineering for Industry FEBRUARY 1993, Vol. 115/163 

Copyright © 1993 by ASME
Downloaded From: https://manufacturingscience.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



So an approximate solution to the lowest frequency in the 
X-direction (oix) is given by 

2 M r m i u l , „ 
"X=WT[M\W ( 2 ) 

Lowest frequencies in the Y and Z directions (ojy and wz, 
respectively) may also be computed similarly. 

Equilibrium equation of the piping system subjected to grav
ity loads in the ^-direction is given by 

[K\{u} = lm)g (3) 

where g is the acceleration due to gravity and (m J is an «th 
order mass vector. Mass of the piping system at each node is 
placed at the vector element corresponding to the Jf-directional 
displacement degree of freedom of the piping system. All other 
elements of the vector are zero. So the right hand side of Eq. 
(3) represents the dead load at the different nodes due to gravity 
in the ^T-direction. 

Substitution of Eq. (3) into Eq. (2) yields 
f . . 1 T 

\m\g 
|u)'[M](u) 

The numerator of Eq. (4) may be expanded as 

{ u ) 7 " ( m j g = 2 (niMig) 

(4) 

(5) 

where / i s the number of nodes, m, is the mass at the rth node 
and u-, is the X-directional displacement at the rth node due to 
gravity loads in the X-direction. 

Deflections in the Y and Z directions due to gravity loads 
in the X-direction are not necessarily zero but they will usually 
be small compared to the corresponding X-directional deflec
tion. So the former deflections may be set to zero without 
introducing any significant error. With that approximation, 
denominator of Eq. (4) may be expanded as 

i = J 

{u}T[M]{u} = J](miuh (6) 

Substitution of Eqs. (5) and (6) into Eq. (4) yields 

g 2 (mM) 

2 (miuj) 
(7) 

Similarly, 

2 

i' = 7 s 
1 = 1 

g 2 (mM) 
(8) 

w | = 

/ = i 

; = 7 

g 2 (ntiWi) 
/ = i 

1 = 7 

2 (mjwf) 
(9) 

Computations involved in Eqs. (7), (8), and (9) are simple 
and straightforward, and can be carried out quickly using a 
hand calculator. 

Numerical Results 
Accuracy of the method presented above is illustrated 

through a simple example. 
The example piping system is shown in Fig. 1. The two end 

points of the piping system are fixed in all degrees of freedom. 
The horizontal and vertical pipes are connected by 90° short 

15 

16 

Fig. 1 Example piping system 
19 

Table 1 Nodal weights and displacements 

NODE 

(i) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

NODAL WEIGHT 

21.7 

43.3 

43.3 

57.7 

101.0 

130.0 

1130.0 

130.0 

130.0 

130.0 

130.0 

130.0 

130.0 

130.0 

101.0 

57.7 

43.3 

43.3 

21.7 

Ui 

0.0 

0.00006 

0.0001 

0.0002 

0.0124 

0.0608 

0.105 

0.136 

0.152 

0.155 

0.143 

0.120 

0.088 

0.050 

0.010 

0.0001 

0.00007 

0.00003 

0.0 

W. 
A. 

0.0 

0.0009 

0.0027 

0.0051 

0.0188 

0.0588 

0.0959 

0.122 

0.135 

0.136 

0.125 

0.104 

0.0758 

0.0435 

0.0117 

0.0026 

0.0014 

0.0005 

0.0 

UNITS: m^g are in pounds, where g = 386.4 inch/secJ 

u. and w. are in inches 
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Table 2 Comparison of fundamental frequencies 

Frequency Present Method Conventional Percentage 
Vibration Difference 
Analysis 

<A3^ 58.05 57.73 0.554 % 

C0-7 61.47 . 61.44 0.049 % 

NOTE: Frequencies are presented in radians/sec 

radius elbows (radius = 8.464 in.). Each of the two horizontal 
runs are 24 in. long and the vertical run is 240 in. long. All 
pipes are 8 in. Sch. 40; that is, 8.625 in. outside diameter and 
0.322 in. thickness. Modulus of elasticity is 27.9 x 106psiand 
Poisson's ratio is 0.3. Self weight of the pipes including con
tents and insulation is 65 pounds per linear foot. A concen
trated weight (representing a valve) of 1000 pounds is located 
at a distance of 48 in. below the upper elbow. 

The piping system is discretized by a finite element model 
consisting of 18 elements and 19 nodes. Each of the two hor
izontal pipes is represented by 3 straight-pipe elements of 8 in. 
length each. The vertical pipe is represented by 10 straight-
pipe elements of 24 in. length each. Each elbow is represented 
by an elbow element. Some of the node numbers are shown 
in Fig. 1. The concentrated weight is located at node 7. Nodal 
weights are given in Table 1. 

Nodal deflections in the ^Y-direction due to gravity loads in 
the ^-direction (uj) and nodal deflections in the Z-direction 

due to gravity loads in the Z-direction (ve/) are tabulated in 
Table 1. (These values are from static piping analyses for 
gravity loads.) 

The lowest frequency of vibration predominantly in the X-
direction (wx) and the lowest frequency of vibration predom
inantly in the Z-direction (uz) are computed using Eqs. (7) and 
(9), respectively. These calculations are accomplished in a few 
minutes using a hand calculator. Frequencies thus computed 
are compared with frequencies computed via conventional, 
computerized frequency analysis (see Table 2). The present 
method gives remarkably accurate results. 

Concluding Remarks 
An approximate method of piping frequency calculations 

using the results of static analysis is presented in this paper. 
The necessary calculations can be carried out manually and 
quickly, and avoids the need for a formal, computerized fre
quency analysis. 

The method is based on sound theoretical principles (based 
on the well-established and widely-used Rayleigh's method [1]). 
A judicious simplifying assumption, Eq. (6), eliminates the 
need for time-consuming quadratic, matrix computations, Eq. 
(4), and provides a simple formula, Eq. (7). An example piping 
system is analyzed using the method. The numerical results 
are very accurate (Table 2). 
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