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The present work deals with irreversible universal thermodynamics. The homogenous and isotropic flat model of the universe
is chosen as open thermodynamical system and nonequilibrium thermodynamics comes into picture. For simplicity, entropy
flow is considered only due to heat conduction. Further, due to Maxwell-Cattaneo modified Fourier law for nonequilibrium
phenomenon, the temperature satisfies damped wave equation instead of heat conduction equation. Validity of generalized second
law of thermodynamics (GSLT) has been investigated for universe bounded by apparent or event horizon with cosmic substratum
as perfect fluid with constant or variable equation of state or interacting dark species. Finally, we have used three Planck data sets to
constrain the thermal conductivity A and the coupling parameter b*. These constraints must be satisfied in order for GSLT to hold

for universe bounded by apparent or event horizons.

1. Introduction

This is now well established that there is a profound relation
between gravity and thermodynamics. In the 1970s Hawking
[1] and Bekenstein [2] gave rise to this unique idea with
their revolutionary discovery of black hole thermodynamics.
According to them, black hole behaves as a black body
whose temperature (known as Hawking temperature) and
entropy (known as Bekenstein entropy) are proportional to
the surface gravity at the horizon and area of the horizon,
respectively. Later Bardeen et al. [3], in 1973, established that
the four laws of black hole mechanics are actually analo-
gous to four laws of thermodynamics. As thermodynamical
parameters such as temperature and entropy are character-
ized by the geometry of the event horizon of the black hole,
it is legitimated to assume that black hole thermodynamics
is deeply related to Einstein’s field equations. This assertion
became true when Jacobson [4] in 1995 successfully derived
Einstein equation from the first law of thermodynamics,

6Q = TdS with 6Q and T as the energy flux and Unruh
temperature measured by an accelerated observer just inside
the horizon, and subsequently Padmanabhan [5] derived the
first law of thermodynamics from Einstein equations for
general static spherically symmetric space time. Since then,
much work has been done based on this equivalence between
Einstein’s equations and thermodynamics.

Universal thermodynamics got a new direction when it
was understood that the universe should be an irreversible
one rather than a reversible one [6, 7]. Jacobson [4] first
noticed this when his attempt failed to reproduce Einstein’s
equations from first law of thermodynamics in f(R) gravity.
In that case he assumed the horizon entropy to be pro-
portional to a function of the Ricci scalar and this led to
the breakdown of the local thermodynamical equilibrium.
Subsequently, Eling et al. [6, 7] had shown that, by a curvature
correction to the entropy which is polynomial in the Ricci
scalar, Einstein’s equations can be derived from thermody-
namic laws in f(R) gravity by a nonequilibrium treatment.



In order to do so they added an extra term d;S called entropy
production term to the entropy balance equation:

ds = 12

+dS, ®
where they explained d,S as bulk viscosity production term
determined by imposing energy-momentum conservation.
In general, the entropy balance relation in nonequilibrium
thermodynamics is of the form

dS = des + dis’ (2)

where d,S is the rate of entropy exchange with the surround-
ings while d;S (=0) comes from the process occurring inside
the system. In particular d;S is zero for reversible process
and positive for irreversible process. In cosmology, d;S has no
clear interpretation as it depends on the internal production
process.

Wang and Liu [8] studied nonequilibrium thermody-
namics for universe bounded by apparent horizon with dark
energy in the form of perfect fluid with constant equation of
state. They got an interesting result that the original radius of
apparent horizon needs to be corrected and the new position
of apparent horizon depends on constant equation of state of
the dark energy as well as on the nonequilibrium factor.

In this paper, we have followed the work of Wang and
Liu. In particular, it is an extension of our previous works
on nonequilibrium thermodynamics of universe bounded
by event [9] and apparent horizon [10]. In Section 2, we
have given a general description of irreversible process of
the universe. Section 3 deals with universe bounded by
apparent/event horizon for flat FRW model and cosmic
substratum is chosen as the following three types:

(a) perfect fluid with constant equation of state,
(b) perfect fluid with variable equation of state,
(c) interacting dark matter and holographic dark energy.

For each of the fluids validity of generalized second law of
thermodynamics has also been examined for both of the
horizons. In Section 4, we have evaluated the constraints on
the coupling parameter b* and the thermal conductivity A for
the validity of GSLT using Planck data sets. A short discussion
and concluding remarks have been presented in Section 5.

2. A General Prescription for
the Irreversible Process

In nonequilibrium thermodynamics, due to irreversibility,
there will be an internal entropy production. So, in general,
the change of entropy of a system can be written as

dS; = d,S+d,S, 3)

where as before d,S stands for exchange of entropy between
the system and its surroundings and d;S comes from internal
production process. It should be noted that d,S may be
positive, negative, or zero depending upon the system’s inter-
action with its surroundings, but d,S is always nonnegative
for an irreversible process.
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If 0 and 7; stand for entropy production density and
entropy flow density vector (i.e., current), then under the
assumption of local equilibrium [8-11],

deS _ _J- idi,

dt b

s (4)
i dv,

dt JVG

where the volume V is bounded by the surface X.

Now entropy flow may be caused by convection, heat con-
duction, and diffusion, but we consider only heat conduction
in order to have a simple physical picture. As a result we have

—
N

_a
o (5)
)

where Tq) stands for energy flux due to heat flow and T is the
temperature of the system. If we assume that energy flux and
temperature remain constant across the surface X then the
first equation of (4) gives
.l
d,S . R (6)
dt T

However, if we assume Bekensteins entropy area relation on
the surface 2, that is,

ds d
dt  dt

(nR2) = 2R Ry, %)

then comparing (6) and (7), we have,
B TRy ®)

Similarly considering o to be uniform over the entire volume
we have obtained from the second equation of (4) and using

(5)

dS4

dr 37TR2] V(T) ©)

Now suppose we consider heat flow in a vorticity free fluid
in flat spacetime and choose the instantaneous orthogonal
frame as a global orthogonal frame. Applying energy conser-
vation equation to the energy density (i.e., p = (3/2)nT) for
dust model based on the relativistic kinetic theory, we obtain

o _ 3 aT
10
Jg = 5 (10)

According to Eckart-Fourier law [12],
7; - AVT, 1)

which states that there will be an energy flux if there is a
temperature gradient (A is the thermal conductivity).
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Now combining (10) and (11), we have the usual heat
conduction equation

I v, (12)
ot
with k = 21/3n. Note that, due to parabolic nature of the
above differential equation, there will be an infinite speed of
propagation. Now eliminating VT between (9) and (1) and
using (8), we obtain
52
as; _ mRsRy (13)
dt 3A

Hence combining (7) and (13) the change of total entropy is
given by

. R
-z =271R2R2<1 + —2>. (14)

In recent past nonequilibrium thermodynamics of FRW
model of spacetime with the above modification has been
studied [8-10] both at the apparent horizon and at the
event horizon, respectively, for the dark energy fluid having
constant or variable (holographic) equation of state. We have
seen that the entropy variation due to production process is
always positive irrespective of the sign of Ry.

However, the above Eckart theory has the following
demerits, namely, (a) having causality violation, (b) describ-
ing unstable equilibrium states, and (c) being unable to
describe the dynamics. Further, in a thermodynamical sys-
tem, it is expected that if a thermodynamical influence is
switched off then the corresponding thermodynamic effect
should be eliminated over a finite time period. But, in the
above Eckart theory, if temperature gradient is set to zero (i.e.,

att =0, VT = 0) then, from (11), IT;I =0 fort > 0, instead of
|7;| gradually being zero after some finite period of time; that

N
is, expected form of J, is

To=Toexp (=) (15)

where 7 is a characteristic relaxation time for transient heat
flow effects. Consequently the Fourier law is modified as [12,
13]

.+, = -AVT. (16)

This is known as Max_v)vell—Cattaneo modified Fourier law
[12]. Now eliminating J, q between (10) and (16), we have the
damped wave equation (instead of heat conduction equation)

o°T oT )
- - 17
To5t o TAVT =0 (17)

So for a thermal plane wave solution [12],

T =T, exp [i(l_é-?—wt)], (18)

3
the phase velocity is
2yw 172
ve| — X (19)
Tw+ V1 + ?2w?
and the dispersion relation takes the form [13, 14]
Tw?
k| = — +iw. (20)

Thus, in the high frequency limit (i.e., w > 77'), we have V =
\/x/7 which is finite for 7 > 0 and gives the speed of thermal
pulses. Thus by introducing relaxation term it is possible to
remove the problem of infinite propagation speed.

Now we will determine the change of entropy due to
internal production process by using modified Maxwell-
Cattaneo Fourier law. As before, eliminating the temperature
gradient term between (9) and (16) and using (8) for the
magnitude of the energy flux, we have

(21)

d;s = ﬂRZR% [1+ 2],
dt 31 2

— 5 .
where u = lnI]ql , I]ql = TR;/2Rs. So the total entropy
change is

ds; .
=T _ 2nRyRy

P (22)

Rz< m)
I1+—=11+—
6A 2

3. Entropy Variation for Universe Bounded by
Apparent/Event Horizon: Validity of GSLT

In this section, we will determine the time variation of total
entropy of the universe bounded by the apparent/event hori-
zon for flat FRW model and for different fluid distribution.
If R, and Ry denote the radius of the apparent and event
horizon, respectively, then their time variation is given by

Ry=-—=1+g, Ry = HR; - 1, (23)

H?
where by definition R, = 1/H and R = a ftoo(dt/a) and g
is the usual deceleration parameter. Note that the improper

integral in Ry converges when strong energy condition is
violated.

3.1. Cosmic Substratum as Perfect Fluid with Constant Equa-
tion of State. Suppose p = wp is the equation of state for the
perfect fluid where w (< —1/3) is constant. The cosmological
solution is

a=a(t- to)l/oc > p=poa (24)

where

1/«
oc=§(l+w)) aoz{@(l"'w)} > (25)



and p, is the constant of integration. The explicit form of the
horizon radii is

ot (26)

R, = at, RE:I .
-«

Thus total entropy variation for both of the horizons is given
by

dS? 2 (04 2T)
=T ot |1+ —(1-=)],
a e [+6A< ; ]

(27)
dsy

at ﬂ”(%ﬁ[“ﬁ(“?)]-

Thus for the validity of the generalized second law of
thermodynamics (GSLT) we have

as?
—T>O:If—1<w<—land‘r<£(l+@> or
dt 3 2 o
if w< -1 andr>£<1+@>,
2 o

dsk -
—T>O:If—1<w<—land‘r<£<l+w>or
1ot

dt
if w< -1 andr>£<1+M).
2 o

(28)

3.2. Cosmic Substratum as Perfect Fluid with Variable Equa-
tion of State. For this general fluid the time variation of the
total entropy has the explicit form

dsy  2m(1+q) l+q tH

=T _ 1 -— 2)|,
dt H [ e e 32
dsk

d—tT = 2Ry (HR; — 1)

(29)

(HR; - 1)
1 - = 7
|1 e

_ % {(2HR; - 1) + g (3HR; - 2)} |,

for the bounding horizon as apparent and event horizon,
respectively. Here r = d/aH’ is the usual state finder
parameter.

Now the explicit restrictions for the validity of GSLT are
shown in Tables 1 and 2.

3.3. Cosmic Fluid as Interacting Dark Species. We consider
interacting dark matter (DM) and holographic dark energy
(HDE) as the matter in the universe. The form of interaction
term is chosen as [15, 16]

Q=3b"H (p,, + pp) » (30)
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TABLE 1: Apparent horizon.

Quintessence era: 1 + g > 0

r+3q+2<0 No restriction on T
. l1+qg 61
r+3g+2>0 TH < min ,
2(r+3q+2) 2(r+3q+2)
Phantomera: 1 +¢g < 0
[1+gl-6A
r+3g+2<0 — T
2|r +3q + 2|
r+3g+2>0 No restriction on T
TABLE 2: Event horizon.
2HR; -1 HR; -1
lql < ———— H <
3HR; -1 2 [(2HRg - 1) - |q|(2HR, - 1)]
2HR; - 1 . .
Iql > ——— T is unrestricted
3HR; -1

where the coupling parameter b” is assumed to be very small,
Py, 1 the energy density of the DM (in the form of dust), and
Pp» the energy density for holographic dark energy, satisfies
(from holographic principle and effective field theory) [16,17]

2242
oo = 3c’M » (1)
D Lz >

where L is an IR cut-off in units M}z, = 1 and c is

any dimensionless parameter estimated by observations [18].
Here we choose radius of the event horizon as the IR cut-
off length to obtain correct equation of state and the desired
accelerating universe. So we have

C

b o

where Qp, = 87p,/3H?” is the density parameter. Now the
equation of state parameter of the holographic DE has the
form [15, 16, 19]

120y ¥ (33)

and the evolution of the density parameter is given by [15, 16,
19]

1 2
QL =0(1-Qp)( — +
b= 03 01-00) (- + e

) -3’Q,,  (34)

where “/” stands for the differentiation with respect to x =
Ina.
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The Friedmann equations for the present interacting two-
fluid system are

8nG :
=8 (), e nGlp (1 wopol]

(35)

Hence the deceleration parameter q and the state finder
parameter r have the expressions

HY) 1 ) 207
=—(1+=)==(1-3"-0Q,- )
1 < H2> 2< b c

Qp (1 s 2\/QD>
2 c

r=-2-3q-
(36)

33— Q) 5
X(E QD—T+6b —5>
+2—ﬁ{3(2—b2)+0 <1+§\/Q )}
2 2 b c :

Also the radii of the horizons and their time evolution are
given by

1 c
R, =—, Ry = ;
AT H T JQpH (37)
Ro=2(1- Qp 2057 C
AT E
2 3 3c \VOp
(38)

Hence the time variation of the total entropy of the universe
bounded by apparent/event horizon is given by

dsy _ 2{3(1—b2)—0d<“ 2@”

dt  H

Jdeboraf )

2
ECD P S 1+2\/Q_d
61 3 c

3@)

C

X {(I—Qd)<l+

+Qd<1+

)]

(39)

5
X|:1+$(\/;_d_1)

_Té_H{(z\/LQ_d—l)+q(3\/Lﬂ_d—2>}].( |

40

4. Constraints on b* and )\ from Planck Data
Sets for Validity of GSLT

In March 2013, based on the first 15.5 months of Planck
investigations, the European Space Agency (ESA) and the
Planck Collaboration publicly made available the CMB data
along with a lot of scientific results [20]. Due to complicated
expressions in (39) and (40) and a handful of observable
parameters, we have used three Planck data sets [21] to
evaluate some realistic bounds on the thermal conductivity
A and the coupling parameter b* (for arbitrary values of the
relaxation time 7) which make dS%/dt and dS%/dt nonnega-
tive. The nonnegativity of the two quantities is necessary for
GSLT to hold in both cases.

Compared to WMAP results, the Planck results reduce
the error by 30% to 60% and thus improve the constraints on
dark energy. The results have been seen to differ significantly
if the Planck data are combined with external astrophysical
data sets such as the BAO measurements (can provide effec-
tive constraints on dark energy from the angular diameter
distance-redshift relation) from 6dFGS + SDSS DR7(R) +
BOSS DRY, the direct measurement of the Hubble constant,
H, = 738 + 2.4kms ' Mpc ' (lo CL) [22], from the
supernova magnitude-redshift relation calibrated by the HST
observations of Cepheid variables in the host galaxies of eight
SNe Ia and the supernova data sets: The SNLS3 (which is a
“combined” sample [23, 24], consisting of 472 SNe, calibrated
by both SiFTO [25] and SALT2 [26]) and the Union 2.1
compilation [27], consisting of 580 SNe, calibrated by the
SALT?2 light-curve fitting model [26]. These external data
sets contribute significantly to the accuracy of the constraint
results. The lensing data further improves the constraints
by 2% to 15%. Also, no tension has been found [21] when
Planck data is combined with the BAO, HST, and Union
2.1 data sets. However, combination of SNLS3 with other
data sets shows a weak tension. Table 3 shows the three
Planck data sets and the observed values of the parameters
which we will use in order to compute the bounds on A
and b? for arbitrary values of 7. Recently, using Planck data,
constraints on the coupling parameter b* have been evaluated
[28] for validity of thermodynamical equilibrium in case of
equilibrium thermodynamics.

In Table 3, “Planck” represents the Planck temperature
likelihood [21] (including both the low-I and high-I parts),
“WP” represents the WMAP polarization likelihood as a
supplement of Planck, and “lensing” represents the likelihood
of Planck lensing data, in reference to the likelihood software
provided by the Planck Collaboration.
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TABLE 3: Planck data sets.
Data c Qy
Planck + WP + SNLS3 + lensing 0.603  0.699
Planck + WP + BAO + HST + lensing 0.495  0.745
Planck + WP + Union 2.1 + BAO + HST + lensing 0.577  0.719

TaBLE 4: Constraints on b* and A for GSLT to hold in case of
apparent horizon.

c Q, b A

0.603 0.699 0.9490 < b* <1 A <0.2070
0.495 0.745 All values of b* A <0.0286
0.577 0.719 0.8236 <b* <1 A <0.1920

Table 4 shows the constraints on b* and A ( can take
arbitrary values) which are required for GSLT to hold in case
of universe bounded by apparent horizon.

Some remarks about the bounds obtained in Table 4 are
in order. Let us consider the following three expressions (see

(39)):

A=3(1—b2)—Qd<1+2 CQ">,

A
B=1+—7,
124

Q 290, \\’

3\/Q_d>

c

X {(I—Qd)(l+@)—3b2}].

Our first task is to determine the signs of A, B, and C which
are required for GSLT to hold. One can easily note that
dSi/dt is nonnegative if (A, B,C) has the sign combination
either (+,+,—) or (-, —,+). Since ¢ and Q, are observable
parameters, expressions A and C together give the bounds
on b*. These bounds in turn give the bounds on A from the
expression B. Now, for all the three data sets, there exists no
value of b for which A becomes positive and C becomes
negative simultaneously. For instance, consider the data set 1
(Planck + WP + SNLS3 + lensing). In this case, the expression
A is positive only if b* € (0, 0.1209) while the expression C is
negative only if b* € (0.4949,0.9490). So, a common value
(or a common range of values) for b* satisfying (A,C) —
(+, —) is not possible to achieve. Thus, only the combination
(-, —+) is viable with which one can compute the bounds
listed in Table 4. Further, we have plotted dS%/dt against
the coupling parameter b* for four different values of the

C=

+Qd<1+
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TaBLE 5: Constraints on b* and A for GSLT to hold in case of event
horizon.

c Qy b A

0.603 0.699 All values of b* A <0.0465
0.495 0.745 All values of b* A <0.0711
0.577 0.719 All values of b* A <0.0533

thermal conductivity A and for T = 0.01 (since the constraints
obtained are independent of 7). The values of A have been
chosen such that the constraints obtained in Table 4 are
reflected through these plots. For example, for A = 0.205
(see Figure 1(c)), the constraints on b? (for GSLT to hold) are
consistent with those obtained in Table 4 for data set 1 but not
for data sets 2 or 3.

We now turn our attention to the case of universe
bounded by event horizon. Table 5 shows the bounds on b*
and A which make dS%/dt nonnegative, T being arbitrary.

As in the case of apparent horizon, we consider the
following expressions (see (40)):

p-—S -1,
VQq
D
E=1+—,
61

Here one can see that, for all the three Planck data sets,
the expression D is negative. So, for evaluating the bounds,
only the sign combination (D, E,F) — (—,—,+) must be
considered. Here also, we have plotted dS%/dt against the
coupling parameter b* for four different values of the thermal
conductivity A and for T = 0.1 in Figure 2. One can easily see
that these plots are consistent with the constraints obtained
in Table 5.

Moreover, one should also note that, in Tables 4 and 5, the
constraints have been kept correct to 4 decimal places and the
coupling parameter b* € [0, 1].

5. Short Discussion and Conclusions

An extensive study of the irreversible thermodynamics of the
universe is considered for flat FRW model. For simplicity,
we consider the entropy flow only due to heat conduction.
To incorporate relaxation time, the Fourier law is modified
as Maxwell-Cattaneo modified Fourier law and as a result
the usual heat conduction equation changes to damped wave
equation.

Subsequently, generalized second law of thermodynamics
is examined for three choices of the cosmic fluid, namely,
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60 - A =0.015,7 = 0.01 ,

50 /

40 /

dsgjdt
(o8]
(=}
1

20 - L s

10 L

0.6 0.8 1

(a)

A =0.205,7 = 0.01

dsi/dt

N
-0.2 A " v ;

-04q9 ~ N , 7
-

-0.6 - —--o T

3 A =0.15,7 = 0.01

(b)
A=0.30,7 =0.01
0.2
\
.\
.
0
< 0.2
~
<&
(0]
=
-0.4
,06 -
-0.8 4

FIGURE 1: The above 4 plots show the variation of dS;./dt against the coupling parameter b” for different values of A and for 7 = 0.01. The red
(solid), green (dash), and blue (dash-dot) curves correspond to data sets 1, 2, and 3, respectively.

perfect fluid with constant or variable equation of state and
interacting holographic dark energy and dark matter. For
validity of GSLT, analytic inequalities are possible for perfect
fluid (both constant and variable equations of state) while,
for holographic dark energy model, the expressions for total
entropy variation with time have complicated expressions
for both of the horizons (apparent and event). So using
Planck data sets for the observed values of the dimensionless
parameter ¢ and the density parameter 2 ;, we have estimated
the admissible range of the coupling parameter b* and the
thermal conductivity A (7 being arbitrary) for the validity

of GSLT. Also, graphically, we have shown the variation of

time variation of total entropy against b* for allowed choices

of A and for arbitrary 7. From Tables 4 and 5, we see
that for three data sets GSLT holds for all values of b* for
event horizon while, for apparent horizon, b* is unrestricted
only for one data set and this is reflected in Figures 1 and
2. Lastly, we note that, in equilibrium thermodynamics,
there is no restriction for validity of GSLT across apparent
horizon (for any gravity theory) while there are some realistic
conditions for validity of GSLT bounded by event horizon
but GSLT holds in a restrictive way for both horizons in
irreversible thermodynamics. Therefore, based on the present
work, we may conclude that, in nonquilibrium prescription
of thermodynamics, event horizon is more favourable than
apparent horizon for FRW model of the universe.
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A=0.057=0.1

-0.04 4
-0.05
-0.06 +
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bZ
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A=0.09,7=0.1
bz
0 0.2 0.4 0.6 0.8 1

-0.02 -7

-0.03 +-~

(d)

FIGURE 2: The above 4 plots show the variation of dS%/dt against the coupling parameter b” for different values of A and for 7 = 0.1. The red
(solid), green (dash), and blue (dash-dot) curves correspond to data sets 1, 2, and 3, respectively.
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