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Control of an Underactuated
Three-Link Passive–Active–
Active Manipulator Based
on Three Stages and Stability
Analysis
This paper presents a novel three-stage control strategy for the motion control of an
underactuated three-link passive–active–active (PAA) manipulator. First, a nonlinear
control law is designed to make the angle and angular velocity of the third link conver-
gent to zero. Then, a swing-up control law is designed to increase the system energy and
control the posture of the second link. Finally, an integrated method with linear control
and nonlinear control is introduced to stabilize the manipulator at the straight-up posi-
tion. The stability of the control system is guaranteed by Lyapunov theory and LaSalle’s
invariance principle. Compared to other approaches, the proposed strategy innovatively
introduces a preparatory stage to drive the third link to stretch-out toward the second
link in a natural way, which makes the swing-up control easy and quick. Besides, the
intergraded method ensures the manipulator moving into the balancing stage smoothly
and easily. The effectiveness and efficiency of the control strategy are demonstrated by
numerical simulations. [DOI: 10.1115/1.4028051]

1 Introduction

This paper concerns the motion control of a class of underactu-
ated mechanical systems, called a PAA manipulator, which have
fewer actuators than degrees of freedom (DOF) [1–3]. The PAA
manipulator is a rigid three-link gymnastic robot operating in a
vertical plane with its first joint being passive and the rest being
actuated. A common control objective for the PAA manipulator is
to drive it away from any arbitrary initial position and balance it
at the straight-up unstable equilibrium position. The merits of this
system are downsizing, lightening, energy-saving, and cost-
reduction. Moreover, it is subject to a second-order nonholonomic
constraint and cannot be completely linearized in the whole
motion space. Therefore, the investigation of the PAA manipula-
tor is of great importance in both control theory and applications.

Over the past few years, a remarkable research activity has
been devoted to the control of underactuated mechanical systems,
such as acrobot/pendulum-like robot, overhead crane and under-
water vehicle [4–7]. Among them, the acrobot is considered as a
highly simplified model of a human gymnast on a high bar, where
the underactuated first joint models the gymnast’s hands on the
bar, and the actuated second joint models the gymnast’s hips. A
number of methodologies have been proposed, such as partial-
feedback linearization [8], fuzzy control [9], impulse–momentum
approach [10], rewinding approach [11], interconnection and
damping assignment passivity-based approach [12–14] and
energy-based method [15–17] etc. More recently, a three-link
underactuated manipulator that can describe the mechanical sys-
tems in real world more realistically and precisely has drawn
increasing attention. For example, the three-link planar

manipulator [18,19], the three-link human-like walking robot
[20], and the three-link PAA manipulator [21–24]. The three-link
PAA manipulator, which consists of arm, trunk, and leg, can
mimic a gymnastic routine more realistically than the acrobot. But
the motion control problem is more complicated and challenging
due to the strong coupling characteristic of its control inputs.

Although Takashima [21] and Jian and Zushu [22] studied the
dynamic model of the PAA manipulator and gave some funda-
mental motion analysis, they did not present effective control
methods. Spong [23] studied the motion control based on collo-
cated partial feedback linearization, but few analysis of the swing-
up control for the PAA manipulator was found. Xin and Kaneda
[24] studied the swing-up control problem based on the concept of
virtual composite link by devising a virtual composite-link formu-
lation. However, the coordinate transformation is complicated.
Recently, researchers are paying more and more attention to find a
single controller to realize the motion control of a 2-DOF under-
actuated system. For example, an equivalent-input-disturbance
approach was proposed in Ref. [25]. However, it is very hard to
extend this single controller to the 3-DOF case because of its com-
plex structure. In Ref. [26], we discussed a motion control design
method for the PAA manipulator based on the combination of
energy and the posture of the third link, but the posture of the
entire manipulator was unconcerned, which makes the stability
analysis of the overall control system hard.

Motivated by the above considerations, this paper aims to pro-
pose an efficient control strategy for the motion control of the
three-link PAA manipulator. The control strategy contains three
stages. The first stage, called preparatory stage, is to force both
the angle and angular velocity of third link to converge to zero,
which makes it stretch-out toward the second link in a natural
way. The control law of the third link is first designed based on a
Lyapunov function, and is maintained throughout the whole con-
trol process. Whereas the control law of the second link is first set
to constant to simplify the control law design. Due to the control
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of this stage, the influence of the control input and angular veloc-
ity of the third link to the control of the next stages is explicitly
eliminated. The second stage, named swing-up stage, is to
increase the system energy and control the posture of the second
link to fulfill the swing-up operation. During this stage, the control
law of the second link is no longer a constant, but designed based
on another Lyapunov function constructed by the system energy
and the posture of the second link. The third stage, called balanc-
ing stage, is to capture the manipulator and stabilize it at the
straight-up unstable equilibrium position. An integrated method
with linear control and nonlinear control is introduced to ensure
that the manipulator can move into the third stage smoothly and
easily. Finally, the stability of the proposed control strategy is an-
alyzed and guaranteed by LaSalle’s invariance principle.

The paper is organized as follows: The PAA dynamics are pre-
sented in Sec. 2. The three-stage control strategy and the design of
control laws are described in Sec. 3. Stability issues of the first
stage and second stage are proved in Sec. 4. Section 5 presents the
simulation and comparison results of the control strategy. Conclu-
sions are finally drawn in Sec. 6.

2 Dynamics of PAA Manipulator

The model of the PAA manipulator is shown in Fig. 1. For
j¼ 1, 2, 3, qj is the angle of jth link measured relative to the verti-
cal for the link attached to the base or relative to the front link; mj

and Lj are the mass and length of the jth link, respectively; Lcj is
the distance from the jth joint to the center of mass of the jth link;
Jj is the moment of inertia of the jth link about its centroid; sj is
the torque applied to the jth joint. g is the gravitational accelera-
tion (9.80665 m/s2).

Let q(t)¼ [q1(t) q2(t) q3(t)]> and assume that the viscous fric-
tion effect, matched and mismatched uncertainties, and external
disturbances can be ignored, the dynamics of the PAA manipula-
tor [23,24] are given by

MðqÞ€qþ Hðq; _qÞ þ GðqÞ ¼ s (1)

where q is the abbreviation of q(t); MðqÞ 2 R3�3 is the symmetric
positive definite inertia matrix; Hðq; _qÞ 2 R3 is the combination
of the Coriolis and centrifugal forces; GðqÞ 2 R3 is the force of
gravity; and s ¼ ½0; s2; s3�> 2 R3 is the vector of the driving tor-
que on the joints. Detailed structures of M(q), Hðq; _qÞ and G(q)
are given in the Appendix.

Assuming x ¼ ½x1 x2 x3 x4 x5 x6�> ¼ ½q1 q2 q3 _q1 _q2 _q3�>, and
rewriting Eq. (1) in the state space yields the nonlinear model

_x1 ¼ x4; _x2 ¼ x5; _x3 ¼ x6

_x4 ¼ f1ðxÞ þ b1ðxÞs2 þ c1ðxÞs3

_x5 ¼ f2ðxÞ þ b2ðxÞs2 þ c2ðxÞs3

_x6 ¼ f3ðxÞ þ b3ðxÞs2 þ c3ðxÞs3

8>>><
>>>:

(2)

where

f1ðxÞ
f2ðxÞ
f3ðxÞ

2
64

3
75 ¼ M�1ðxÞ½�HðxÞ � GðxÞ� (3)

b1ðxÞ c1ðxÞ
b2ðxÞ c2ðxÞ
b3ðxÞ c3ðxÞ

2
64

3
75 ¼ M�1ðxÞ

0 0

1 0

0 1

2
64

3
75 (4)

The total mechanical energy E(x) of the PAA manipulator is

EðxÞ ¼ TðxÞ þ PðxÞ (5)

TðxÞ ¼ 1

2
½x4 x5 x6�MðxÞ½x4 x5 x6�> (6)

PðxÞ ¼ b1 cos x1 þ b2 cosðx1 þ x2Þ þ b3 cosðx1 þ x2 þ x3Þ (7)

where bi (i¼ 1, 2, 3) are the structure parameters (see Appendix);
T(x) and P(x) are the kinetic and potential energy of the PAA ma-
nipulator, respectively.

For simplifying the design of the control system, a three-stage
control strategy is studied based on the following division of the
motion state.

DEFINITION 1. Let all the motion state of the PAA manipulator be
in a compact set S, namely, x 2 S, and define Ciði ¼ 1; � � � ; 5Þ as

C1 ¼ min mod
x3

2p

� �
; mod

x3

�2p

� ���� ���n o
(8)

C2 ¼ jx6j (9)

C3 ¼ min mod
x1

2p

� �
; mod

x1

�2p

� ���� ���n o
(10)

C4 ¼ min mod
x12

2p

� �
; mod

x12

�2p

� ���� ���n o
(11)

C5 ¼ EðxÞ � E0j j (12)

where x12¼ x1þ x2; mod(x/y) is the remainder of x divided by y,
and its sign is with y; E0 is the potential energy at the straight-up
unstable equilibrium position, i.e., x¼ [0 0 0 0 0 0]>. Then, the
preparatory stage (R1), swing-up stage (R2) and balancing stage
(R3) are defined to be

R1 : ðC1 > e1Þ [ ðC2 > e2Þ (13)

R2 : fðC1 � e1Þ \ ðC2 � e2Þg [ fðC3 > e3Þ [ ðC4 > e4Þ [ ðC5 > e5Þg
(14)

R3 : fðC1 � e1Þ \ ðC2 � e2Þg\fðC3 � e3Þ \ ðC4 � e4Þ\ ðC5 � e5Þg
(15)

respectively, where e1, e2, e3, e4 and e5 are small positive real
numbers.

Remark 1. Note that, according to those operations (8)–(15), if
both the angle and angular velocity of the third link are guaranteed
in small scales, then the manipulator is said to be in swing-up
stage or balancing stage. Otherwise, it is located in preparatory
stage. Moreover, operation (15) indicates that if the angles of the
three links and angular velocity of the third link are all small
enough, meanwhile the system energy is close to E0, then the
manipulator reaches balancing stage. Otherwise, it is located in
swing-up stage.Fig. 1 Model of a PAA manipulator
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3 Design of Control Strategy

A good combination of energy and posture makes it easy to
swing-up a two-link underactuated manipulator [15–17]. But this
kind of method cannot be directly employed to control the three-
link manipulator. In this section, a three-stage control strategy is
proposed and the control laws for each are designed.

3.1 Control Laws for the First Stage. The first stage aims to
drive the third link to stretch out toward the second one in a natu-
ral way, that is, to force both the angle and angular velocity of the
third link to converge to zero. To this end, the first control Lyapu-
nov function candidate V1(x) is defined as

V1ðxÞ ¼
1

2
x2

3 þ
1

2
x2

6 (16)

Note that V1(0)¼ 0. Taking the time derivative of V1(x) yields

_V1ðxÞ ¼ x6 x3 þ f3ðxÞ þ b3ðxÞs2 þ c3ðxÞs3½ � (17)

If we choose

s3 ¼
�x3 � f3ðxÞ � b3ðxÞs2 � c1x6

c3ðxÞ
(18)

where c1> 0 is a design parameter, then Eq. (17) becomes

_V1ðxÞ ¼ �c1x2
6 < 0; 8x6 6¼ 0 (19)

Note that the denominator c3(x) in Eq. (18) is a smooth positive
function. From Eq. (4), it is known that

c3ðxÞ ¼
m11ðxÞm22ðxÞ � m12ðxÞm21ðxÞ

det½MðxÞ� (20)

where det[M(x)] is the determinant of the square matrix M(x).
Since M(x) is a symmetric, and positive matrix containing only q2

and q3, which means det[M(x)]> 0 for all q2 and q3. Furthermore,
notice from the structure of M(x) in the Appendix that the
numerator of Eq. (20) is exactly a second-order principal minor
determinant of M(x). Since M(x) is positive definite, according
to the property of positive definite matrix, it follows that
(m11(x)m22(x)�m12(x)m21(x)> 0). Therefore, c3(x)> 0, which
guarantees that Eq. (18) has no singularities.

Generally speaking, the control law (18) of s3 is employed to
make the states of the third link converge to zero. However, from
Eq. (18), it is known that there exists a certain relationship
between s3 and s2, which means s3 and s2 are coupled. In this sit-
uation, one feasible treatment for Eq. (18) in the first stage is to
assume s2 be constant. For simplification, set

s2 ¼ 0 (21)

Therefore, the control laws of the first stage consist of Eqs. (18)
and (21). Under these two control laws, the third link of the PAA
manipulator stretches out toward the second one in a natural way
(see Fig. 2).

Remark 2. Note that, as long as the control law Eq. (18) is
employed for s3 in the whole control progress, the third link of the
PAA manipulator will stretch out all the time, that is, the angle and
the angular velocity of the third link are maintained to be zero. In
addition, s2 is temporarily set to zero in this stage, which brings an
easy way to handle the relationship between s2 and s3. In the fol-
lowing stages, it will show that control laws are designed for s2

respectively to achieve a swing-up control and a balancing control.

3.2 Control Laws for the Second Stage. The second stage
aims to increase the system energy and drive the second link to

stretch out toward the first one in a natural way, that is, to increase
E(x) to approach E0, and force both the angle and angular velocity
of the second link to converge to zero. Before proceeding to the
control laws design, the following assumptions are made.

ASSUMPTION 1. The control law Eq. (18) is still employed to
guarantee the convergence of x3 and x6.

ASSUMPTION 2. When the PAA manipulator enters into the sec-
ond stage, the states x3 and x6 are assumed to be zero, i.e.,

x3 ¼ 0; x6 ¼ 0 (22)

Notice from Eq. (14) that the PAA manipulator moves into the
second stage on the condition that x3 and x6 are less than e1 and e2,
respectively. Since e1 and e2 are defined to be very small (gener-
ally the order of 10�5), and with Assumption 1, Assumption 2
becomes practically reasonable for the second stage.

Now, consider the second control Lyapunov function candidate
V2(x) as

V2ðxÞ ¼
k1

2
E2

x þ
k2

2
x2

2 þ
1

2
aðxÞx2

5 (23)

where k1> 0 and k2> 0 are constants; a(x) is a positive time-
varying design parameter; and

Ex ¼ EðxÞ � E0 (24)

Note that E(0)¼E0, it is easy to know that V2(0)¼ 0. From
Eq. (5), the time derivative of Ex in Eq. (24) is

_Ex ¼ _EðxÞ ¼ x5s2 þ x6s3 (25)

Hence, the time derivative of V2(x) is

_V2ðxÞ ¼ k1Ex x5s2 þ x6s3½ � þ k2x2x5 þ
1

2
_aðxÞx2

5

þ aðxÞx5 f2ðxÞ þ b2ðxÞs2 þ c2ðxÞs3½ � (26)

Substituting Eq. (22) into Eq. (26) obtains

_V2ðxÞ ¼ /ðxÞs2 þ uðxÞ½ �x5 (27)

Fig. 2 Control result of the first stage
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where

/ðxÞ ¼ k1Ex þ aðxÞ lðxÞ
c3ðxÞ

(28)

uðxÞ ¼ k2x2 þ aðxÞ �ðxÞ
c3ðxÞ

þ 1

2
_aðxÞx5 (29)

lðxÞ ¼ b2ðxÞc3ðxÞ � c2ðxÞb3ðxÞ (30)

�ðxÞ ¼ f2ðxÞc3ðxÞ � c2ðxÞf3ðxÞ (31)

When /ðxÞ 6¼ 0, the control law of s2 is chosen as

s2 ¼
�uðxÞ � c2x5

/ðxÞ (32)

where c2> 0 is a design parameter. Then, this control law ensures
that

_V2ðxÞ ¼ �c2x2
5 < 0; 8x5 6¼ 0 (33)

Note that, due to the employment of the first stage, s3 does not
appear explicitly in Eq. (27), which makes it easy to swing-up the
PAA manipulator. However, there is no guarantee that /ðxÞ 6¼ 0.
Since from Eq. (3), we have

M�1ðxÞ ¼

a1ðxÞ b1ðxÞ c1ðxÞ

b1ðxÞ b2ðxÞ c2ðxÞ

c1ðxÞ b3ðxÞ c3ðxÞ

2
6664

3
7775 (34)

where a1ðxÞ ¼ ½m22ðxÞm33ðxÞ � m2
23ðxÞ�=det½MðxÞ�. As M(x) is a

positive definite matrix, M–1(x) is also a positive definite matrix.
From Eq. (34), it is observed that l(x)¼ b2(x)c3(x)� c2(x)b3(x) is
exactly a second-order principal minor of M–1(x), so l(x)> 0. Fur-
thermore, a(x) is chosen to be a positive time-varying parameter,
and c3(x) in Eq. (20) is positive, so the second term of /ðxÞ in Eq.
(28) is positive. On the other hand, the inequalities �2E0 � Ex< 0
hold before E(x) reaches E0. Thus, the denominator /ðxÞ of Eq.
(32) may equal to zero, that is, singularity problem may occur. To
avoid any singularities, the parameter a(x) in Eq. (23) is chosen as

aðxÞ ¼ g
lðxÞ (35)

where g> 2k1qE0 with q ¼ max c3ðxÞf g > 0. Then /ðxÞ > 0
always holds.

Therefore, the control laws of the second stage consist of Eqs.
(18) and (32), and the choice of Eq. (35) avoids any singularities
in the control process. At the end of this stage, the PAA manipula-
tor is controlled as Fig. 3.

Remark 3. It is well-known that the three-link PAA manipulator
is a strong-coupling nonlinear system, for which it is hard to
design effective controllers by using general control methods. In
the proposed control strategy, a preparatory stage is first intro-
duced, and a control law is designed to stretch out the third link.
From the above design procedures, it is known that, due to the
control of the first stage, the influence of s3 and the angular veloc-
ity of the third link to the swing-up control of the second stage is
explicitly eliminated. In consequence, the swing-up control guar-
antees that the second link stretches out, meanwhile the system
energy increases continuously until reaching E0. This makes it
easy and quick to swing-up the PAA manipulator.

3.3 Control Laws for the Third Stage. The third stage per-
forms a balancing control to reach the final objective, which is to
stabilize the manipulator at the straight-up unstable equilibrium

position, i.e., x¼ [0 0 0 0 0 0]>. For this stage, the following
assumptions are made.

ASSUMPTION 3. The posture of the third link is maintained under
the control law (18), i.e., x3¼ 0 and x6¼ 0,

ASSUMPTION 4. The following approximations are taken to
obtain a linear model of the PAA manipulator at the straight-up
position.

cos x2 � 1; _xi � 0; i ¼ 1; 2

sin x1 � x1; sinðx1 þ x2Þ � x1 þ x2

(
(36)

Notice from Eq. (15) that e3 and e4 are two important parame-
ters for defining the balancing stage, and they are usually chosen
to be less than p/4. Since sinðp=4Þ ¼ 0:7071 and p/4¼ 0.7854,
roughly speaking, sin e � e is true for 0 � jej � p=4. This leads us
to make Assumption 4.

Based on the above assumptions, a reduced model of the PAA
manipulator is obtained by substituting Eq. (18) into Eq. (2)

_x1 ¼ x4

_x2 ¼ x5

_x4 ¼ fa1ð~xÞ þ ba1ð~xÞs2

_x5 ¼ fa2ð~xÞ þ ba2ð~xÞs2

8>>>><
>>>>:

(37)

where ~x ¼ xjðx3¼0;x6¼0Þ and

fa1ð~xÞ ¼ f1ð~xÞ �
c1ð~xÞ
c3ð~xÞ

f3ð~xÞ; ba1ð~xÞ ¼ b1ð~xÞ �
c1ð~xÞ
c3ð~xÞ

b3ð~xÞ;

fa2ð~xÞ ¼ f2ð~xÞ �
c2ð~xÞ
c3ð~xÞ

f3ð~xÞ; ba2ð~xÞ ¼ b2ð~xÞ �
c2ð~xÞ
c3ð~xÞ

b3ð~xÞ

By assuming z¼ [x1 x2 x4 x5]> and taking Assumption 4, we linea-
rize Eq. (37) at z¼ [0 0 0 0]> as

_z ¼ Azþ Bs2 (38)

An optimization objective is defined as

J ¼
ð1

0

z>Qzþ Rs2
2

� �
dt (39)

where Q> 0 and R> 0 are weighting matrices. The third control
Lyapunov function candidate V3(z) is defined as

Fig. 3 Control result of the second stage
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V3ðzÞ ¼ z>Pz (40)

where P is a positive symmetric matrix. Then, the optimal control
law is

s2 ¼ �Kz; (41)

with K¼R–1B>P; and P¼P>> 0 is the solution of the Riccati
equation

A>Pþ PA� PBR�1B>Pþ Q ¼ 0 (42)

Note that Eq. (41) ensures _V3ðzÞ < 0;8z 6¼ 0, so the state z of
the reduced system (37) converges to zero. Meanwhile, _V1ðxÞ < 0
is always guaranteed by the control law (18). Therefore, the con-
trol laws (18) and (41) for the third stage force the PAA manipula-
tor to converge to the straight-up unstable equilibrium position.

Remark 4. In conventional design methods, the balancing con-
trol laws are usually designed by linearizing system (2) at the
straight-up unstable equilibrium position based on the
approximations

cos x3 � 1; cosðx2 þ x3Þ � 1; _xi � 0; i ¼ 1; 2; 3

sin x1 � x1; sinðx1 þ x2Þ � x1 þ x2

sinðx1 þ x2 þ x3Þ � x1 þ x2 þ x3

8><
>: (43)

Notice that Eq. (43) is very rigorous for the three-link PAA ma-
nipulator to enter into balancing stage, since it requires all the
states of the three links should be small enough. Especially, for
sinðx1 þ x2 þ x3Þ � x1 þ x2 þ x3, it requires jx1 þ x2 þ x3j � e,
where e � (0 p/4]. That means all the angles of the three links
should be very small when they have the identical sign. However,
in the proposed control strategy, the nonlinear control law (18)
designed in preparatory stage guarantees that the third link
stretches out all the time, even when s2 is switched from Eq. (32)
to Eq. (41). So, the approximations (43) is replaced by Eq. (36) in
balancing stage, and in particular, jx1 þ x2 þ x3j � e is replaced
by jx1 þ x2j � e. As a result, it is much easier for the PAA manip-
ulator to enter into balancing stage, and the switch from the sec-
ond stage to the third stage becomes smooth.

4 Stability Analysis

In the first and second stages, it is known that, although V1(x)
and V2(x) in Eqs. (16) and (23) decrease monotonically, there is
no guarantee that the system states (x3, x6) and (x2, x5) converge
to zero. Therefore, the stabilities of the PAA manipulator in the
first and second stage need to be analyzed. Similar to Refs.
[16,17,27], Lyapunov theory and LaSalle’s invariance principle
are used in this section to guarantee the system stability.

4.1 Stability of the First Stage. It is known that V1(x) is con-
tinuously differentiable, and under the control laws (18) and (21),
it is a weak-control Lyapunov function (WCLF) [16,28]. Substi-
tuting Eqs. (18) and (21) into Eq. (2) to obtain the following
closed-loop system

_x ¼ F1ðxÞ (44)

Since _V1ðxÞ < 0, V1(X) is bounded. Define

U1 ¼ fx 2 R6jV1ðxÞ � c1g (45)

where c1 is a positive constant. Then, any solution x of Eq. (44)
starting in U1 remains in U1 for all t � 0. Let W1 be an invariant
set of Eq. (44), which is

W1 ¼ fx 2 U1j _V1ðxÞ ¼ 0g (46)

Since _V1ðxÞ ¼ 0, then x6¼ 0. From Eq. (2), we have

f3ðxÞ þ b3ðxÞs2 þ c3ðxÞs3 ¼ 0 (47)

Substituting Eq. (18) into Eq. (47) yields

f3ðxÞ þ b3ðxÞs2 þ ½�x3 � f3ðxÞ � b3s2 � c1x6� ¼ 0 (48)

Simplifying Eq. (48) to obtain x3¼ 0. Therefore, the largest invar-
iant set of the PAA manipulator in the first stage is

M1 ¼ fx 2 W1 j x3 ¼ 0; x6 ¼ 0g (49)

According to LaSalle’s invariance theorem [29], it is known
that every solution x of (44) starting in U1 approaches to M1 as
t!þ1.

Summarizing the above obtained result to obtain the following
theorem for the first stage.

THEOREM 1. Consider the PAA manipulator described by Eq. (2)
in the preparatory stage. Let M1 be the largest invariant set of
the system (44). V1(x) is a WCLF, U1 is a compact closed and
bounded set that contains all the initial states of the system (44),
and W1 is a set with states in U1 where _V1ðxÞ ¼ 0. If the control
laws (18) and (21) are employed, then every solution x of the
closed-loop system (44) converges to the invariant set M1 given
by Eqn. (49), that is, the third link of the manipulator stretches
out toward the second one in a natural way.

4.2 Stability of the Second Stage. In the second stage, V2(x)
is also continuously differentiable. Substituting Eqs. (18) and (32)
into Eq. (2) to obtain the following closed-loop system:

_x ¼ F2ðxÞ (50)

Since _V2ðxÞ < 0, then V2(x) is bounded. Meantime, the control
law of s3 designed in the first stage always is maintained, which
guarantees x3 and x6 converge to zero. Hence, define

U2 ¼ fx 2 R6jV1ðxÞ � c1;V2ðxÞ � c2g (51)

where c1 and c2 are positive constants. Then, any solution x of Eq.
(50) starting in U2 remains in U2 for all t � 0. Let W2 be an invari-
ant set of Eq. (50), which is

W2 ¼ fx 2 U2j _V1ðxÞ ¼ 0; _V2ðxÞ ¼ 0g (52)

When _V1ðxÞ ¼ 0 and _V2ðxÞ ¼ 0; x6 ¼ 0 and x5¼ 0. Meanwhile, x3

converges to zero as analyzed previously. Then, from Eq. (25), we
know _Ex ¼ _EðxÞ ¼ 0, that is, Ex is constant, which may have two
cases: Ex¼ 0 and Ex¼ constant 6¼ 0. These two cases are now
addressed, separately.

Case 1: Ex¼ 0, x3¼ 0 and x6¼ 0.
Since x5¼ 0, it follows from (2) that

f2ðxÞ þ b2ðxÞs2 þ c2s3 ¼ 0 (53)

Substituting Eqs. (18) and (32) with (x3¼ 0, x6¼ 0) into Eq. (53)
yields

� lðxÞ
c3ðxÞ

k2x2 þ aðxÞ �ðxÞ
c3ðxÞ

aðxÞ lðxÞ
c3ðxÞ

þ �ðxÞ
c3ðxÞ

¼ 0 (54)

Simplifying the above equation yields x2¼ 0. On the other hand,
Ex¼ 0, which means E(x)¼E0. So, the trajectory is such that (x2,
x5)¼ (0, 0) and E(x)¼E0 for any variables. Meanwhile, the
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passive link travels in a periodic circle orbit, which can be derived
from E(x)¼E0, that is,

1

2
m11ð0Þx2

4 þ ðb1 þ b2 þ b3Þ cos x1 ¼ b1 þ b2 þ b3 (55)

Case 2: Ex¼ constant 6¼ 0, x3¼ 0 and x6¼ 0.
If Ex¼ constant 6¼ 0, then E(x) is constant. So, from Eqs.

(5)–(7), we have

EðxÞ ¼ 1

2
m11ðxÞx2

4 þ b1 cos x1 þ ðb2 þ b3Þ cosðx1 þ x2Þ

¼ 1

2
m11ðxÞx2

4 þ ½b1 þ ðb2 þ b3Þ cos x2� cos x1

� ½ðb2 þ b3Þ sin x2� sin x1

(56)

Since x5¼ 0, x2 is a constant, then m11(x) is also a constant.
Hence, Eq. (56) can be written as

T 1 ¼ U1x2
4 þ V1 cos x1 þW1 sin x1 (57)

where T 1;U1;V1, and W1 are constants. On the other hand, sub-
stituting Eq. (18) into Eq. (53) yields

s2 ¼
c3ðxÞf2ðxÞ � c2ðxÞf3ðxÞ
c2ðxÞb3ðxÞ � c3ðxÞb2ðxÞ

¼ � �ðxÞ
lðxÞ (58)

Moreover, from Eqs. (28) to (32), it is known that

s2 ¼ �
uðxÞ
/ðxÞ ¼ �

k2x2c3ðxÞ þ aðxÞ�ðxÞ
k1Exc3ðxÞ þ aðxÞlðxÞ (59)

Comparing Eq. (58) with Eq. (59) yields

c3ðxÞf2ðxÞ � c2ðxÞf3ðxÞ
c2ðxÞb3ðxÞ � c3ðxÞb2ðxÞ

¼ � k2x2

k1Ex
¼ constant (60)

Moreover, from Eqs. (2) and (3), Eq. (60) is simplified to

T 2 ¼ U2x2
4 þ V2 cos x1 þW2 sin x1 (61)

where T 2;U2;V2, and W2 are constants. Taking the difference
between Eq. (57) multiplied by U2 and Eq. (61) multiplied by U1

yields

T 3 ¼ V3 cos x1 þW3 sin x1 (62)

where T 3 ¼ T 1U2 � T 2U1;V3 ¼ V1U2 � V2U1, and W3

¼ W1U2 �W2U1. Note that the vectors A1 ¼ ðT 1;V1;W1Þ> and
A2 ¼ ðT 2;V2;W2Þ> constructed from Eqs. (57) and (61) are non-
zero and linearly independent, which means that none of them can
be written as a linear combination of the other one. Thus, the vec-
tor A3 ¼ ðT 3;V3;W3Þ> from Eq. (62) will also be nonzero, that
is, V3;W3 and T 3 will not be zero simultaneously. Therefore,
from Eqs. (57), (61), and (62), x1 must be a constant, i.e., x4¼ 0.

When x4¼ x5¼ x6¼ 0 holds, the robot is in an equilibrium
point. From Eq. (2), it obtains

f1 þ b1s2 þ c1s3 ¼ 0 (63)

f2 þ b2s2 þ c2s3 ¼ 0 (64)

f3 þ b3s2 þ c3s3 ¼ 0 (65)

Furthermore, it follows from Eq. (1) that g1¼ 0, i.e.,

b1 sin x1 þ ðb2 þ b3Þ sinðx1 þ x2Þ ¼ 0 (66)

From Eq. (3), we have

f1

f2

f3

2
64

3
75 ¼

�b1g2 � c1g3

�b2g2 � c2g3

�b3g2 � c3g3

2
64

3
75 (67)

Substituting Eq. (65) into Eq. (64) and using Eq. (67) yields

� ðb2c3 � c2b3Þg2 þ ðb2c3 � c2b3Þs2 ¼ 0 (68)

Note that l(x)¼ b2c3� c2b3 defined in Eq. (30) is positive. Then
Eq. (68) gives

s2 ¼ g2 ¼ �ðb2 þ b3Þ sinðx1 þ x2Þ (69)

Together with Eq. (60), it is clear that

k2x2

k1Ex
¼ ðb2 þ b3Þ sinðx1 þ x2Þ (70)

where Ex 6¼ 0. Following the similar analysis in Ref. [27], it is
straightforward to conclude that Eqs. (66) and (70) may have the
solution

ðx1 ¼ 0; x2 ¼ 0Þ or ðx1 ¼ p; x2 ¼ 0Þ ½mod ð2pÞ� (71)

provided that the control parameters are selected satisfying

k2 � 2b1ðb2 þ b3Þk1 (72)

Meanwhile, x3¼ 0, then the PAA manipulator in case 2 converges
to either the downward point xdown¼ [p 0 0 0 0 0]> or the
straight-up point xup¼ [0 0 0 0 0 0]>. If it converges to xup, then
the energy converges to E0, which is exactly in case 1, and the
control objective is fulfilled. If it converges to xdown, then the
energy is (–E0), which is the minimum potential energy during the
control. Since the control objective of the second stage is to
increase the system energy until it reaches E0, when the control
laws are designed as Eqs. (18) and (32), the manipulator has al-
ready left the downward point and gained kinetic energy, that is,
E(x)¼ T(x)þP(x)> –E0. Therefore, the manipulator cannot stay
still at xdown, and case 2 cannot be the steady state.

Summarizing the above results to obtain the following theorem
for the second stage.

THEOREM 2. Consider the PAA manipulator described by Eq. (2)
in swing-up stage. LetM2 be the largest invariant set of the sys-
tem (50), which is

M2 ¼ fx 2 W2jð55Þ; x2 ¼ x3 ¼ 0; x5 ¼ x6 ¼ 0g (73)

V1(x) and V2(x) are WCLFs, U2 is a compact closed and bounded
set that contains all the initial states of the system (50), and W2 is
a set with states in U2 where _V1ðxÞ ¼ 0 and _V2ðxÞ ¼ 0. If the con-
trol laws in Eqs. (18) and (32) are employed with a(x), k1 and k2

satisfying conditions (35) and (72), then every solution x of the
closed-loop system (50) converges to the invariant set M2. In
other words, both the two actuated links stretch out toward the
front link in a natural way, whereas the passive link travels in a
periodic circle orbit given as Eq. (55).

5 Numerical Simulations and Comparisons

To demonstrate the validity of the proposed control strategy,
this section presents simulation results for the PAA manipulator.
In particular, a comparison result with literature [24] is presented
to show the advantages of the presented strategy.

The physical parameters of the PAA manipulator are m1¼ 5.4 kg,
m2¼ 29.5 kg, m3¼ 18.5 kg, L1¼ 0.58 m, L2¼ 0.5 m, L3¼ 0.79 m,
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Lc1¼ 0.31 m, Lc2¼ 0.20 m, Lc3¼ 0.33 m, J1¼ 0.15 kg m2, J2¼ 1.93
kg m2, and J3¼ 1.03 kg m2. The parameters in operations (13)–(15)
are chosen as e1 ¼ 10�5 rad; e2 ¼ 10�5 rad=s; e3 ¼ e4 ¼ ðp=6Þ rad;
e5 ¼ 0:5 J. To achieve a fast swing-up control, the control parame-
ters in Eqs. (18), (23), (32), and (35) are selected by trial and
error, which are c1¼ 3.5, k1¼ 0.05, k2¼ 6090, c2¼ 1000,
g¼ 135.10, q¼ 1.36, and E0¼ 497.54 J. The weighting matrices
Q¼ I4, R¼ 0.5 are chosen to obtain the state-feedback control law
for Eq. (41)

K ¼ �103 � ½5:9067 2:4764 2:0091 0:9592�

5.1 Simulation Results. Without loss of generality, we first
assume that the PAA manipulator starts with a nonzero initial
state x¼ [p p/8 p 0 0 1.7]>. The simulation results are shown in
Fig. 4.

Notice that s2 switches twice, at t¼ 11.535 s and t¼ 22.586 s,
respectively. First, when t< 11.535 s, the PAA manipulator is
governed by the first stage control laws (18) and (21), and up to
t¼ 11.535 s, the third link has stretched out toward the second one
in a natural way. At t¼ 11.535 s, the PAA manipulator enters into
the second stage. During this stage, the control law (18) of the
third link is still employed to guarantee the third link stretches out
all the time, and the control law of s2 is switched from Eqs. (21)
to (32). Then, at t¼ 22.586 s, the PAA manipulator enters into the
third stage, and the control laws (18) and (41) are used to stabilize
the PAA manipulator at the straight-up position.

5.2 Comparison Results. Then, another case with initial state
x¼ [17p/18 0 0 0 0 0]> in Ref. [24] is considered. Note that the
control parameters in Ref. [24] are also selected by trial and error,

Fig. 4 The angles qi (i 5 1, 2, 3), the torques s2 and s3, and the energy E of the PAA
manipulator with initial state x 5 [p p/8 p 0 0 1.7]>

Fig. 5 The angles qi (i 5 1, 2, 3), the torques s2 and s3, and the energy E of the PAA
manipulator with initial state x 5 [17p/18 0 0 0 0 0]>
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and a fast swing-up control is achieved. The simulation results are
depicted in Fig. 5.

Notice that the initial state satisfies condition (14), so the PAA
manipulator skips the first stage, and directly starts from the sec-
ond stage. It also observes that there is only one switch in the
whole control process, which takes at t¼ 9.376 s. Before t¼ 9.376
s, the manipulator is in swing-up stage, and when t¼ 9.376 s, the
manipulator enters into balancing stage. Finally, the PAA manip-
ulator is stabilized at the straight-up unstable position in no more
than 13 s.

Comparing the simulation results between Figs. 4 and 5, we
observe that for different initial state of the third link, i.e., q3 and
_q3, the settling time of the first stage is totally different. The
smaller are q3 and _q3, the shorter time is taken in the first stage.
For example, the q3 and _q3 in Fig. 5 are both zero, and the PAA
manipulator directly skips the first stage. In comparison with Ref.
[24], the settling time of the proposed method is only about 13 s,
while that is more than 30 s in Ref. [24]. In addition, from the
curves of s2 and s3, it observes that when s3 has the same ampli-
tude, the amplitude of s2 is much smaller than that of Ref. [24].
These demonstrate the efficiency of the proposed control strategy.

6 Conclusions

This paper describes a novel control strategy for a three-link
underactuated manipulator called PAA manipulator. The control
strategy is studied based on three stages. In the first stage, the third
link is forced to stretch out toward the second one in a natural
way, which provides a prerequisite and basis for the control of the
following stages. In the second stage, a swing-up control law is
designed based on a Lyapunov function to increase the energy and
stretch out the second link. In the third stage, an integrated method
with linear control and nonlinear control is introduced to guaran-
tee that the PAA manipulator can move into the third stage easily
and smoothly. The stability of the control system is rigorously
guaranteed by LaSalle’s invariance principle. Simulation and
comparison results show that the proposed control strategy swings
up the PAA manipulator easily and quickly, and stabilizes the
robot at the straight-up position efficiently. Two points of the pro-
posed control strategy are worth noticing:

(1) The employment of the first stage not only realizes the pos-
ture control of the third link, but also eliminates the influen-
ces of the control input and angular velocity of the third
link to the control of the second stage, which makes the
design of control laws for the next two stages easy.

(2) The maintained control law of the third link ensures that
the third link stretches out all the time in the next two
stages, even when the balancing controller is switched to
stabilize the manipulator at the straight-up position. This
guarantees the manipulator move into the third stage easily
and smoothly.

In the future work, it will be interesting and challenging to
study the robust issues of the control strategy under uncertainties,
such as external disturbances and uncertain model parameters.
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Appendix

Dynamics of the PAA Manipulator

The structures of M(q), Hðq; _qÞ, and G(q) in Eq. (1) are defined
as

MðqÞ¼
m11 m12 m13

m21 m22 m23

m31 m32 m33

2
64

3
75; Hðq; _qÞ¼

h1

h2

h3

2
64

3
75; GðqÞ¼

g1

g2

g3

2
64

3
75

where

m11 ¼ a1 þ a2 þ a4 þ 2a3 cos q2 þ 2a5 cosðq2 þ q3Þ þ 2a6 cos q3

m12 ¼ a2 þ a4 þ a3 cos q2 þ a5 cosðq2 þ q3Þ þ 2a6 cos q3

m13 ¼ a4 þ a5 cosðq2 þ q3Þ þ a6 cos q3

m22 ¼ a2 þ a4 þ 2a6 cos q3

m23 ¼ a4 þ a6 cos q3

m33 ¼ a4

h1 ¼ �a5ð2 _q1 þ _q2 þ _q3Þð _q2 þ _q3Þ sinðq2 þ q3Þ
� a6ð2 _q1 þ 2 _q2 þ _q3Þ _q3 sin q3

� a3ð2 _q1 þ _q2Þ _q2 sin q2

h2 ¼ a3 _q2
1 sin q2 þ a5 _q2

1 sinðq2 þ q3Þ
� a6ð2 _q1 þ 2 _q2 þ _q3Þ _q3 sin q3

h3 ¼ a5 _q2
1 sinðq2 þ q3Þ þ a6ð _q1 þ _q2Þ2 sin q3

g1 ¼ �b1 sin q1 � b2 sinðq1 þ q2Þ � b3 sinðq1 þ q2 þ q3Þ
g2 ¼ �b2 sinðq1 þ q2Þ � b3 sinðq1 þ q2 þ q3Þ
g3 ¼ �b3 sinðq1 þ q2 þ q3Þ

In the above equations, ai(i¼ 1, ���, 6) and bj(j¼ 1, 2, 3) are
defined as the structure parameters, which are a1 ¼ J1 þ m1L2

c1

þðm2 þ m3ÞL2
1, a2 ¼ J2 þ m2L2

c2 þ m3L2
2, a3 ¼ ðm2Lc2 þ m3L2Þ

L1, a4 ¼ J3 þ m3L2
c3, a5 ¼ m3L1Lc3, a6 ¼ m3L2 Lc3 and b1

¼ ðm1Lc1þm2L1 þ m3L1Þg, b2 ¼ ðm2Lc2 þ m3L2Þg, b3 ¼ m3Lc3g.
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