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Abstract 

 

For nonlinear retarded functional differential systems the problem of asymptotic 

stability with respect to a part of the variables of a “partial” equilibrium position is 

considered. The condition of uniform asymptotic stability of this type is obtained 

in the context of the Razumikhin approach.  
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1 Introduction 
    

   In the problem of stability with respect to a part of the variables of the zero 

equilibrium position (Lyapunov-Rumyantsev partial stability problem) assumes 

the domain of initial perturbations to be a sufficiently small neighborhood of the 

zero equilibrium position. Along with this statement, the cases of arbitrary or 

large initial perturbations for a part of variables that are non-controlled when 

studying stability are investigated [1, 2]. For the stability problems of “partial” 

zero equilibrium positions naturally also assume [3] that initial perturbations of 

variables that do not define the given equilibrium position can be large with 

respect to one part of the variables and arbitrary with respect to their other part. 

   In this article the problem of uniform asymptotic stability with respect to a part 

of the variables of the “partial” equilibrium position is considered for nonlinear 

retarded systems of functional differential equations. Condition of this type 

stability is obtained in the context of the Razumikhin approach [4-7]; this 

condition supplemented a number of existing results [8-10]. 
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2 Statement of the Problem 
 

   We assume τ > 0 is a given real number, Rn is a linear real space of 

n-dimensional vectors x with the norm |x| = max |xi| (xi – ith component of the 

vector x), С is the Banach space of continuous functions φ: [–τ, 0] → Rn with 

standard norm ||φ|| = sup |φ(θ)| (θ  [–τ, 0]), and R+
 = [0, +∞). If t0, β  R+, β > t0, 

then for a continuous function x: [t0–τ, β) → Rn we define a function xt  C by the 

relation xt = x(t + θ) (θ  [–τ, 0]); in what follows, x(t) denotes the right-hand 

derivative.  

   We introduce the partition x = (yT, zT)T (T denotes transposition), where y  

Rm, z  Rn-m (1 ≤ m ≤ n). According to this partition, we set C = Cy×Cz, where Cy 

and Cz are the Banach space of continuous functions φy: [–τ, 0] → Rm and φz: [–τ, 

0] → Rn-m with the norms ||φy|| = sup |φy(θ)| and ||φz|| = sup |φz(θ)| (θ  [–τ, 0]). 

For φ  С, we have φ = (φy
T, φz

T)T and ||φ|| = max(||φy||, ||φz||). 

   Let there be given a system of nonlinear functional differential equations with 

holdover [11, 12] 

 

x(t) = X(t, xt ), 

 

which, with the above partitions taken into account, can be represented as  

          

                  y(t) = Y(t, yt, z t ),  z(t) = Z (t, yt, z t ).              (1) 

 

   In the space С, we consider the set М = {φ  C: φy = 0}. If Y[t, φ]  0 for φ  

М, then the solution x(t0, φ) of system (1) satisfies the condition ||yt(t0, φ)||  0. In 

other words, М = {x: y = 0} is a “partial” equilibrium position of system (1). 

   To consider the problem of stability with respect to a part of the variables of 

the “partial” equilibrium position y = 0, we assume that y = (y1
T, y2

T)T and we 

also represent the component φy of the vector function φ as φy = (φy1
T, φy2

 T) T.  

   Let us assume that the operator X: R+×C → Rn determining the right-hand side 

of system (1) is completely continuous in the domain 

  

                 G = {t ≥ 0,  ||φy1||  h, ||φy2|| + ||φz|| < ∞},                  (2) 

 

   We also assume that the Cauchy-Lipschitz condition is satisfied on each 

compact subset K in the domain (2). Then [11,12], for each point t0, φ in the 

domain (2) there is a unique solution x(t0, φ) of system (1) which can be 

continued to the boundary of the domain ||φy1||  h, ||φy2|| + ||φz|| < ∞ and 

continuously depends on t0, φ, while the “partial” equilibrium position y = 0 is an 

invariant set of this system. 

   Following [12], we let x(t) = x(t, t0, φ) denote the value of x(t0, φ) at time t. 

We additionally assume [8-10] that the solutions are (y2, z)-continuable, namely, 

the solutions of the system are determined for all t ≥ t0 such that |y1(t, t0, φ)| < h.  
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   We represent the component φz of the vector function φ in the form φz = [φz1
T, 

φz2
T] and let D  denote the domain φ such that ||φy|| < δ, ||φz1||  L, ||φz2|| < ∞; the 

domain D∆  is obtained by replacing δ by ∆. 

Definition [8-10].  A  “partial” equilibrium position y = 0 of system (1) is 

uniformly y1-asymptotically stable for a large values of φz1 and on the whole with 

respect to φz2, if :  

  1) for any ε > 0, t0 ≥ 0 and for any given number L > 0 there is δ(ε, L) > 0 such 

that from φ  D it follows that |y1(t; t0, φ)| < ε for all t ≥ t0;  

  2) there is ∆(L) > 0 such that an arbitrary solution x(t0, φ) of the system (1) with 

φ  D∆ satisfies the limit relation lim |y1(t; t0, φ)| = 0, t → ∞, uniformly in t0 and φ 

in the domain t0 ≥ 0, φ  D∆ (for each ε > 0, there can be found a number Т = Т(ε, 

L) > 0 such that |y1(t, t0, φ)| < ε for all t ≥ t0 + Т(ε, L), if t0 ≥ 0, φ  D∆). 

 

3 Main Results 
 

   We consider single-valued scalar continuously differentiable functions V = V(t, 

x), V(t, 0)  0, defined in the domain  

 

                    E = {t ≥ 0, |y1|  h, |y2| + |z| < ∞}.                  (3) 

 

   The derivative V  of the V-function along the solutions of system (1) is 

functional which understood as (we denote by symbol <∙> the scalar product) 

 

V (t, φ) = ∂V(t, φ(0))/∂t + <∂V (t, φ(0))/∂x ∙ X(t, φ)>. 

   To obtain the partial stability conditions, we also consider:  

   1) auxiliary scalar function V*(t, y, z1) which is continuous in the domain (3) 

and auxiliary generally vector functions μ(t, x) and w(x), which are continuously 

differentiable in the domain (3);  

   2) continuous monotonically increasing for r  R+ scalar functions ai(r) and 

p(r), ai(0) = 0, p(0) = 0, i = 1,2,3.  

   We associate functions μ(t, x) in the domain (3) with functions μ(t, φ) in the 

space G and let us define  

 

||μ(t, φ)|| = sup |μ(t, φ(θ))|, θ  [–τ, 0],  t  R+. 

    Let us assume that it is possible to represent V-function in the form 

 

                   V(t, x) = V**(t, y1, μ(t, x), y2, z),                     (4) 

where V** is continuously differentiable function in the domain (3). 

    We also denote 

 

t,p(V) = {φ  G*: V**(t + θ, φy1(θ), μ(t + θ, φ(θ)), φy2(0), φz(0)) 

≤ p(V**(t, φy1(0), μ(t, φ(0)), φy2(0), φz(0))),  θ  [–τ, 0],  t  R+}, 

G* = ||φy1|| + ||μ(t, φ)||  h1  h,  ||φy2|| + ||φz|| < ∞. 
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Theorem.  Suppose that for system (1) along with a V-function, it is possible to 

find a vector function μ(t, x), μ(t, 0)  0, such that: 

   i) it is possible to represent V-function in the form (4); 

   ii) in the domain 

 

           t ≥ 0,  |y1| + |μ(t, x)|  h1  h,  |y2| + |z| < ∞               (5)  

                                         

the conditions are satisfied: 

 

               a1(|y1| + |μ(t, x)|) ≤ V(t, x) ≤ a2(|y1| + |w(x)|),               (6) 

                      V(t, x) ≤ V*(y, z1), V
*(0, z1)  0;                 (7) 

 

   iii) V (t, φ) ≤ –a3(|φy1(0)| + |w(φ(0)|) for all t  R+, φ  t,p(V) .                                                  

   Then, the “partial” equilibrium position y = 0 of the functional differential 

system (1) is uniformly asymptotically y1-stable for a large values of φz1 and on 

the whole with respect to φz2.  

 

Proof.  The uniform y1-stability for a large values of φz1 and on the whole with 

respect to φz2 of the “partial” equilibrium position y = 0 of system (1) follows 

from [9]: for any ε > 0, t0 ≥ 0 and for any given number L > 0 there is δ(ε, L) > 0 

such that from φ  D it follows that |y1(t, t0, φ)| < ε for all t ≥ t0. 

  For the given number h1 let us choose Δ(h1, L) > 0, so that we have b(Δ, L) = 

supV*(φy, φz1) < a1(h1) under ||φy||  Δ, ||φz1||  L. We introduce the functional 

 

W(t, φ) = sup V**(t + θ, φy1(θ), μ(t + θ, φ(θ)), φy2(0), φz(0)),  

θ  [–τ, 0] 

 

for all t  R+, φ  t(V). For any given number L > 0, it follows from the 

continuity of the function V (functional W), the condition V(t, 0)  0 (the condition 

W(t, 0)  0), and the conditions (7) (the conditions W(t, φ) ≤ V*(t, φy, φz1), V
*(t, 0, 

φz1)  0) that there is Δ(h1, L) > 0 such that from φ  D∆ it follows that W(t0, φ) < 

a1(h1).  

  The same arguments as in [9] shows that for the arbitrary solution x(t0, φ), φ  

D∆ of the system (1) the function W0(t)= W(t, xt(t0, φ)) is a non-increasing in t, and 

the condition φ  D∆ implies |y1(t, t0, φ)| + |μ(t, x(t, t0, φ))| < h1 for all t ≥ t0.  

  The uniform asymptotic y1-stability will be proved if, for each ε > 0, there can 

be found a number Т = Т(ε, L) > 0 such that |y1(t, t0, φ)| < ε for all t ≥ t0 + Т(ε, L), if 

t0 ≥ 0, φ  D∆. We shall prove following the scheme proposed in Hale [11]. 

   From the properties of the function p(r), for any ε < Δ there is a number β(ε, L) 

> 0 such that p(r) – r > β for a1(ε) ≤ r ≤ b(Δ, L). Let N = N(ε, L) be the first integer 

such that a1(ε) + N β ≥ b(Δ, L), and let γ = inf a3(r) (ε ≤ r ≤ h1) and  
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Т = N b(Δ, L))/γ. 

 

  We now show that V(t, x(t)) ≤ a1(ε) for all t ≥ t0 + Т(ε, L), if t0 ≥ 0, φ  D∆.  

First, we show that V(t, x(t)) ≤ a1(ε) + (N – 1)β for t ≥ t0 + b(Δ, L)/γ. If a1(ε) + (N – 

1)β < V(t, x(t)) for t0 – r ≤ t < t0 + b(Δ, L)/γ, then, since V(t, x(t)) ≤ b(Δ, L) for all t 

≥ t0 – τ, it follows that 

 

p(V(t, x(t)) > V(t, x(t)) + β ≥ a1(ε) + N β ≥ b(Δ, L) ≥ V(t + θ , x(t + θ )), 

t0 – r ≤ t < t0 + b(Δ, L)/γ, θ  [–τ, 0],. 

     

   Condition iii) implies 

  

V (t, x(t)) ≤ –a3(|y1(t)| + |w(φ(x(t))|) ≤ – γ 

 

for t0 ≤ t < t0 + b(Δ, L)/γ. Consequently, we have V(t, x(t)) ≤ V(t0, x(t0)) – γ(t – t0) 

on the same interval (we also take in the mind, that V(t, x) > a1(ε) implies |y1(t)| + 

|w(φ(x(t))| > a2
–1(a1(ε))).  

   In result, for all t ≥ t0 we have  

 

V(t, x(t) ≤ max{V(t0, x(t0)) – γ(t – t0), a1(ε) + (N – 1)β} 

≤ max{b(Δ, L) – γ(t – t0), a1(ε) + (N – 1)β}. 

 

  Take in the mind that V(t, x(t) ≥ 0, it follows that V(t, x(t) ≤ a1(ε) + (N – 1)β for 

t > t0 + b(Δ, L)/γ. 

   In the case N ≥ 2 let us replace t0 on t1 = t0 + b(Δ, L)/γ + τ and let us to use 

relation V(t, x(t)) ≤ a1(ε) + (N – 1)β, t1 – r ≤ t ≤ t1, which we have already proved. 

With the same arguments we can to prove that V(t, x(t)) ≤ a1(ε) + (N – 2)β for t ≥ 

t1 + b(Δ, L)/γ = t0 + 2b(Δ, L)/γ + τ. We finish this proof, if we will to continue this 

consideration. 

Corollary.  Let us assume system (1) have the equilibrium position х = 0.  

Suppose that along with a V-function, it is possible to find a vector function μ(t, x), 

μ(t, 0)  0, such that in the domain (5) conditions (6) and (7) are fulfilled.  

  Then, the equilibrium position x = 0 of functional differential system (1) is 

uniformly asymptotically y1-stable (in the sense [2]). 

 

Remark 1. Theorem and Corollary are generalizations of the Razumikhin and 

Krasovskii theorems [4-7] and of the corresponding results obtained in [2, 3, 9]. 

For comparison, the stability problem with respect to all of the variables of the 

equilibrium position x = 0 of system (1) was considered in [4-7]. The asymptotic 

stability with respect to a part of the variables (y1-stability) of the zero equilibrium 

position x = 0 of the system (1) was considered in [2] under the assumptions V(t, x) 

= V**(t, y1, μ(t, x)) and ||φ|| < δ. Stability (non asymptotic) of “partial” equilibrium 

position in sense Definition of this paper was considered in [9]. The aftereffect was 

not taken into account when these problems were analyzed in [3].  
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Remark 2. The stability with respect to the all of the variables of the “partial” 

equilibrium position y = 0 of the system (1) was considered in [13] in the context 

of the method of Krasovskii functionals under the assumptions V(t, φ) ≤ a3(||φy||) 

and ||φy|| < δ, ||φz|| < ∞.  

 

Remark 3. The V-function and the derivative of the V-function in Theorem and 

Corollary are generally sign-alternating in the domain (see also [14]) 

 

                    t ≥ 0,  |y1|  h1  h,  |y2| + |z| < ∞.                (8) 

 

Example. We assume that system (1) has the form [8,9] 

 

y1(t) = −(t + 4)y1(t) + y1(t−) + y2
2(t−)z1(t−), 

                     y2(t) = y2(t)[1 + et y1(t) + y2
2(t)z1(t)],                    (9) 

z1(t) = −2[2 + et y1(t)]z1(t),  z2(t) = et y1(t)z2(t). 

 

  We consider an auxiliary functions V and μ1 of the form 

  

                          V(x) = ½(y1
2 + y2

4z1
2),   μ1 = y2

2z1,                   (10) 

 

satisfying the conditions (i) and (ii) of the Theorem.  

   On the set  

 

t,p(V) = {φ  G*: |φy1(θ)| ≤ q|φ1(0)|, | μ1(φ(θ))| ≤ q| μ1(φ((0))|, θ  [–τ, 0]}, 

G* = ||φy1|| + ||μ1(φ)||  h1  h, ||φy2|| + ||φz|| < ∞,  μ1(φ(θ)) = φy2
2(θ)φz1(θ), 

 

where q = const  1, the derivative V  due to system (9) can be estimated as 

 

V (t, φ) = −(t + 2)φy1
2(0) + φy1(0)φy1(−) + φy1(0)μ1(−) − μ1

2(0) + 2μ1
3(0) 

 −(t + 2)φy1
2(0) + |φy1(0)||φy1(−)| + |φy1(0)||μ1(−)| − μ1

2(0) + 2μ1
3(0) 

 −(t + 2)φy1
2(0) + q|φy1(0)||φy1(0)| + q|φy1(0)||μ1(0)| − μ1

2(0) + 2μ1
3(0) 

 −[φy1
2(0) + μ1

2(0)],   = const  0, 

μ1(0) = φy2
2(0)φz1(0),  μ1(−) = φy2

2(−)φz1(−), 

 
and condition (iii) of the Theorem also is satisfied under p(r) = q2r. 

   It follows from Theorem that the “partial” equilibrium position y1 = y2 = 0 of 

the system (9) is uniformly y1-asymptotically stable for a large values of φz1 and 

on the whole with respect to φz2.  

   Let us note that, in the domain (8), the derivative of the chosen V-function due 

to the system (9) is sign-alternating. 
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   We also note that, when using V-function (10) but V-functional from [9] one 

can assume that delay τ is variable. 
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