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Abstract. Lookback options have payoffs dependent on the maximum and/or min-
imum of the underlying price attained during the option’s lifetime. Based on the
relationship between diffusion maximum and minimum and hitting times and the
spectral decomposition of diffusion hitting times, this paper gives an analytical
characterization of lookback option prices in terms of spectral expansions. In par-
ticular, analytical solutions for lookback options under the constant elasticity of
variance (CEV) diffusion are obtained.
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1 Introduction

Lookback options are an important family of path-dependent options. Their payoffs
depend on the maximum or minimum underlying asset price attained during the
option’s life. A standard lookback call gives the option holder the right to buy at
the lowest price recorded during the option’s life. A standard lookback put gives
the right to sell at the highest price. These options were first studied by Goldman
et al. (1979a) and Goldman et al. (1979b) who derived closed-form pricing for-
mulas under the geometric Brownian motion assumption. Lookbacks materialize
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every investor’s desire to buy at the ex-post low and sell at the ex-post high. In
addition to standard lookback options, Conze and Vishwanathan (1991) introduce
and price calls on maximum and puts on minimum. A call on maximum pays off
the difference between the realized maximum price and some prespecified strike or
zero, whichever is greater. A put on minimum pays off the difference between the
strike and the realized minimum price or zero, whichever is greater. These options
are called fixed-strike lookbacks. In contrast, the standard lookback options are
also called floating-strike lookbacks, because the floating terminal underlying asset
price serves as the strike in standard lookback options. He et al. (1998) introduce
and study double lookback options.

The above-referenced papers assume that the underlying asset price follows ge-
ometric Brownian motion. However, it is well established that the geometric Brow-
nian motion assumption contradicts the accumulated empirical evidence. A major
empirical finding is that equity option prices exhibit pronounced implied volatility
smiles. Quoting Jackwerth and Rubinstein (1998), “These volatility smiles (im-
plied volatilities which are largely convex and monotonically decreasing functions
of strike prices) contradict the assumption of geometric Brownian motion which
would imply a flat line. Described with an alternative metric, the implied risk-
neutral probability densities are heavily skewed to the left and highly leptokurtic
relative to the Black-Scholes lognormal presumption. These differences are large
and seemingly well beyond the capacity of market imperfections to provide a solu-
tion.” The constant elasticity of variance (CEV) model of Cox (1975) and Cox and
Ross (1976) allows the instantaneous conditional variance of asset return to depend
on the asset price level. The CEV model exhibits an implied volatility smile that
is a convex and monotonically decreasing function of strike, similar to empirically
observed volatility smile curves.

Recently, Boyle and Tian (1999) and Boyle et al. (1999) have initiated a study of
barrier and lookback options in the CEV model. Boyle and Tian (1999) approximate
the CEV process by a trinomial lattice and use it to value barrier and lookback
options numerically. They show that the differences in prices of these extrema-
dependent options under the CEV and geometric Brownian motion assumptions can
be far more significant than the differences for standard European options. Boyle
et. al (1999) value lookback options in the CEV model by Monte Carlo simulation.
While the approach of Boyle and co-authors is purely numerical, Davydov and
Linetsky (2001) obtain closed-form solutions for Laplace transforms of CEV barrier
and lookback options with respect to time remaining to expiration and numerically
invert these Laplace transforms via the Abate-Whitt numerical Laplace inversion
algorithm. Davydov and Linetsky (2003) analytically invert the Laplace transforms
for barrier options in terms of spectral expansions associated with the infinitesimal
generator of the CEV diffusion (see also Linetsky 1999 and references therein for
various alternatives to standard barrier options). [Remark: Barrier option prices
obtained with the trinomial lattice by Boyle and Tian (1999) are in agreement with
the prices obtained with the Laplace transform method by Davydov and Linetsky
(2001). In contrast, lookback option prices obtained by Boyle and Tian (1999) are
in disagreement with the prices obtained by Davydov and Linetsky (2001). The
cause is a subtle problem with their trinomial lattice algorithm for lookbacks (see
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Boyle et al. 1999, Sect. 1). Subsequently, Boyle et al. (1999) computed lookback
prices by Monte Carlo simulation. Their Monte Carlo prices are in agreement with
the lookback prices computed in Davydov and Linetsky (2001) via the Laplace
inversion and in the present paper via the spectral method.]

In the present paper we apply the spectral expansion approach to lookback
options. In Sect. 2 we give some general results for lookback options when the un-
derlying follows a one-dimensional diffusion and express lookback prices in terms
of hitting time distributions. In Sect. 3, following McKean (1956) and Kent (1980,
1982) (see also Linetsky 2002b), we give a spectral decomposition of the first hit-
ting time distribution of a one-dimensional diffusion. In Sect. 4 we specialize to
the CEV diffusion and obtain analytical solutions for lookback options in terms of
spectral expansions. These spectral expansions can serve as benchmarks for numer-
ical methods. Three specific advantages of spectral expansions are: (1) the Greeks
can be calculated analytically by taking derivatives without any loss of precision;
(2) long-dated contracts are easy to value (the longer the time to expiration, the
faster the spectral expansion converges); (3) in the case of the CEV model, it turns
out that the steeper is the volatility skew, the faster the spectral expansion conver-
gence. These three properties of the spectral expansion method are in contrast with
simulation.

While in this paper we do not consider interest rate models, the same approach
can also be used to price lookback options on yield in the CIR term structure model.
Leblanc and Scaillet (1998) have recently obtained expressions for lookback op-
tions on yield in terms of Laplace transforms of hitting times and suggested the
application of the Abate-Whitt Laplace inversion algorithm to invert these trans-
forms. The approach of the present paper can also be applied to their setting to
express lookback options on yield in terms of the spectral decomposition of the
CIR diffusion hitting time (see also Linetsky 2003 for related results on CIR and
OU hitting times).

To conclude this introduction, we note that spectral expansions are a powerful
analytical tool in derivatives pricing. Among the papers that employ the spectral
method in finance we mention Davydov and Linetsky (2003), Gorovoi and Linetsky
(2004), Lewis (1998, 2000), Linetsky (2002a–c, 2003, 2004), Lipton (2001, 2002)
and Lipton and McGhee (2002) among others. Further details and references can
be found in Linetsky (2002b).

2 Pricing lookback options

In this paper we model asset prices as one-dimensional diffusions. We take an
equivalent martingale measure P as given and assume that, under P, the underlying
asset price process {St, t ≥ 0} is a regular diffusion on (0,∞) starting at some
point S0 = x ∈ (0,∞) and with the infinitesimal generator

(Gf)(x) =
1
2
σ2(x)x2f ′′(x) + µxf ′(x) (1)

acting on functions on (0,∞) subject to appropriate regularity and boundary con-
ditions. Here µ is a constant (µ = r − q, where r ≥ 0 and q ≥ 0 are the constant
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risk-free interest rate and the constant dividend yield, respectively), and σ = σ(x)
is a given local volatility function assumed continuous and strictly positive for all
x ∈ (0,∞). We assume +∞ is a natural boundary and 0 is either natural, exit,
or regular specified as a killing boundary by sending the process to a cemetery
(or, in financial terms, bankruptcy) state ∂ at the first hitting time of zero (see
Borodin and Salminen 1996, Chapt. 2 for Feller’s classification of boundaries for
one-dimensional diffusions).

Throughout this paper t denotes the running time variable. We assume that all
options are written at time t = 0 and expire at time t = T > 0. To price lookback
options we need distributions of the maximum and minimum prices. Let Mt and
mt be the maximum and minimum recorded to date t ≥ 0, Mt = max0≤u≤t Su
and mt = min0≤u≤t Su. Define the two functions (the probabilities are calculated
with respect to P and the subscript x in Px indicates that the process is starting at
S0 = x at t = 0):

F (y;x, t) := Px(mt ≤ y) for y ≤ x, G(y;x, t) := Px(Mt ≥ y) for x ≤ y.
(2)

Proposition 1 (Davydov and Linetsky 2001, Proposition 4) The prices of the
standard lookback call, the standard lookback put, call on maximum and put on
minimum at some time t ∈ [0, T ] during the option’s life are:

e−rτ
Et[(ST −mT )+] = e−qτSt − e−rτmt + e−rτ

∫ mt

0
F (Y ;St, τ)dY, (3)

e−rτ
Et[(MT − ST )+] = e−rτMt − e−qτSt + e−rτ

∫ ∞

Mt

G(Y ;St, τ)dY, (4)

e−rτ
Et[(MT −K)+] = e−rτ

{∫∞
K
G(Y ;St, τ)dY, Mt ≤ K,

Mt −K +
∫∞
Mt

G(Y ;St, τ)dY, Mt > K,
(5)

e−rτ
Et[(K −mT )+] = e−rτ

{∫K
0 F (Y ;St, τ)dY, mt ≥ K,

K −mt +
∫mt

0 F (Y ;St, τ)dY, mt < K,
(6)

where all contracts are initiated at time zero,mt andMt are the minimum and max-
imum prices recorded to date t ≥ 0 (known at time t), St is the current underlying
price at time t, τ = T − t is the time remaining to expiration, and Et[•] ≡ E[•|Ft],
Ft := σ{Su : u ≤ t}.

Proposition 1 expresses prices of seasoned lookback options at some time
t ∈ [0, T ] during the option’s lifetime in terms of the spot price St at time t,
minimum mt (maximum Mt) to date t, and the probability distribution F (G) of
the minimum (maximum) (the term “seasoned" refers to the fact that the option
contract has been initiated before the current valuation date t). To value newly-
written contracts at time t = 0, set m0 = M0 = S0 as there is only one price
observation. Partial lookbacks where the lookback period for the computation of
the maximum (minimum) covers only the final period [t, T ], t > 0, of the contract
life can be valued by valuing a newly-written lookback option at time t conditional
on the spot price St at t via Proposition 1 and then integrating the result with the
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density of St at t conditional on S0 at time zero and discounting back to time zero
to obtain the price of the partial lookback at time zero.

To compute Eqs. (3–6), we need the distributions of the maximum and mini-
mum. First notice that

Px(Mt ≥ y) = Px(Ty ≤ t) for x ≤ y, Px(mt ≤ y) = Px(Ty ≤ t) for y ≤ x,
(7)

where Ty := inf{t ≥ 0 : St = y} is the first hitting time of y ∈ (0,∞). One way
to characterize the first hitting time distribution is to express its Laplace transform
Ex[e−sTy ] for s > 0 in terms of the increasing and decreasing solutions of the ODE
Gu = s u (Borodin and Salminen 1996, p. 18). For the CEV diffusion, Davydov
and Linetsky (2001) use explicit expressions for the increasing and decreasing
solutions in terms of the Whittaker functions and then invert the Laplace transform
numerically via the Abate and Whitt numerical Laplace inversion algorithm. In this
paper we take a different approach. Instead of using Laplace transforms, we rely
on the spectral decomposition, and no numerical Laplace inversion is required.

3 Spectral expansions for hitting times

Consider a one-dimensional, time-homogeneous regular diffusion {Xt, t ≥ 0}
whose state space is some interval I ⊆ R with end-points e1 and e2, −∞ ≤ e1 <
e2 ≤ ∞, and the infinitesimal generator

(Gf)(x) =
1
2
a2(x)f ′′(x) + b(x)f ′(x), x ∈ (e1, e2), (8)

acting on functions on I subject to appropriate regularity and boundary conditions.
We assume that the diffusion coefficient a(x) is continuous and strictly positive on
the open interval (e1, e2) and drift b(x) is continuous on (e1, e2). The infinitesimal
generator can be re-written in the symmetric form

(Gf)(x) =
1

m(x)

(
f ′(x)
s(x)

)′
, x ∈ (e1, e2), (9)

where s(x) and m(x) are the diffusion scale and speed densities (Borodin and
Salminen 1996, p. 17):

s(x) := exp
(

−
∫ x 2b(y)

a2(y)
dy

)
, m(x) :=

2
a2(x)s(x)

. (10)

The endpoints ei, i = 1, 2, are either natural, entrance, exit, or regular boundaries
for the diffusionX . In this section we consider two types of boundary conditions at
regular boundaries: killing or instantaneous reflection. For regular instantaneously
reflecting boundaries, the boundary point e is included in the state space I and
(Gf)(e) := limx→e(Gf)(x). For natural, entrance, exit and regular killing bound-
aries, the boundary point is not included in I . For exit and regular killing boundaries,
the process X is sent to a cemetery state ∂ at the first hitting time of the boundary.
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Fix some y ∈ (e1, e2) and consider the first hitting time distribution Px(Ty ≤ t),
Ty := inf{t ≥ 0 : Xt = y}, for x < y (first hitting time up). Observe that

Px(Ty ≤ t) = Px(Ty < ∞) − Px(t < Ty < ∞). (11)

For e1 < x < y we have:

Φe1(x, y) := Px(Ty < ∞)

=

{
1 if e1 is entrance, reflecting, or non-attracting natural

S(e1,x]
S(e1,y]

if e1 is exit, killing, or attracting natural
, (12)

where S(e1, x] :=
∫
(e1,x]

s(z)dz (Karlin and Taylor 1981, p. 227). Then, observing
that

Px(t < Ty < ∞) = Ex[1{t<Ty}E[1{Ty<∞}|Ft]] = Ex[1{t<Ty}Φe1(Xt, y)],
(13)

Eq. (11) can be re-written in the form:

Px(Ty ≤ t) = Φe1(x, y) − Ex[1{t<Ty}Φe1(Xt, y)]. (14)

We thus need to calculate Px(t < Ty < ∞) = Ex[1{t<Ty}Φe1(Xt, y)].
Let Iy := [e1, y] if e1 is regular instantaneously reflecting or Iy := (e1, y]

otherwise. The operators (Py
t f)(x) := Ex[1{t<Ty}f(Xt)] form a Feller semigroup

{Py
t , t ≥ 0} on the Banach space Cb(Iy) of real-valued, bounded continuous

functions on Iy and Φe1(·, y) ∈ Cb(Iy).
Let L2(Iy,m) be the Hilbert space of real-valued functions on Iy square-

integrable with the speed density m and with the inner product

(f, g)y =
∫
Iy

f(x)g(x)m(x)dx. (15)

The Feller semigroup {Py
t , t ≥ 0} restricted to Cb(Iy) ∩ L2(Iy,m) extends

uniquely to a strongly-continuous semigroup of self-adjoint contractions in
L2(Iy,m) with the infinitesimal generator Gy , an unbounded self-adjoint, non-
positive operator in L2(Iy,m) (see McKean 1956; Langer and Schenk 1990;
Linetsky 2002b). The domain of Gy is: D(Gy) := {f ∈ L2(Iy,m) : f, f ′ ∈
AC(Iy), Gyf ∈ L2(Iy,m), boundary conditions at y and e1}, where AC(Iy) is
the space of absolutely continuous functions, the boundary condition at y is

f(y) = 0, (16)

and the boundary condition at e1 is:

– If e1 is exit or regular killing, then

f(e1+) = 0. (17)
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– If e1 is entrance, regular instantaneously reflecting, or natural with∫ ε
e1

m(x)dx < +∞, ε ∈ (e1, y), then

lim
x↓e1

f ′(x)
s(x)

= 0. (18)

– If e1 is natural with
∫ ε
e1

m(x)dx = +∞, ε ∈ (e1, y), then
∫ ε
e1
f2(x)m(x)dx <

+∞ (this implies limx↓e1 f(x) = 0).

The operator Gy acts on its domain by (Gyf)(x) := 1
2a

2(x)f ′′(x) + b(x)f ′(x).
Applying the Spectral Theorem for self-adjoint semigroups (Hille and Phillips

1957, Theorem 22.3.1, for f ∈ L2(Iy,m) we thus have a spectral expansion for
Py
t f . To apply the Spectral Theorem to the calculation of Ex[1{t<Ty}Φe1(Xt, y)],

we need to verify that Φe1(·, y) ∈ L2(Iy,m).

Lemma 1 If e1 is not a natural boundary, then Φe1(·, y) ∈ L2(Iy,m). If e1 is a
non-attracting natural boundary, then Φe1(·, y) ∈ L2(Iy,m) if and only if∫ y

e1

m(x)dx < ∞. (19)

If e1 is an attracting natural boundary, then Φe1(·, y) ∈ L2(Iy,m) if and only if∫ y

e1

S2(e1, x]m(x)dx < ∞. (20)

Proof The proof follows from Eq. (12) and the integrability properties recorded in
Table 6.2, Karlin and Taylor (1981, p. 234). �	

When e1 is not a natural boundary, Φe1(·, y) ∈ L2(Iy,m), no further con-
ditions are needed to write down the spectral expansion of (Py

t Φe1)(·, y), and
the spectrum of Gy is simple, non-positive and purely discrete (McKean 1956,
Theorem 3.1). When e1 is natural, the situation is more complicated. When e1 is
non-attracting (attracting) natural, the condition Eqs. (19–20)) must be satisfied to
insure Φe1(·, y) ∈ L2(Iy,m). Furthermore, when e1 is natural there may be some
non-empty continuous spectrum.

Linetsky (2002b) classifies all natural boundaries into two further subcategories
based on the oscillation of solutions of the Sturm-Liouville (SL) equation

Au = λu, A := −G. (21)

The Sturm-Liouville operator A is the negative of the diffusion infinitesimal gen-
erator (8); while the infinitesimal generator G is non-positive, the SL operator A is
non-negative (see Dunford and Schwartz 1963; Fulton et al. 1996; Linetsky 2002b
for details and bibliography on Sturm-Liouville operators).

For a given real λ, Eq. (21) is said to be oscillatory at an endpoint e ∈ {e1, e2}
if and only if every solution has infinitely many zeros clustering at e. Otherwise
it is said to be non-oscillatory at e. This classification is mutually exclusive for a
fixed real λ, but can vary with λ. For Eq. (21), there are two distinct possibilities at
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each endpoint. Let e ∈ {e1, e2} be an endpoint of Eq. (21). Then e belongs to one
and only one of the following two cases:
(i) (NONOSC) Equation (21) is non-oscillatory at e for all real λ. Correspondingly,
e is called non-oscillatory.
(ii) (O-NO) There exists a real number Λ ≥ 0 such that Eq. (21) is oscillatory at e
for all λ > Λ and non-oscillatory at e for all λ < Λ. Correspondingly, e is called
O-NO with cutoff Λ. Equation (21) can be either oscillatory or non-oscillatory at e
for λ = Λ > 0. It is always non-oscillatory for λ = 0. Correspondingly, e is said
to be NONOSC (O-NO with cutoff Λ) if Eq. (21) is NONOSC (O-NO with cutoff
Λ) at e.

Based on the oscillatory/non-oscillatory classification of boundaries, the spec-
trum of the non-negative SL operator A associated with the diffusion process X is
classified as follows.
(i) Spectral Category I. If both endpoints are NONOSC, then the spectrum is simple,
non-negative and purely discrete.
(ii) Spectral Category II. If one of the endpoints is NONOSC and the other endpoint
is O-NO with cutoff Λ ≥ 0, then the spectrum is simple and non-negative, the
essential spectrum is nonempty, σe(A) ⊂ [Λ,∞), and Λ is the lowest point of the
essential spectrum. Under some technical conditions given in Linetsky (2002b),
σe(A) = [Λ,∞) and the spectrum above Λ is purely absolutely continuous. If the
SL equation is non-oscillatory at the O-NO endpoint for λ = Λ ≥ 0, then there is
a finite set of simple eigenvalues in [0, Λ] (it may be empty). If the SL equation is
oscillatory at the O-NO endpoint for λ = Λ > 0, then there is an infinite sequence
of simple eigenvalues in [0, Λ) clustering at Λ.
(iii) Spectral Category III. If e1 is O-NO with cutoff Λ1 ≥ 0 and e2 is O-NO
with cutoff Λ2 ≥ 0, then the essential spectrum is nonempty, σe(A) ⊂ [Λ,∞),
Λ := min{Λ1, Λ2}, and Λ is the lowest point of the essential spectrum. The spec-
trum is simple (has multiplicity one) below Λ := max{Λ1, Λ2} and is not simple
(has multiplicity two) above Λ. Under some technical conditions given in Linetsky
(2002b), σe(A) = [Λ,∞) and the spectrum above Λ is purely absolutely continu-
ous. If the SL equation is non-oscillatory for λ = Λ ≥ 0, then there is a finite set
of simple eigenvalues in [0, Λ] (it may be empty). If the SL equation is oscillatory
for λ = Λ > 0, then there is an infinite sequence of simple eigenvalues in [0, Λ)
clustering at Λ.

If there are no natural boundaries, the spectrum of the infinitesimal generator is
purely discrete. Hence, regular, exit and entrance boundaries are always NONOSC.
Natural boundaries can be either NONOSC or O-NO with cutoff Λ ≥ 0. Sufficient
conditions for the oscillatory/non-oscillatory classification of natural boundaries
can be formulated directly in terms of behavior of the infinitesimal parameters
a(x) and b(x) near the boundary. See Linetsky (2002b) where a more general case
including a killing rate r(x) ≥ 0 is considered. Due to space limitations we do not
reproduce these results here.

In our application to the first hitting time up, for the SL operator Ay := −Gy
the right boundary y is regular killing and, hence, NONOSC. The left boundary e1
can be either NONOSC or O-NO with some cutoff Λ ≥ 0. In the former (latter)
case the operator is in the Spectral Category I (II). First, assume e1 is NONOSC.
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Proposition 2 Suppose e1 is either regular, entrance, exit, or NONOSC natural
boundary with the condition Eq. (19) (Eq. (20)) satisfied if e1 is non-attracting
(attracting). For λ ∈ C and x ∈ Iy , let ψ(x, λ) be the unique (up to a multiple
independent of x) non-trivial solution of the SL equation (21) square-integrable
with m near e1, satisfying the appropriate boundary condition at e1 and such that
ψ(x, λ) and ψ′(x, λ) ≡ ∂ψ(x,λ)

∂x are continuous in x and λ in Iy × C and entire in
λ ∈ C for each fixed x ∈ Iy . Let {λn,y}∞

n=1, 0 < λ1,y < λ2,y < ..., λn,y ↑ ∞ as
n ↑ ∞, be the simple positive zeros of ψ(y, λ),

ψ(y, λn,y) = 0. (22)

Then the spectral expansion of Px(t < Ty < ∞) with x < y and t > 0 takes the

form (ψλ(x, λ) ≡ ∂ψ(x,λ)
∂λ ):

Px(t < Ty < ∞) = Ex[1{t<Ty}Φe1(Xt, y)] = −
∞∑
n=1

e−λn,yt
ψ(x, λn,y)

λn,yψλ(y, λn,y)
.

(23)

Proof We need to solve the SL problem Ayu = λu with the boundary condition
u(y) = 0 at y and the appropriate boundary condition at e1. Since both boundaries
are NONOSC and y is killing, the SL problem has a simple, purely discrete and
positive spectrum {λn,y}∞

n=1, 0 < λ1,y < λ2,y < ..., limn↑∞ λn,y = ∞. Let λn,y
and ϕn,y(x) be the eigenvalues and the corresponding normalized eigenfunctions,
‖ϕn,y‖2

y = 1 (‖ϕn,y‖2
y ≡ (ϕn,y, ϕn,y)y). Then, from the Spectral Theorem for

self-adjoint semigroups in Hilbert space (see Linetsky 2002b for details), we have

Ex[1{t<Ty}Φe1(Xt, y)] =
∞∑
n=1

cn,ye
−λn,ytϕn,y(x), cn,y = (Φe1(·, y), ϕn,y)y.

(24)

The expansion coefficients are calculated as follows. Since ϕn,y(x) is the eigen-
function of Ay with the eigenvalue λn,y , we have:

λn,ycn,y=
∫ y

e1

Φe1(x, y)(Ayϕn,y)(x)m(x)dx=−
∫ y

e1

Φe1(x, y)
(
ϕ′
n,y(x)
s(x)

)′

dx

= −
ϕ′
n,y(y)
s(y)

, where ϕ′
n,y(y) =

dϕn,y(x)
dx

∣∣∣∣
x↑y

, (25)

where we integrated by parts, used Eq. (12), the boundary conditions at y and e1
and, when e1 is a natural boundary, the conditions in Lemma 1. Thus,

cn,y = −
ϕ′
n,y(y)

λn,ys(y)
. (26)



382 V. Linetsky

The solutionψ(x, λ) with the required properties exists by Lemma 1 in Linetsky
(2002b). Forλ ∈ C andx ∈ Iy , letφ(x, λ) be the unique solution of the SL Eq. (21)
with the initial conditions at y:

φ(y, λ) = 0, φ′(y, λ) = −1. (27)

Both φ(x, λ) and φ′(x, λ) ≡ ∂φ(x,λ)
∂x are continuous in x and λ in Iy×C and entire

in λ ∈ C for each fixed x ∈ Iy (Lemma 1 in Linetsky 2002b). Since ψ(x, λ) and
φ(x, λ) are solutions of the SL equation and φ(x, λ) satisfies the initial Conditions
(27), the Wronskian of ψ(x, λ) and φ(x, λ) is independent of x and:

ψ(x, λ)
φ′(x, λ)

s(x)
− φ(x, λ)

ψ′(x, λ)
s(x)

= −ψ(y, λ)
s(y)

=: w(λ). (28)

The eigenfunction ϕn,y(x) is square-integrable with m in a neighborhood of e1
and satisfies the appropriate boundary condition at e1, hence it must be equal to
ψ(x, λn,y) up to a non-zero constant multiple. Butϕn,y(x) also satisfies the bound-
ary condition at y, hence it must also be equal toφ(x, λn,y) up to a non-zero constant
multiple. Thus, for λ = λn,y ψ(x, λn,y) and φ(x, λn,y) are linearly dependent:

φ(x, λn,y) = An,yψ(x, λn,y), An,y = − 1
ψ′(y, λn,y)

, (29)

and, hence, their Wronskian must vanish for λ = λn,y . Thus, from Eq. (28),
the eigenvalues are zeros of ψ(y, λ). Conversely, let λn,y be a zero of ψ(y, λ).
Then ψ(x, λn,y) and φ(x, λn,y) are linearly dependent and, hence, ψ(x, λn,y)
is a solution of the SL equation that is square-integrable with m on Iy and sat-
isfies the required boundary conditions at e1 and y, i.e., ψ(x, λn,y) is a (non-
normalized) eigenfunction corresponding to the eigenvalue λn,y . Finally, the nor-
malized eigenfunctions can be taken in the form (Lemma 2 in Linetsky 2002b;

wλ(λn,y) ≡ ∂w(λ)
∂λ

∣∣∣
λ=λn,y

):

ϕn,y(x) =
ψ(x, λn,y)

‖ψ(·, λn,y)‖y
=

φ(x, λn,y)
‖φ(·, λn,y)‖y

, (30)

‖ψ(·, λn,y)‖2
y =

wλ(λn,y)
An,y

=
1

s(y)
ψ′(y, λn,y)ψλ(y, λn,y), (31)

‖φ(·, λn,y)‖2
y = wλ(λn,y)An,y =

1
s(y)

ψλ(y, λn,y)
ψ′(y, λn,y)

. (32)

Substituting this and (26) into (24), we arrive at the eigenfunction expansion (23).
�	

Now assume e1 is O-NO natural with some cutoffΛ ≥ 0. We are in the Spectral
Category II with some non-empty continuous spectrum.

Proposition 3 Suppose e1 is an O-NO with cutoffΛ ≥ 0 natural boundary with the
condition Eq. (19) (Eq. (20)) satisfied if e1 is non-attracting (attracting). For λ ∈ C

and x ∈ (e1, y], let φ(x, λ) be the unique solution of the SL equation (21) with the
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initial conditions (27) at y. Then the spectral expansion of Px(t < Ty < ∞) with
x < y and t > 0 takes the form:

Px(t < Ty < ∞) = Ex[1{t<Ty}Φe1(Xt, y)] =
∫ ∞

0
e−λtφ(x, λ)

λs(y)
dρy(λ), (33)

where ρy(λ) is the non-decreasing, right-continuous spectral function of the singu-
lar SL problem on (e1, y] with the Dirichlet boundary condition at y and normalized
relative to the solution φ(x, λ).

Proof We follow McKean (1956) (see also Sect. 2 in Linetsky 2002b). Pick some
l ∈ (e1, y) and kill the process at Tl, the first hitting time of l. Let T (l)

y := inf{t ≥
0 : X(l)

t = y} be the first hitting time of y for the process X(l) killed at l. The left
endpoint l is regular killing and Proposition 2 can be applied to write (use (23), (29)
and (32); (f, g)l,y :=

∫ y
l
f(x)g(x)m(x)dx, ‖f‖2

l,y ≡ (f, f)l,y , Φl(x, y) = S(l,x]
S(l,y] )

Px(t<T (l)
y <∞)=Ex[1{t<T (l)

y }Φl(X
(l)
t , y)]= −

∞∑
n=1

e−λ(l)
n,yt

ψ(l)(x, λ(l)
n,y)

λ
(l)
n,yψ

(l)
λ (y, λ(l)

n,y)

=
∞∑
n=1

e−λ(l)
n,yt

φ(x, λ(l)
n,y)

λ
(l)
n,ys(y)

1

‖φ(·, λ(l)
n,y)‖2

l,y

, (34)

where ψ(l)(x, λ) is the solution entire in λ ∈ C with the boundary condition
ψ(l)(l, λ) = 0, and λ(l)

n,y are zeros of ψ(l)(y, λ) (φ(x, λ) is the same as for the
problem on the interval (e1, y] and is independent of l since the initial condition
(27) is applied at y).

Introduce a nondecreasing right-continuous jump function (the spectral function
of the problem on [l, y]):

ρyl (λ) :=
∞∑
n=1

1

‖φ(·, λ(l)
n,y)‖2

l,y

1{λ(l)
n,y≤λ}, (35)

where 1{λ(l)
n,y≤λ} = 1 (0) if λ(l)

n,y ≤ λ (λ(l)
n,y > λ). It jumps by 1

‖φ(·,λ(l)
n,y)‖2

l,y

at

an eigenvalue λ = λ
(l)
n,y . The spectral expansion (34) can now be re-written in the

integral form:

P
(l)
x (t < T (l)

y < ∞) =
∫

[0,∞)
e−λtφ(x, λ)

λs(y)
dρyl (λ). (36)

The limit liml↓e1 ρ
y
l (λ) = ρy(λ) produces a nondecreasing right-continuous func-

tion, the spectral function of the original problem on (e1, y]. In the limit l ↓ e1 (36)
converges to (33). �	

Remark 1 When e1 is O-NO natural, the spectral expansion involves an integral.
Generally this integral has to be computed numerically. The approach in the proof
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of Proposition 3 provides a practical alternative to numerical integration. Select l
close enough to e1 and compute the series (34) as an approximation to the integral
(33). For large n the eigenvalues λ(l)

n,y grow as n2:

λ(l)
n,y ∼ n2π2

2B2 +O(1), where B =
∫ y

l

dx

a(x)
. (37)

Remark 2 When a regular diffusion is described by three Borel measures, the speed
measure, natural scale, and killing measure that do not have to be absolutely continu-
ous (Ito and McKean 1974) and e1 is not a natural boundary, Proposition 2 follows
from Theorem 6.1 and Remark 1 in Kent (1980). The case when e1 is a natural
boundary is considered in Kent (1982) without requiring absolute continuity of the
speed, scale and killing measures. Theorem 5.1 and Remark 1 in Kent (1982) give
a spectral expansion in terms of the spectral measure associated with the diffusion
infinitesimal generator, a generalized second-order differential operator. However,
no detailed information about the qualitative nature of the spectrum is available
in this general context. By restricting to the absolutely continuous case important
in financial applications and appealing to the Sturm-Liouville theory of classical
differential operators to sub-classify natural boundaries into non-oscillatory and
oscillatory (NONOSC and O-NO with cutoff Λ ≥ 0), we are able to give a com-
plete characterization of the spectral expansion when e1 is a natural boundary. In
particular, the essential spectrum is fully characterized (see Linetsky 2002b for
further details).

Remark 3 First hitting time down Ty with y < x < e2 is treated similarly. The
function Φe2(x, y) is defined by:

Φe2(x, y) :=

{
1, if e2 is entrance, reflecting or non-attracting natural

S[x,e2)
S[y,e2)

, if e2 is exit, killing or attracting natural

(38)

The solutionφ(x, λ) satisfies the appropriate boundary condition at e2. The solution
ψ(x, λ) satisfies the initial conditions ψ(y, λ) = 0, ψ′(y, λ) = 1 at y (consistent
with the notation in Linetsky (2002b), ψ(x, λ) (φ(x, λ)) is the solution satisfying
the boundary condition at the left (right) boundary and entire in λ ∈ C for each
fixed x). The results for the first hitting time down read:

Px(Ty ≤ t) = Φe2(x, y) − Ex[1{t<Ty}Φ
e2(Xt, y)]. (39)

If e2 is NONOSC (λn,y are zeros of φ(y, λ)):

Px(t < Ty < ∞) = Ex[1{t<Ty}Φ
e2(Xt, y)] = −

∞∑
n=1

e−λn,yt
φ(x, λn,y)

λn,yφλ(y, λn,y)
.

(40)

If e2 is O-NO with cutoff Λ ≥ 0 (ρy(λ) is the spectral function for the problem on
[y, e2)):

Px(t < Ty < ∞) = Ex[1{t<Ty}Φ
e2(Xt, y)] =

∫ ∞

0
e−λtψ(x, λ)

λs(y)
dρy(λ). (41)
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4 Pricing lookbacks in the CEV model

4.1 The CEV process

We now return to the set-up of Sect. 2 and specialize our discussion to the
constant elasticity of variance (CEV) process of Cox (1975) (see also Beckers
1980; Schroder 1989; Delbaen and Shirakawa 1996; Andersen and Andreasen
2000; Davydov and Linetsky 2001, 2003). We assume that the asset price pro-
cess {St, t ≥ 0} is a CEV diffusion on (0,∞) with the infinitesimal generator (1)
with the local volatility function

σ(x) = δxβ , δ > 0, β ≤ 0. (42)

The CEV specification nests the Black-Scholes-Merton geometric Brownian mo-
tion model (β = 0) and the absolute diffusion (β = −1) and square-root
(β = −1/2) models of Cox and Ross (1976) as particular cases. For β < 0,
the local volatility σ(x) = δxβ is a decreasing function of the asset price. We have
two model parameters β and δ; β is the elasticity of the local volatility function,
β = xσ′/σ, and δ is the scale parameter. Cox originally restricted β to the range
−1 ≤ β ≤ 0. However, Jackwerth and Rubinstein (1998) empirically find that
typical values of β implicit in the post-crash of 1987 S&P 500 stock index option
prices are as low as β = −4. They call the model with β < −1 unrestricted CEV.
For β < 0, +∞ is a natural boundary; attracting for µ > 0 and non-attracting for
µ ≤ 0. For −1/2 ≤ β < 0, the origin is an exit boundary. For −∞ < β < −1/2,
the origin is a regular boundary and is specified as killing. In this paper we focus on
the CEV process with β < 0 and µ ≥ 0. This process is used to model the volatility
smile/skew phenomenon observed in equity options.

Let {St, t ≥ 0} be the CEV diffusion with β < 0 and µ ≥ 0. Define a new
process {Yt, t ≥ 0} by: Yt := 1

δ2β2S
−2β
t for 0 ≤ t < T0 and Yt := ∂ for t ≥ T0

(T0 := inf{t ≥ 0 : St = 0}). Then {Yt, t ≥ 0} is a square-root diffusion on (0,∞)
with the infinitesimal generator

(Gf)(x) = 2xf ′′(x) + (ax+ b)f ′(x), a = 2µ|β|, b = 2 +
1
β
. (43)

The origin is exit for −∞ < b ≤ 0 and regular killing for 0 < b < 2. Further, take
the square root: Rt :=

√
Yt = 1

δ|β|S
−β
t for 0 ≤ t < T0 and Rt := ∂ for t ≥ T0.

Then {R(ν,c)
t , t ≥ 0} is a diffusion on (0,∞) with the infinitesimal generator

(Gf)(x) =
1
2
f ′′(x) +

(
ν + 1/2

x
+ cx

)
f ′(x), ν =

1
2β
, c = µ|β|. (44)

The origin is exit for −∞ < ν ≤ −1 and regular killing for −1 < ν < 0. For
c = 0, R(ν,0) is a standard Bessel process of order ν < 0 killed at the origin (see
Kent 1978; Borodin and Salminen 1996; Revuz and Yor 1999 for details on Bessel
processes, and Delbaen and Shirakawa 1995 for a discussion of CEV processes
with −1 < β < 0 in terms of Bessel processes). Processes with the generator (44)
and ν > −1 (for −1 < ν < 0 the origin is regular instantaneously reflecting and
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for ν ≥ 0 the origin is entrance) are known as radial Ornstein-Uhlenbeck processes
(Shiga and Watanabe 1973; Pitman andYor 1982; Göing-Jaeschke andYor 2003b).
Here we consider the process with ν < 0 and c > 0 killed at the origin. We call the
processes with generator (44) a generalized Bessel processes (it has an additional
linear term cx in the drift in addition to the standard Bessel drift (ν + 1/2)/x;
for Bessel processes with drift (ν + 1/2)/x+ c with additional constant term see
Linetsky 2004). [Remark: For β < 0 the process is killed at zero. If this feature is
undesirable, an approach in Andersen and Andreasen (2000) can be used to make
the origin unattainable by modifying the volatility as follows. Pick a small ε > 0
and modify the volatility function (42) as follows: σε(x) = δmin{xβ , εβ}. The
regularized volatility function is bounded, and the origin is a natural boundary
for the regularized process. Andersen and Andreasen (2000) call the regularized
process limited CEV (LCEV). The original CEV process is recovered in the limit
ε → 0.]

4.2 Positive drift

In this section we assume µ > 0. The problem of pricing lookback options under
the CEV process with β < 0 and µ > 0 reduces to the problem of calculating the
first hitting time distribution for R(ν,c) with ν < 0 and c > 0. The scale and speed
densities are:

s(x) = x−2ν−1e−cx2
, m(x) = 2x2ν+1ecx

2
. (45)

First hitting time up. First consider the case 0 < x < y < ∞. The function
Φ0(x, y) (12) takes the form:

Φ0(x, y) =
γ(−ν, cx2)
γ(−ν, cy2)

, (46)

where γ(a, x) =
∫ x
0 z

a−1e−zdz is the incomplete gamma function.
Notice that the substitution

u(x) = x−ν−1e− cx2
2 w(cx2) (47)

reduces the equation

−1
2
d2u

dx2 −
(
ν + 1/2

x
+ cx

)
du

dx
= λu (48)

to the Whittaker’s form of the confluent hypergeometric equation (see Abramowitz
and Stegun 1972, p. 505; Slater 1960, p. 9; Buchholz 1969, p. 11):

d2w

dz2 +
(

−1
4

+
k

z
+

1
4 −m2

z2

)
w = 0, (49)

where m = −ν

2
, k =

λ

2c
− ν + 1

2
, z = cx2. (50)
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The two Whittaker functions Mk,m(z) and Wk,m(z) are solutions of Eq. (49) and
have the following asymptotic properties (Eq. (53) is valid for m > 0; Γ (x) is the
standard gamma function):

Mk,m(z) ∼ zm+ 1
2 e− z

2 as z → 0, (51)

Mk,m(z) ∼ Γ (2m+ 1)
Γ
(
m− k + 1

2

)z−ke
z
2 as z → ∞, (52)

Wk,m(z) ∼ Γ (2m)
Γ
(
m+ k + 1

2

)z−m+ 1
2 e− z

2 as z → 0, (53)

Wk,m(z) ∼ zke− z
2 as z → ∞. (54)

From Eq. (51), for ν < 0 the solution

ψ(x, λ) = x−ν−1e− cx2
2 M λ

2c − ν+1
2 ,− ν

2
(cx2) (55)

vanishes as x ↓ 0, is square-integrable with m near the origin, and is entire in λ
since Mk,m(z) is entire in k. The Whittaker function considered as a function of
complex variable k, keeping m > −1/2 (in our case m > 0) and z > 0 fixed, has
all its zeros concentrated along the positive real line. Moreover, all zeros are simple,
occur in an infinite set 0 < k1 < k2 < . . . , kn ↑ ∞ as n ↑ ∞, and are decreasing
as the value of z increases (Buchholz 1969, pp. 185–186). Let {kn,m(z)}∞

n=1 be
the positive zeros of Mk,m(z). From Eq. (50) the eigenvalues {λn,y}∞

n=1 are:

λn,y = 2ckn,− ν
2
(cy2) + c(ν + 1). (56)

In general, to determine the zeros {kn,m(z)}∞
n=1, the equation Mk,m(z) = 0 has

to be solved numerically. However, a useful estimate can be obtained as follows.
Slater (1960, p. 70) gives the following asymptotics as k → ∞ (valid for complex
k and z such that arg(kz) < 2π):

Mk,m(z)=Γ (1 + 2m)z
1
4π− 1

2 k−m− 1
4 cos

(
2
√
kz − πm−π

4

){
1+O(|k|− 1

2 )
}
.

(57)

This gives a large-n estimate of the Whittaker function zeros:

kn,m(z) ∼ (n+m− 1/4)2π2

4z
. (58)

From Eq. (56) we have the large-n eigenvalue asymptotics:

λn,y ∼
(n− ν

2 − 1
4 )2π2

2y2 + c(ν + 1). (59)



388 V. Linetsky

Putting everything together, we arrive at the result for the generalized Bessel
process with ν < 0, c > 0 and with killing at 0 (0 < x < y < ∞):

Px(T R
y ≤ t) =

γ(−ν, cx2)
γ(−ν, cy2)

−
∞∑
n=1

2c
λn,y

e−λn,yt

(
x

y

)−ν−1

e
c
2 (y2−x2)Mkn,y,− ν

2
(cx2)

∆M
n,y

, (60)

where ∆M
n,y := −

∂Mk,− ν
2
(cy2)

∂k

∣∣∣∣∣
k=kn,y

and kn,y := kn,− ν
2
(cy2). (61)

To calculate ∆M
n,y we need the derivative of the Whittaker function Mk,m(z) with

respect to its first index k. Recall that Mk,m(z) is related to the Kummer conflu-
ent hypergeometric function M(a, b, z) as follows (Abramowitz and Stegun 1972,
p. 505; this function is also often denoted 1F1(a; b; z) and is available in the Math-
ematica software package with the call Hypergeometric1F1[a,b,z]):

Mκ,µ(z) = z
1
2+µe− z

2M(1/2 + µ− κ, 1 + 2µ, z).

The derivative of M(a, b, z) with respect to its first index is:

∂

∂a
{M(a, b, z)} =

∞∑
k=0

(a)kψ(a+ k)
(b)k k!

zk − ψ(a)M(a, b, z),

where

ψ(z) =
Γ ′(z)
Γ (z)

=
∞∑
k=0

(
1
k

− 1
k + z − 1

)
− γ

is the digamma function (Abramowitz and Stegun 1972). This derivative is available
in Mathematica with the call Hypergeometric1F1(1,0,0)[a,b,z].

To compute the first hitting time distribution for the CEV diffusion, we note
that:

PS0(T CEV
Y ≤ t) = Px(T R

y ≤ t), (62)

where T CEV
Y is the first time the CEV process {St, t ≥ 0} hits the level Y starting

from S0, T R
y is the first time the generalized Bessel process {R(ν,c)

t , t ≥ 0} hits
the level y starting from x, and

x =
1
δ|β|S

−β
0 , y =

1
δ|β|Y

−β . (63)

The distribution of the maximum for the CEV diffusion is given by Eq. (7), and the
standard lookback put and the call on the maximum pricing formulas (4) and (5)
are computed by performing numerical integration in Y (see Sect. 5 below).
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First hitting time down. To calculate the distribution of the minimum, we need to
consider the case of hitting y from above, Px(T R

y ≤ t) for 0 < y < x < ∞. For
c > 0 infinity is attracting natural. The function Φ∞(x, y) (38) is given by:

Φ∞(x, y) =
Γ (−ν, cx2)
Γ (−ν, cy2)

, (64)

where Γ (a, x) =
∫∞
x
za−1e−zdz is the complementary incomplete gamma func-

tion. Since Φ∞(x, y) ∼ (cx2)−ν−1e−cx2

Γ (−ν,cy2) as x ↑ ∞, Φ∞(x, y) is square-integrable
with m on (y,∞). From Eq. (54), the solution

φ(x, λ) = x−ν−1e− cx2
2 W λ

2c − ν+1
2 ,− ν

2
(cx2) (65)

has the asymptotics φ(x, λ) ∼ e−cx2
(cx2)

λ
2c − ν+1

2 x−ν−1 as x ↑ ∞. Thus, it is
square-integrable with m on [y,∞), infinity is a non-oscillatory natural boundary
for all real λ, and φ(x, λ) is entire in λ (Wk,m(z) is entire in k). Let {kn,m(z)}∞

n=1
be the positive zeros of Wk,m(z), keeping m > 0 and z > 0 fixed. Then the
eigenvalues {λn,y}∞

n=1 are given by Eq. (56). In general, to determine the zeros
{kn,m(z)}∞

n=1, the equationWk,m(z) = 0 has to be solved numerically. However,
a useful estimate can be obtained as follows. Slater (1960, p. 70) gives the following
asymptotics for the Whittaker function Wk,m(z) as k → ∞ (valid for complex k
and z such that | arg(k)| < π and | arg(kz)| < 2π):

Wk,m(z) =
√

2z
1
4 k− 1

4 kke−k cos
(
2
√
kz − πk +

π

4

){
1 +O(|k|− 1

2 )
}
. (66)

This gives a large-n estimate of the Whittaker function zeros:

kn,m(z) ∼ n− 1
4

+
2z
π2 +

2
π

√(
n− 1

4

)
z +

z2

π2 (67)

and a large-n estimate of the eigenvalues:

λn,y ∼ 2c

(
n+

2cy2

π2 +
1
4

+
ν

2
+

2
π

√(
n− 1

4

)
cy2 +

c2y4

π2

)
. (68)

Putting everything together, we arrive at the result for the generalized Bessel
process with ν < 0, c > 0 in the form (0 < y < x < ∞):

Px(T R
y ≤ t) =

Γ (−ν, cx2)
Γ (−ν, cy2)

−
∞∑
n=1

2c
λn,y

e−λn,yt

(
x

y

)−ν−1

e
c
2 (y2−x2)Wkn,y,− ν

2
(cx2)

∆W
n,y

, (69)

where ∆W
n,y := −

∂Wk,− ν
2
(cy2)

∂k

∣∣∣∣∣
k=kn,y

and kn,y := kn,− ν
2
(cy2). (70)
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To calculate ∆W
n,y we need the derivative of the Whittaker function Wk,m(z)

with respect to its first index k. Recall that Wk,m(z) is related to the Tricomi
confluent hypergeometric function U(a, b, z) as follows (Abramowitz and Stegun
1972, p. 505; this function is available in the Mathematica software package with
the call HypergeometricU[a,b,z]):

Wκ,µ(z) = z
1
2+µe− z

2U(1/2 + µ− κ, 1 + 2µ, z).

The derivative of U(a, b, z) with respect to its first index is:

∂

∂a
{U(a; b; z)} =

Γ (b− 1)z1−b

Γ (a)

∞∑
k=0

ψ(a− b+ k + 1)(a− b+ 1)kzk

k!(2 − b)k

+
Γ (1 − b)

Γ (a− b+ 1)

∞∑
k=0

ψ(a+ k)(a)kzk

k!(b)k
− {ψ(a) + ψ(a− b+ 1)}U(a, b, z).

This derivative is available in Mathematica with the call Hypergeo-
metricU(1,0,0)[a,b,z].

The distribution of the minimum for the CEV diffusion is recovered by using
Eqs. (7), (62)–(63). The standard lookback call and the put on the minimum pricing
formulas (3) and (6) are computed by performing numerical integration with respect
to Y (see Sect. 5 below). The difference with the case x < y is that the eigenvalues
(68) grow linearly with n, in contrast with the quadratic growth for the former case
in Eq. (59). Thus, convergence of the spectral expansion is much slower in this
case.

4.3 Zero Drift

In this section we study the zero-drift case µ = 0 used to model futures (r = q).
The problem of pricing lookback options under the CEV process with β < 0 and
µ = 0 reduces to the problem of calculating the first hitting time distribution for
the Bessel process {R(ν)

t , t ≥ 0} with ν < 0 and killed at 0. The scale and speed
densities are as in Eq. (45) with c = 0.

First hitting time up. First consider the case 0 < x < y < ∞. The function
Φ0(x, y) (12) takes the form:

Φ0(x, y) =
(
x

y

)−2ν

. (71)

Notice that the substitution u(x) = x−νw(x
√

2λ) reduces the equation

−1
2
d2u

dx2 − (ν + 1/2)
x

du

dx
= λu (72)

to the Bessel equation (z = x
√

2λ)

z2 d
2w

dz2 + z
dw

dz
+ (z2 − ν2)w = 0. (73)
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From the asymptotics Jα(z) ∼ (z/2)α

Γ (α+1) as z → 0, the solution that vanishes at

the origin and is square-integrable with m(x) = 2x2ν+1 near the origin is:

ψ(x, λ) = x−νJ−ν(x
√

2λ), (74)

where Jα(z) is the Bessel function of the first kind. Let {jα,n}∞
n=1 be the positive

zeros of the Bessel function Jα(z) (seeAbramowitz and Stegun 1972, p. 370). Then
the eigenvalues {λn,y}∞

n=1 are given by:

λn,y =
j2−ν,n
2y2 . (75)

Using J ′
α(z) = −Jα+1(z) + α

z Jα(z), ψλ(y, λn,y) in Eq. (23) is given by:

ψλ(y, λn,y) = −y−ν+2

j−ν,n
J−ν+1(j−ν,n). Putting everything together, we arrive at

the result for the Bessel process with ν < 0 and killing boundary at 0 in the form
of a Fourier-Bessel series (0 < x < y < ∞; the corresponding result for Bessel
process with ν > 0 is well known, e.g., Borodin and Salminen 1996, p. 369,
Eq. (1.1.4)):

Px(T R
y ≤ t)=

(
x

y

)−2ν

−2
(
x

y

)−ν ∞∑
n=1

exp

{
−
j2−ν,nt

2y2

}
J−ν

(
x
y j−ν,n

)
j−ν,nJ−ν+1(j−ν,n)

.

(76)

Whenβ = −1 (and, hence, ν = −1/2), the process reduces to the Brownian motion

killed at zero. Recalling that J1/2(z) =
√

2
πz sin z, j1/2,n = nπ, and J3/2(z) =√

2
πz

( sin z
z − cos z

)
, the Fourier-Bessel series (76) reduces to the classical Fourier

series for the first hitting time of y of Brownian motion killed at zero and starting
at x, 0 < x < y:

Px(Ty ≤ t) =
x

y
+

2
π

∞∑
n=1

(−1)n

n
exp

{
−π2n2t

2y2

}
sin
(
xπn

y

)
. (77)

First hitting time down. Infinity is non-attracting natural and Φ∞(x, y) = 1. The
speed density is integrable near infinity if and only if ν < −1. Thus, when 0 <
y < x < ∞ the spectral expansion for the hitting time is valid only for ν < −1.
Using the Bessel function asymptotics

Jν(z) ∼
√

2
πz

cos(z − νπ/2 − π/4) as z → ∞, (78)

we see that infinity is an oscillatory boundary for all λ > 0 (solution x−νJν(x
√

2λ)
has an infinite sequence of zeros increasing towards infinity). Thus, +∞ is O-
NO with cutoff Λ = 0 and we have continuous spectrum above 0. Recalling the
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Wronskian Jν(z)Y ′
ν(z) − J ′

ν(z)Yν(z) = 2
πz , the solution ψ(x, λ), x ∈ [y,∞),

satisfying the initial conditions ψ(y, λ) = 0, ψ′(y, λ) = 1 is given by:

ψ(x, λ) =
πy

2

(
x

y

)−ν [
Y−ν(x

√
2λ)J−ν(y

√
2λ) − Y−ν(y

√
2λ)J−ν(x

√
2λ)
]
,

(79)

where Yν(z) is the Bessel function of the second kind. The spectral function is
absolutely continuous (see Titchmarsh 1962, p. 87, Eq. (4.10.3))

dρy(λ) =
2y−2ν−2

π2[J2
−ν(y

√
2λ) + Y 2

−ν(y
√

2λ)]
dλ, (80)

and from Eqs. (14),(41) we have for ν < −1, 0 < y < x < ∞:

Px(T R
y ≤ t)=1− 2

π

(
x

y

)−ν∫ ∞

0
e− s2t

2
[Y−ν(xs)J−ν(ys)−Y−ν(ys)J−ν(xs)]

s[J2
−ν(ys)+Y 2

−ν(ys)]
ds,

(81)

where we introduced a new integration variable s =
√

2λ. The integral in s has to
be computed numerically. To avoid numerical integration, we can follow the recipe
of Remark 1 in Sect. 3 and modify the problem by killing the CEV process at
some level E ∈ (S0,∞). The spectrum of the modified problem is purely discrete
and the eigenvalues grow as n2 (Eq. (37)). The hitting time distribution for the
process on (0,∞) can be estimated by picking a sufficiently large upper barrier
E and computing the hitting time distribution of the process killed at E as an
approximation to (81).

5 Numerical examples

Consider the following set of parameters: initial underlying price S0 = 100, local
volatility at this price level σ0 = δSβ0 = 0.25 or 25% (for each elasticity β the
scale parameter δ is selected so that δ = σ0S

−β
0 and σ(S) = σ0(S/S0)β with

σ0 = 0.25), T = 1/2 and 2 years, r = 0.1 and q = 0 (µ = 0.1). We consider the
following values of the elasticity parameter β = −1/2,−1,−2,−3,−4. Empirical
estimates of β implicit in S&P 500 index options are around −3.

For all calculations in this paper we used Mathematica 5.0 running on a Pen-
tium III PC. The steps needed to compute lookback option prices are as follows.
We discretize the one-dimensional integrals in Eqs. (3–6) using the Romberg inte-
gration rule. For each node in the numerical integration formula, we compute the
probabilities (2), (7) via the spectral expansions (60), (69). First, we determine the
eigenvalues. We use the built-in numerical root finding function in Mathematica to
determine each λn. Mathematica includes all required special functions as built-in
functions (in particular, the Kummer and Tricomi confluent hypergeometric func-
tions and their derivatives). We use the estimates (59), (68) to initialize the numeri-
cal root finding procedure. After the eigenvalues are determined, the eigenfunction
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expansions (60), (69) are calculated (we truncate the series after we achieve the
desired error tolerance level). Due to the factors e−λnt in the eigenfunction expan-
sions, the longer the time to expiration, the faster the convergence. For the standard
lookback call and the put on the minimum, we need the distribution of the mini-
mum and, hence, the distribution of the hitting time down (Eqs. (7), (69)). For the
standard lookback put and the call on the maximum, we need the distribution of the
maximum and, hence, the distribution of the hitting time up (Eqs. (7), (60)). From
the estimates (59), (68), the eigenvalues for the hitting time up (down) increase as
n2 (n). Hence, the eigenfunction expansion for the distribution of the maximum/
hitting time up converges much faster than the distribution of the minimum/hitting
time down. We also note that from Eqs. (59), (63), (68), (44) the eigenvalues for the
maximum/hitting time up (minimum/hitting time down) increase as β2 (|β|) as |β|
increases (the volatility skew gets steeper). This results in the faster convergence
of the spectral expansion for steeper skews. This is in contrast with Monte Carlo,
as we will discuss below.

In Table 3 we compute probabilities for the CEV process PS0(MT ≥ Y ) =
PS0(T CEV

Y ≤ T ) for Y = 120, T = 1/2 and 2 and PS0(mT ≤ Z) =
PS0(T CEV

Z ≤ T ) for Z = 90, T = 1/2 and 2. The corresponding probabilities for
the generalized Bessel process are Px(T R

y ≤ T ) and Px(T R
z ≤ T ). Parameters of

the generalized Bessel process corresponding to our CEV process parameters are
given in Table 1. Table 2 gives the eigenvalues of the SL problems for the CEV
process on the intervals (0, Y ) and (Z,∞) (correspondingly, for the generalized
Bessel process on the intervals (0, y) and (z,∞)). The values in parenthesis are the
estimates (59) and (68). We observe that the estimates approximate the exact eigen-
values very well even for lower n (exact eigenvalues are computed by numerically
finding the roots of the Whittaker functionsM andW ). We also observe that, while
in the case of hitting Y from below (S0 < Y ) the eigenvalues grow as n2 with n
and as β2 with |β|, in the case of hitting Z from above (Z < S0) the eigenvalues
grow linearly with n and linearly with |β| and, as a result, we need more terms in
the eigenfunction expansions to compute the probabilities in the latter case (Table
3).

Table 4 gives prices of the standard lookback call, the standard lookback put,
the call on the maximum, and the put on the minimum, as well as the corresponding
hedge ratios (deltas). To compute lookback deltas, we take the analytical derivatives
of Eqs. (3–6) with respect to the underlying price. There is no loss of accuracy in
computing the delta. Two times to expiration are considered: T = 1/2 and T = 2.
The longer the time expiration, the faster the eigenfunction expansions converge.

We now compare our results with alternative approaches in the literature. In
the Introduction we have already mentioned the problem with the trinomial lattice
approach for lookbacks (see Boyle et al. 1999, Sect. 1). The standard Monte Carlo
simulation method also experiences difficulties in pricing continuously monitored
lookbacks even under the lognormal assumption (Boyle et al. 1999, Sect. 3). When
we discretize the continuous price process and simulate it at discrete points in
time we lose information about the part of the path between the discrete points.
As a result, the simulation is biased when estimating lookback prices. Andersen
and Brotherton-Ratcliffe (1996) show that for a one year lookback this bias is
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Table 1. Generalized Bessel process parameters cor-
responding to the CEV process parameters

β ν c x y z

−1/2 −1 0.05 8 8
√

6/5 12
√

2/5
−1 −1/2 0.1 4 4.8 3.6
−3 −1/6 0.3 4/3 2.304 0.972

Table 2. Eigenvalues. Eigenvalues λn are obtained by numerical root finding.
Estimates (59) and (68) are given in parenthesis. The number in the n-column in-
dicates the eigenvalue number. CEV process parameters: σ0 = δSβ

0 = δ100β =
0.25, µ = 0.1

β = −0.5 −1 −3

n Eigenvalues for hitting Y = 120 from below

1 0.12625 (0.10040) 0.29608 (0.26418) 0.97218 (0.89557)
10 6.77796 (6.75082) 21.5068 (21.4684) 90.2394 (90.1390)
20 26.3758 (26.3487) 85.7620 (85.7236) 366.026 (365.926)

n Eigenvalues for hitting Z = 90 from above

1 0.23393 (0.24363) 0.38170 (0.38860) 0.89662 (0.91391)
10 1.37271 (1.37572) 2.50572 (2.50816) 6.76357 (6.77038)
50 5.79629 (5.79762) 11.0751 (11.0762) 31.5661 (31.5692)

250 26.7411 (26.7417) 52.3433 (52.3438) 153.347 (153.348)

Table 3. Hitting probabilities. The number in parenthesis next to each probability gives the number
of terms in the spectral expansion required to achieve the accuracy of five decimals. CEV process
parameters: S0 = 100, σ0 = δSβ

0 = δ100β = 0.25, µ = 0.1

β = −0.5 −1 −2 −3 −4

P100(T CEV
120 ≤ 1/2)

0.35968 (17) 0.35247 (10) 0.33451 (5) 0.31156 (4) 0.28361 (4)
P100(T CEV

120 ≤ 2)
0.73168 (8) 0.74184 (4) 0.76703 (2) 0.79598 (2) 0.81799 (2)

P100(T CEV
90 ≤ 1/2)

0.48380 (143) 0.47998 (73) 0.47200 (34) 0.46369 (27) 0.45523 (19)
P100(T CEV

90 ≤ 2)
0.65139 (40) 0.63307 (25) 0.60040 (14) 0.57197 (9) 0.54693 (7)

around 5% of the option price and suggest a procedure to correct it. Boyle et al.
(1999) develop a simulation algorithm that incorporates Andersen and Brotherton-
Ratcliffe (AB) (1996) bias correction method and uses the lookback price under
the lognormal assumption as a control variate for the CEV lookback price. The
resulting prices for lookbacks under the CEV model with β = −1/2 and −1 are in
good agreement with the exact prices in Table 4. However, the AB bias correction
method is only valid for the lognormal process (β = 0). Strictly speaking, their
formula is not applicable for the CEV process with β < 0. When the volatility skew
is not too steep (|β| is not too large), the AB bias correction approach may be used
as an approximation, and Boyle et al. (1999) report good experimental results for
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Table 4. Standard lookback call, call on maximum, standard lookback put and
put on minimum prices under the CEV process. Parameters: S = 100, σ0 =
δSβ = δ100β = 0.25 (25%), µ = 0.1, Time to expiration T = 1/2, 2.
For calls on maximum and puts on minimum the strike price K is given in the
left column and it is assumed that the options are newly-written and valued at
time t = 0 (m0 = M0 = S = 100). For standard lookback calls (puts)
the minimum-to-date (maximum-to-da te) are given in the right column. The
case m = M = S = 100 corresponds to newly-written options. The cases
m = 90, 95 and M = 105 correspond to seasoned options initiated prior to the
valuation date. The value of the option delta is given in parenthesis underneath
the corresponding option price

β = −0.5 −1 −2 −3 −4

Min-to-date Standard lookback call T = 1/2

95 16.5674 16.8843 17.7709 19.1065 20.4229
(0.3615) (0.3063) (0.1565) (-0.0513) (-0.2452)

100 15.8791 16.1691 17.0048 18.2922 19.5630
(0.0955) (0.0282) (-0.1447) (-0.3744) (-0.5893)

Min-to-date Standard lookback call T = 2

90 35.3165 36.1895 38.2866 39.4057 39.6719
(0.5193) (0.4319) (0.2393) (0.1030) (0.0106)

100 33.8189 34.5825 36.4818 37.4250 37.5332
(0.2369) (0.1246) (-0.1139) (-0.2917) (-0.4225)

Strike K Call on maximum T = 1/2

100 16.6084 16.1395 15.3807 14.7988 14.3562
105 12.2588 11.7748 10.9824 10.3599 9.8669

Max-to-date Standard lookback put T = 1/2

100 11.7313 11.2624 10.5037 9.9217 9.4791
(0.0465) (-0.0208) (-0.1390) (-0.245) (-0.3473)

105 12.1379 11.6538 10.8615 10.2390 9.7459
(-0.1201) (-0.1808) (-0.2840) (-0.3491) (-0.4514)

Max-to-date Standard lookback put T = 2

100 18.0578 16.0364 13.4643 11.8492 10.5875
(0.0527) (-0.0651) (-0.2551) (-0.4013) (-0.4626)

105 18.1883 16.1574 13.5574 11.9207 10.6556
(-0.0011) (-0.1150) (-0.2932) (-0.4309) (-0.5217)

Strike K Put on minimum T = 1/2

95 6.9342 7.2510 8.1378 9.4733 10.7897
100 11.0020 11.2920 12.1277 13.4151 14.6859

β = −1/2,−1. However, empirically, the skew is very steep for stock indexes with
estimates of β around −3. The steeper the skew, the less valid is the application of
the AB bias correction method. Furthermore, for steep skews and longer times to
expiration CEV lookback prices differ significantly from the lognormal prices, and
the quality of lognormal prices as control variates deteriorates as well. Thus, the
accuracy of the Monte Carlo method deteriorates as the volatility skew gets steeper
and the time to expiration increases. In contrast, as we have discussed previously,
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numerical convergence of the eigenfunction expansion improves for steeper skews
(larger |β|) and longer times to expiration.

The values in Table 4 are in agreement with the values in Table 2 in Davydov
and Linetsky (2001) where the probabilities (7) were calculated by numerically
inverting Laplace transforms via the Abate and Whitt algorithm. In this paper the
probabilities are calculated using the eigenfunction expansions (60) and (69). This
avoids the need for numerical Laplace inversion.

6 Conclusion

Based on the relationship between diffusion maximum and minimum and hitting
times and the spectral decomposition of diffusion hitting times, this paper gives an
analytical characterization of lookback option prices in terms of spectral expan-
sions. In particular, solutions for lookback options under the CEV diffusion are
obtained by reducing the CEV process to a generalized Bessel process and explic-
itly constructing spectral expansions for hitting times of the latter. We point out
three specific advantages of spectral expansions: (1) the Greeks can be calculated
by taking analytical derivatives without any loss of precision; (2) long-dated con-
tracts are easy to value (the longer the time to expiration, the faster the spectral
expansion converges); (3) in the case of the CEV model, the steeper the volatility
skew, the faster the spectral expansion convergence. These three properties of the
spectral expansion method are in contrast with the properties of Monte Carlo sim-
ulation. Finally, the results in this paper also have an independent interest for other
problems involving diffusion maximum, minimum and hitting time distributions
(for related results on hitting times of CIR and OU processes see Linetsky (2003)).
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