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Abstract—A general approach to the near-field far-field trans-
formation from amplitude only near-field data is presented. The
estimation of the far field is stated as an intersection finding
problem and is solved by the minimization of a suitable func-
tional. The difficulties related to the possible trapping of the
algorithm by a false solution (common to any nonlinear inverse
problem) are mitigated by setting the problem in the space of
the squared field amplitudes (as already done in a number of
existing papers) and by incorporating all thea priori knowledge
concerning the system under test in the formulation of the
problem. Accordingly, the a priori information concerning the
far field, the near field outside the measurement region and
the accuracy of the measurement setup and its dynamic range
are properly taken into account in the objective functional. The
intrinsic ill conditioning of the problem is managed by adopting
a general, flexible, and nonredundant sampling representation of
the field, which takes into account the geometrical characteristics
of the source. As a consequence, the number of unknowns is
minimized and a technique is obtained, which easily matches
the available knowledge concerning the behavior of the field.
The effectiveness of the approach is shown by reporting the
main results of an extensive numerical analysis, as well as an
experimental validation performed by using a very low cost near-
field facility available at the Electronic Engineering Department,
University of Napoli, Italy.

Index Terms—Near-field far-field transformation, only ampli-
tude measurement.

I. INTRODUCTION

T HE evaluation of the radiation pattern of an antenna
from near-field measurements by means of a near-field

far-field (NF–FF) transformation is a well established and
widely used technique [1]–[3] that has been applied by ex-
ploiting several scanning geometries, including recent bi-
polar and spiral geometries [4]–[6]. All standard NF–FF
transformation algorithms need an accurate knowledge of the
near-field phase. However, the measurement of the near-field
phase with the accuracy required to obtain a reliable far-field
reconstruction becomes increasingly difficult and expensive
when the working frequency increases up to the millimeter
range, thus requiring either very sophisticated apparatuses or
special means such as interferometric techniques [7].

In order to avoid any phase measurement, approaches based
on the measurement of the near-field amplitude on two (or
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more) near-zone surfaces have been proposed [8]–[12]. The
main drawback of all amplitude only approaches is related
to the fact that they essentially rely on the retrieval of
the phase of the measured field and therefore involves the
solution of a nonlinear inverse problem. Because the phase
retrieval problem is ill posed [13], [14], so too is the far-field
determination from (truncated and noise corrupted) near-field
intensity data: thus, we can only look for a generalized solution
by minimizing a suitable functional, which also acts as a
stabilizing functional.

However, because of the nonconvex nature of the problem,
the objective functional usually exhibits many local minima
so that the solution algorithm can be trapped in a false
solution, thus making the corresponding NF–FF transformation
technique unreliable. To deal with this difficulty, the following
points should be taken into account.

1) A suitable mathematical formulationof the problem
should be adopted in order to simplify, as much as
possible, the kind of nonlinearity to be handled.

2) A nonredundant field representation should be exploited
in order to reduce, as much as possible, thenumber of
unknownsthat strongly affect both the ill conditioning
of the problem and the number of traps.

3) All the availablea priori information concerning the
far-field, the near-field outside the measurement region,
the shape of the antenna under test, and the accuracy of
the measurement setup and its dynamic range should be
taken into account. As a matter of fact, the full exploita-
tion of availablea priori information, which amounts to
reducing the effective number of unknowns, should be
considered as relevant as the measurements themselves
and is a key tool for managing ill conditioning and
trapping problems.

It is worth noting that the fulfillment of above points,
in general does not lead to a convex objective functional.
Accordingly, the local minima problem, although alleviated
and handled at the “best,” cannot be completely avoided unless
global minimization procedures (such as simulated annealing
or genetic algorithms [15]–[17]), which are very heavy from
the computational point of view, are adopted.

Recently, a new convenient formulation has been introduced
which answers points 1) and 2) in the case of aperture antennas
[12]. It reduces the nonlinearity of the problem to a quadratic
one, i.e., the simplest possible one, and drastically reduces
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Fig. 1. Geometry of the problem.

the occurrence of false solutions, thus providing a reliable
transformation technique.

However, the approach does not exploit anya priori infor-
mation on the near-field and on the accuracy and dynamic
range of the measurement system and, despite being well
suited to the case of focusing aperture antennas, does not deal
with more general classes of antennas.

In this paper we introduce an amplitude-only NF–FF trans-
formation technique, which attempts to take into account, in a
general way, all the points outlined before. The technique is
based on an intersection finding approach, which is reduced
to the minimization of a suitable objective functional.

As far as point 1) is concerned, following [12], the approach
presented here involves a quadratic inverse problem.

Concerning point 2), a nonredundant and effective represen-
tation of the field radiated on an arbitrary surface by a generic
source of given geometrical characteristics is exploited [18],
[19].

Point 3) is answered by suitably defining the sets involved
and, thus, the goal functional to be minimized.

The mathematical statement of the problem and the solution
algorithm are presented in Section II. The nonredundant field
representation exploited in the approach is briefly outlined in
Section III. Some examples of an extensive numerical analysis
showing the effectiveness of the technique presented are
reported in Section IV. The results obtained by exploiting the
experimental data collected by the low-cost facility available
in our Department are also shown in this section and the
conclusions are given in Section V.

II. STATEMENT OF THE PROBLEM AND SOLUTION ALGORITHM

As stated before, our goal is to determine the far-field pattern
of an arbitrary source from (incomplete and noisy) near-field
amplitude measurements on two scanning surfaces, sayand

(see Fig. 1). To manage the ill conditioning of the problem
and the occurrence of false solutions all points outlined in the
Introduction must be taken into account when developing a
general and effective NF–FF transformation algorithm.

As far as the mathematical setting of the problem is con-
cerned, a new formulation has been recently introduced into
the field of phase retrieval and antenna synthesis problems.
It adopts an intersection finding approach in the space of
the semi-definite positive functions associated to the squared
amplitude of the fields [12]. In this way, a quadratic rela-

tionship between the unknowns and the measured quantities
is exploited, thus reducing the nonlinearity of the problem to
the simplest possible one. The quartic nature of the objective
functional corresponding to this choice makes it possible to
effectively control and reduce the occurrence of false solutions.
According to these results, in this paper, the far-field pattern
determination from near-field amplitude data is stated by
making reference to the squared amplitude of the measured
fields and by referring suitable sets in the space of the semi-
definite positive, square integrable, functions.

Let us assume that the field measurements provide the

corrupted squared amplitudes , , and , of
the copolar field components , and the cross-polar
ones , , radiated by the source on the regions,
and of and , respectively (Fig. 1), and let us define
the vectors and .1

Similarly, let us indicate with the
vector of the radiated far-field copolar and cross-polar patterns.
Let us assume that noise and systematic measurement errors
are described by means of additive error terms whose upper
bounds on and are given by and , respectively,
which can depend on the position of the measurement point.
Furthermore, let us suppose that the dynamic range of the
measurement system is known and equal to(in decibels).

Let us further suppose that somea priori knowledge con-
cerning the behavior of the near-field intensity outsideand

is available; for instance, it may involve the radiated power
or the decreasing rate of the radiated power density outside
such regions.

Similarly, we assume that somea priori knowledge of
the radiated far-field power pattern is available; for instance,
regarding the focusing nature of the antenna or the decreasing
rate of the far-field pattern envelope outside a given angular
region, let us say .

Finally, we assume that the “status” of the radiated field is
described within a given representation error (which must be
suitably smaller than that of the measurement) by means of a
“status vector” .2 The vector , which is our unknown,
makes it possible to evaluate the field on the measurement
surfaces as well as on the far-zone sphere. In particula,r,

, and are given by , ,
and , respectively, where , , and
are known continuous quadratic matricial operators. To be
feasible, the amplitude only approach obviously requires that
the relationship must be one to one. This
point is discussed in [12] and [20], wherein the field spectrum
samples are exploited as unknowns and the uniqueness of the
solution is reported. By paralleling the reasoning made in [12],
it can be shown that also in the more general case considered
here the uniqueness of the solution holds, i.e., the relationship
between state vector and squared amplitudes on the measuring
surfaces is one to one.

1For the sake of simplicity, we consider the case of an ideal probe.
However, all the formulation can be easily adapted, without any significant
modification, to the case of nonideal probes.

2This is always possible, because the set of all fields radiated by uniformly
bounded sources is compact [22].
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Let us now denote by the set of all vectors
whose components are semi-definite positive func-

tions complying with the known behavior of the radiated
near-field outside and with the measured data inside,
i.e., such that

at points of where the inequality

is satisfied and such that

at all the remaining points of . Let us define (in a similar
way) the set related to the amplitudes of the components
of the field radiated on the measurement surface.

Finally, let us denote by the set of all vectors,
whose components are semi-definite positive

functions complying with the known behavior of the radiated
far field outside .

In the following, it is assumed that , , and
belong to wherein denotes the set of functions
square integrable over the corresponding domain, equipped
with a proper (possibly weighted) mean-square norm. Note
that these sets are closed andconvex, which strongly help to
reduce the occurrence of false solutions.

The determination of the far-field from the near-field data
makes it possible to find a point of the intersection

, i.e., a point such that
, , and or,

equivalently (because , , and are closed), such
that

(1)
where denotes the distance betweenand the set

(in the corresponding space). By denoting by, ,
and the metric projectors onto the sets , , and

, respectively, the determination ofis equivalent to the
minimization of the functional

(2)

with , where denotes the norm in the corresponding
spaces.

As shown in [21] under a more general setting, the
properties of the finite-dimensional operator

(continuity and single valuedeness) and the
boundness of the sets and ensure that the variational
problem (2) is strongly well-posed, i.e., any minimizing
sequence either converges to a minimum point or contains
a converging subsequence.

Under the obvious assumption that thea priori information
is correct, the sets , , and admit at least one
intersection point which correspond to a global minimum of
the functional . Usually the intersection set has a finite

dimension so that an infinite number of solutions do exist.
However, this kind of nonuniqueness is not a drawback and
is a direct consequence of the uncertainty of the data. In fact,
all these solutions give estimations of the unknowns, which
are equivalent within the accuracy allowed by the available
a priori information and measurement accuracy. However, as
already stressed, when the minimization ofis performed
by a deterministic local optimization scheme, the algorithm
can be trapped by local minima of the object functional. The
formulation introduced in this paper attempts to reduce the
occurrence of such trapping by exploiting all the available
a priori information as much as possible. As stated before,
a further improvement could be the exploitation of a global
optimization scheme based on modern evolutionary algorithms
as those suggested in [17] in the framework of reflector
antenna diagnosis problem.

The minimization of the functional (2) is a particular case
of that considered in [21]. By defining the functional

(3)

the minimization of (2) can be performed by means of the
following iterative algorithm:

(4a)

(4b)

(4c)

(4d)

where is the value of obtained at the th iteration
step. As shown in [21], the algorithm (4a)–(4d) provides a
minimizing sequence , which conveys to the solution when

has a unique minimum.
The projectors , , and can easily be evaluated for

most cases of interest (see Appendix).
It must be noted that apart from such examples, othera

priori information on the near-field (or the far-field) could
be incorporated in the technique. To this end, it is only
required that a suitable set of near (or far-field) amplitudes,
corresponding to thea priori information, can be defined and
that the projectors on such set can be explicitly evaluated.

Concerning the development of step (4d) it is worth noting
that to obtain a minimizing sequence it is not really
necessary to reach the minimum value of, as it is only
necessary that [21]. In the examples
considered in the following, step (4b) has been performed
by applying the Broyden–Fletcher–Golfarb–Shanno (BFGS)
quasi-Newton technique.

The above formulation is completely general and flexible,
and takes into account points 1) and 3) considered in the Intro-
duction. In order to answer point 2), it is now obvious that we
must look for a state-space with minimal dimensionality, i.e.,

should coincide with thenumber of degrees of freedomof
the fields radiated by the class of sources considered. In other
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words, we must adopt anonredundantfield representation. In
the next section, we show how this goal can be achieved.

III. OPTIMAL FIELD REPRESENTATION

IN NF–FF TRANSFORMATION

As stressed in previous sections, the choice of the represen-
tation for the field is a key point for managing ill conditioning
and trapping problems. This representation should satisfy the
following requirements.

1) It should be anaccurate(within the measurement error)
and efficient finite-dimensional approximation of the
field in the region of interest.

2) For a given accuracy (matching the measurement error)
in a given observation region, it should exploit the
minimum possiblenumber of independent parameters
(i.e., of unknowns).

3) The relationship between the independent parameters
involved in the representation and the quantities of
interest (i.e., the operators of Section II) should
be as simple as possible in order to easily enforce
any a priori information available on the radiated field
behavior and reduce the computational effort.

Concerning point 1), it is clear that the representation accu-
racy must be not lower than the precision of the data. However,
a representation which is too accurate is not advisable, since it
causes an enlargement of the “space of unknowns,” which
increases ill conditioning and makes the trapping problem
more difficult. This leads to point 2), i.e., the use of a
nonredundant representation.

The possibility of reducing the dimensions of the “space
of unknowns” for a given representation error depends on the
amount ofa priori information that one is able to introduce in
the representation itself. As a matter of fact, any knowledge
about the source such as its size and shape, can be used
to decrease the number of unknowns. As an example, for
an arbitrary array antenna, an optimal representation of the
radiated field would exploit the excitation coefficients as
unknowns. On the other side, if the array is known in advance
to be a focusing one, a representation based on the far-field
samples could be more advisable.

Concerning point 3), the possibility of an effective answer
is strictly related to the geometries of the source and of the
scanning surfaces. For instance, in the case of an (equispaced)
planar array, if the excitation coefficients are assumed as
unknowns, the operators basically become squared
Fourier transforms so that they can be efficiently evaluated
via a fast Fourier transform(FFT). In light of the above
considerations, it can be said that the choice of the state-space
is by no means trivial and involves the availablea priori
information.

In order to maintain a sufficient level of generality, we
assume that only the geometrical characteristics of the antenna
under test, i.e., its location, general shape, and size are known
in advance. Efficient and nonredundant field representations
over essentially arbitrary surfaces that exploit such informa-
tion, matching the requirements considered above, have been

recently introduced [18], [19]. Such representations are based
on the quasi-bandlimitedness property of radiated fields [23].

This band limitation property means that the “reduced” field
, where is a properly chosen phase function,

and can be closely approximated by a bandlimited function,
provided that the bandwidth, for example, exceeds a critical
value (the field effective bandwidth). The approximation
error decreases more than exponentially so that an excess
bandwidth factor , which is slightly larger than
one, ensures an effective control of the approximation error.
The bandlimited nature of the reduced field allows us to rep-
resent the field along any scanning line by means of cardinal
sampling series or more sophisticated central interpolation
schemes [18]. An optimal choice of the curve parameterization
makes it possible to minimize the number of samples for a
given representation error.

By applying this representation to a suitable family of
coordinate lines covering the scanning surface, a sampling
series representation over the full surface is obtained. The
total number of required samples isfinite, and independent
of the considered surface, provided that it encloses the source
and lies some wavelengths away from it. Furthermore, the
interpolation functions, which allow us to evaluate the field
from its samples, areindependentof the shape and location of
the source and of the chosen surface which only influence
the phase function and the optimal parameterization of
the coordinate lines. Because the field outside the source is
uniquely determined by its tangential components over any
enclosing surface,3 their values at the sampling points can be
conveniently assumed as unknowns. Moreover, the freedom
in the choice of the surface can be exploited to match the
availablea priori information concerning the field behavior.
As an example, when the field can be considered vanishingly
small outside the measurement region, it is convenient to
assume as unknowns the samples located on the surface.
In fact, by setting equal to zero all the samples falling outside

the a priori information is easily taken into account. On
the other hand, if the surface moves to infinity, the unknowns
become the far-field samples, and thea priori knowledge on
the focusing nature of the antenna is easily introduced into the
field representation.

According to these considerations, we can state that the
above sampling series provide effective nonredundant field
representations, which make it possible to handle in a natural
way thea priori information involving either thefar field or
the near field.

Explicit expressions for the optimal parameterizations,
phase functions and the corresponding sampling rates are
available for the main scanning geometries (plane polar,
cylindrical, spherical, bi-polar, spiral), as well as for various
kind of convex source geometries [18]. A detailed procedure
for obtaining representations on generic surfaces is reported
in [19].

In the case of a planar source enclosed in a circle of
radius , and a plane-polar scanning geometry (see Fig. 2), as

3Note explicitly that no substantial ill conditioning is introduced by “back
propagation”, as long as we stay some wavelengths by the (nonsuperdirective)
source.
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Fig. 2. Plane-polar scanning geometry.

considered in the numerical examples reported in the following
section, we have [18] , the optimal
coordinate along the circles is the azimuthal angle, whereas
it is given by along the radial lines,
and is the extremal distances from the
observation point to the circumference enclosing the source
(Fig. 2).

According to [18], when exploiting a canonical sampling
series, the field on a point of the observation plane is given by

(5)

where , , , the
summation index is extended to all relevant samples and

is the Dirichlet polynomial of degree, i.e.,

(6)

and ; being
.

IV. NUMERICAL EXAMPLES

In order to show the effectiveness of the approach
presented, let us consider a planar array of 149
equispaced -directed, electric dipoles enclosed in a circle
with radius and fed by a constant unit current. Two
measurement planes and , with and ,
respectively (Fig. 2), and a planar scanning geometry are
considered. Measurements of the squared amplitude of the
component of the field on each plane have been numerically
simulated on a set of 71 71 points located on a regular
rectangular mesh wide.

According to the considerations made in Section III, since
the number of samples is practically independent of the choice
of the surface, it is quite natural to assume as unknowns the
samples on one of the two measurement planes. The vector
should include all samples on that plane, i.e., also those falling
outside the scanning area. However, due to the lack of informa-
tion outside such area, this choice can substantially increase the
ill conditioning of the problem and furthera priori information
(for instance on the behavior of the field outside the scanning
areas and or also on other surfaces) must be included.

Fig. 3. E-plane copolar far-field amplitude. Continuous line: exact far-field;
dotted line: far field from noiseless complex data; dashed line: far field from
noiseless intensity data.

When the samples outside the first measurement region can
be assumed to be vanishingly small, a computational simple
and stable approach (adopted in our numerical analysis) is
obtained by setting equal to zero the samples falling outside the
scanning area. Then, it is quite natural to choose as unknowns
the samples falling on the first plane. However, it must be
stressed that in the case of different sources (i.e., highly
focusing ones) and different availablea priori information,
other choices of unknowns may be more advisable.

According to these considerations, the vectoris assumed
to be given by the (complex) samples of the field on the
first scanning area at the sampling points
considered in Section III, with an oversampling factor

, which ensures a band-limitation error lower than50 dB.
In order to drive the minimization algorithm (4) to the

global minimum of the objective functional (2) the number
of unknowns is progressively enlarged. This is performed by
retaining only the samples whose amplitude (normalized to the
maximum value of the field intensity on ) is higher than

dB, with and . For each the objective
functional (2) is minimized and the result obtained is taken
as the starting point for applying the iterative algorithm to the
subsequent value of . In the last steps, all the unknowns
are considered. For the first value of, because noa priori
information involving the phase of the measured field is
available, the starting vector of the iterative procedure
(4) is obtained by attaching a random phase distribution to the
measured amplitudes of the field on .

Let us first considered noise-free data. The exact copolar
far field on the -plane, the one evaluated by applying the
presented approach and the one obtained by exploiting the
simulated near-field complex values inside are reported in
Fig. 3 as a continuous, dashed, and dotted line, respectively.
The plots show an accurate reconstruction of the far-field from
amplitude only near-field data. In fact, the results obtained are
almost equal to the one obtained by exploiting the simulated
complex near-field falling in the same measurement area on
the first plane.

The far-field mean-square error (MSE) due to the trunca-
tion error from intensity data is 31.5 dB, while the MSE
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Fig. 4. E-plane copolar far-field amplitude. Continuous line: exact far-field;
dotted line: far field from noisy complex data; dashed line: far field from
noisy intensity data (noise level= �35 dB).

(a)

(b)

Fig. 5. (a) Near-fieldy-component intensity along they = 0 axis on�1;
continuous line: exact value; dotted line: noisy data; dashed line: near-field
amplitude retrieved from noisy intensity data. (b) Near-fieldy-component
phase along they = 0 axis on�1; continuous line: exact value; dotted line:
noisy data; dashed line: near-field phase retrieved from noisy intensity data.

from amplitude and phase near-field data is37.4 dB. The
algorithm has been checked considering also smaller scanning
areas. For instance, in case of a 12 12 scanning area, the
MSE from intensity data is 22.7 dB, against 27.9 dB from
amplitude and phase data. In the case of a 88 scanning
area, the MSE from intensity data is13.1 dB, against 19.1
dB from amplitude and phase data, showing the stability of
the algorithm respect to the truncation of the near-field data.

(a)

(b)

Fig. 6. (a) Near-fieldy-component amplitude along they = 0 axis on�1;
continuous line: exact value; dotted line: noisy and clipped data; dashed line:
near-field amplitude retrieved from clipped, noisy intensity data. (b) Near-field
y-component phase along they = 0 axis on�1; continuous line: exact value;
dashed line: near-field phase retrieved from clipped, noisy intensity data.

In order to check the stability of the algorithm with respect
to the noise, the data of the previous example have been
corrupted by a white Gaussian noise with an ratio equal
to 35 dB. In this case, thea priori information concerning
the noise level has been taken into account by means of the
projectors onto and . The results obtained concerning
the copolar far-field in the -plane are shown in Fig. 4 where
the meaning of the graphs is the same as before. The noiseless
amplitude and phase of the near-field-component, the noisy
ones and the corresponding reconstructed ones on the first
plane, are shown in Fig. 5(a) (amplitude) and (b) (phase) by
continuous, dotted, and dashed lines, respectively. It is noted
that the algorithm is able to reconstructboth the amplitudeand
phase of the near field with good accuracy, showing not only
good stability with respect to noise, but also some filtering
properties. In fact, the noise power falling outside the spatial
bandwidth of the field is filtered out in a natural way by the
adopted sampling (i.e., bandlimited) representation of the field.

As a last example exploiting numerically simulated data,
a noisy measurement system with a low dynamic range has
been simulated. Due to the new development of amplitude-
only measurement systems exploiting a thermal map of the
field [24], this case is of great interest.

Low dynamic noisy data with -dB and -
dB dynamic range were considered. The exact amplitude
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(a)

(b)

Fig. 7. (a)E-plane copolar far-field amplitude. Continuous line: exact far
field; dotted line: far field from noisy, clipped complex data; dashed line:
far field from clipped, noisy intensity data. (b)H-plane copolar far field
amplitude. Continuous line: exact far-field; dotted line: far field from noisy,
clipped complex data; dashed line: far field from clipped, noisy intensity data.

(continuous line) of the -component of the near field along
the axis on the surface , the measured one (dotted
line) and the one obtained from the phase retrieval procedure
(dashed line) are shown under Fig. 6(a), while Fig. 6(b) shows
the phase value. The exact copolar far field on the-plane, the
one evaluated by applying the presented approach and the one
obtained by exploiting the truncated near-field complex values
inside are reported in Fig. 7(a) as a continuous, dashed, and
dotted line, respectively. The copolar far-field relative to the

-plane is shown under Fig. 7(b).
Finally, the technique was experimentally validated by

exploiting the near-field data collected by a very low-cost
facility available at our Microwave Laboratory.1

The antenna under test is an in-focus fed parabolic reflector,
working at 10 Ghz, with a circular aperture whose radius is
equal to 13.5 cm. The field was collected on two surfaces at

and on a grid of 77 77 spaced
points by using a small horn probe. No probe correction has
been applied.

1Dipartimento di Ingegneria Elettronica e della Telecommunicazioni, Uni-
versity di Napoli, Napoli, Italy

(a)

(b)

Fig. 8. (a) Probe-voltage amplitude along they = 0 axis on the surface�1;
continuous line: measured value; dashed line: near-field amplitude retrieved
from intensity data. (b) Probe-voltage phase along they = 0 axis on the
surface�1; continuous line: measured value; dashed line: near-field phase
retrieved from intensity data.

The amplitude and the phase of the measured and retrieved
probe voltage along theaxis of are shown under Fig. 8(a)
and (b) as a continuous and dashed line, respectively. The
phase was retrieved considering the nonredundant samples
on the first surface as unknowns and assuming .
The adopted value of ensures a representation error lower
than the overall measurement one due to environmental noise,
equipment noise and positioning error (estimated to be lower
than 45 dB). The resulting number of samples on the full
plane at is 381, while only 257 of them fall inside
the scanning area and are the unknowns of the problem.

The starting point has been chosen randomly as in the
previous examples.

Minimization is performed by increasing the value of
according to the sequence , , , . A standard
NF–FF algorithm is applied to the (complex) data measured
on the surface in order to obtain a “reference” copolar far-
field whose amplitude on the- and -planes as a continuous
line is shown under Fig. 9(a) and (b), respectively. The same
figures show the copolar far-field amplitude on the same
planes, which is obtained by applying the presented approach.

V. CONCLUSION

A new general and flexible approach to far-field estimation
from near-field intensity data has been presented. As it was
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(a)

(b)

Fig. 9. (a)E-plane copolar far-field amplitude. Continuous line: far field
from complex measured data; dashed line: far-field estimated from intensity
measured data. (b)H-plane copolar far-field amplitude; continuous line:
far field from complex measured data; dashed line: far-field from intensity
measured data.

possible to take into account all the availablea priori infor-
mation and use a nonredundant representation for the field, this
approach can effectively manage ill conditioning and trapping
problems typical of the nonlinear inverse problem at hand.

Numerical examples confirm the flexibility and effective-
ness of the algorithm and its good performance, even in
presence of noisy data and/or low dynamic range. The ap-
proach has been also experimentally validated by using a very
low-cost measurement system available at our laboratory.

APPENDIX

Considering the projector expressed as
, we must evaluate and .

A point inside , , is given by (A.1) at the bottom
of this page. The evaluation of at points outside
depends on the available a priori information concerning the
behavior of the field outside . For instance, when we know

the ratio, for instance, of the power radiated outside
to the one radiated inside and the copolar component is
much larger than the cross-polar one, we have

outside
on

(A.2)

where is the power ratio associated to the function to be
projected. As a further example, when an upper boundto the
squared amplitude of the field outside is known, we have

when
when

(A.3)

The same considerations also apply to the evaluation of the
projector .

The evaluation of the projectors and can be
performed in a very similar way.
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