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On the distribution of subsets of primes
in the prime factorization of integers

by

Jean-Marie De Koninck (Québec, Qué.) and Imre Kátai (Budapest)

1. Introduction and notation. Denote by ℘ the set of all prime num-
bers. Assume that d is a fixed positive integer and that ℘0, ℘1, . . . , ℘d are
disjoint subsets of primes such that

℘0 ∪ ℘1 ∪ . . . ∪ ℘d = ℘,

where ℘0 contains at most finitely many primes (and in fact may be empty).
Let π([a, b]) be the number of primes belonging to the interval [a, b].
Let π(I|℘i) = #{p ∈ ℘i ∩ I}, where I is a subset of the integers.
In what follows we assume that

(1.1) π([u, u+ v]|℘i) = δiπ([u, u+ v]) +O

(
u

(log u)c1

)

holds uniformly for 2 ≤ v ≤ u, i = 1, . . . , d, where c1 is a positive constant
and δ1, . . . , δd are positive constants such that

∑d
i=1 δi = 1. With the proper

rearrangement, we may assume that δ1 ≤ . . . ≤ δd.
We shall use the notations

x1 = log x, x2 = log log x, etc.
and

(1.2) tk(x) =
xk−1

2

(k − 1)!
.

Writing f(x) � g(x) means that the two functions f(x) and g(x) are of the
same order as x→∞.

Further, denote by ω(n) =
∑
p|n 1 the number of distinct prime factors

of n, by P (n) the largest prime factor of n and by p(n) the smallest prime
factor of n.
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In what follows, p1, p2, . . . as well as q1, q2, . . . always denote prime num-
bers.

An expression of the form i1i2 . . . it, where t ≥ 1 and each ij is one of the
numbers 1, . . . , d, is called a word of length t. We sometimes write λ(α) = t
to indicate that α is a word of length t. Let At be the set of all words of
length t. Define A0 to be the set containing the empty word Λ. Finally, we
set

A∗ :=
∞⋃
t=0

At.

We now define the function H : N→ A∗ as follows. First let H(1) = Λ.
For an arbitrary prime number p and positive integer a, define

H(pa) =
{
Λ if p ∈ ℘0,
j if p ∈ ℘j .

Further, for n = pa1
1 . . . parr (p1 < . . . < pr), define

H(n) = H(pa1
1 ) . . .H(parr ).

Finally, given a word α = i1 . . . it, we set

%(α) := δi1 . . . δit .

Let wx be a function tending to ∞ but satisfying wx = O(x3). For an
arbitrary number w ≥ 1, and for each word α = i1 . . . ik ∈ Ak, define

Nk(w) = {pa1
1 . . . pakk : w < p1 < . . . < pk},

N (0)
k (w) = {p1 . . . pk : w < p1 < . . . < pk},

Nk(w;α) = {pa1
1 . . . pakk : w < p1 < . . . < pk, H(pa1

1 . . . pakk ) = α},
N (0)
k (w;α) = {p1 . . . pk : w < p1 < . . . < pk, H(p1 . . . pk) = α},
N (1)
k (w;α) = Nk(w;α) \ N (0)

k (w;α),

N (1)
k (w) = Nk(w) \ N (0)

k (w).

For each of the above expressions Nk(w), N (0)
k (w), Nk(w;α), . . . , we define

the corresponding counting functions Nk(Y |w), N (0)
k (Y |w), Nk(Y |w;α), . . .

which stand for the number of elements n ≤ Y which belong to the corre-
sponding set.

Furthermore, when w = 1, we shall write Nk(Y ), N (0)
k (Y ) and N

(1)
k (Y )

instead of Nk(Y |1), N (0)
k (Y |1) and N

(1)
k (Y |1) respectively.

We shall also use the standard functions related to the normal distribu-
tion, namely

(1.3) φ(t) =
1√
2π
e−t

2/2, Φ(z) =
1√
2π

z∫
−∞

e−t
2
dt.
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For each number w ≥ 2 and z ≥ 0, let

(1.4) ϕw(z) :=
∏

p≤w

(
1 +

z

p

)−1

.

For s ∈ C, <(s) > 1, z > 0 and w > 2, let

(1.5) E(s, z) =
∏
p>w

1 + z
ps−1

1 + z
ps

.

Also, for each z ≥ 0, let

(1.6) F (z) :=
1

Γ (z)

∏
p

(
1 +

z

p

)(
1− 1

p

)z
,

where Γ (z) stands for the Gamma function.
Throughout the text, c stands for a positive constant not necessarily

the same at each occurrence. On the other hand, the constants c1, c2, . . .
appear at specific occasions and keep their original value throughout the
whole text.

2. Preliminary results. In this paper, we are proving several results
involving the distribution of subsets of primes in the factorization of in-
tegers. Many of these results are stated and proved throughout the pa-
per after having been properly motivated by the flow of the material pre-
sented. In this section, however, we state two important preliminary re-
sults:

Theorem 1. Let c1 ≥ 5, limx→∞ wx = ∞, wx = O(x3),
√
x ≤ Y ≤ x

and 1 ≤ k ≤ c2x2, where c2 is an arbitrary constant. Assume that α is an
arbitrary word belonging to Ak. Then

(2.1) Nk(Y |wx;α) = (1 + o(1))%(α)Nk(Y |wx).

Theorem 2. Assume that the conditions of Theorem 1 hold. Let A ≤
x2 with P (A) ≤ wx. Then the number of integers n = An1 ≤ Y for
which p(n1) > wx, H(n1) = α, ω(n1) = k and α = i1 . . . ik, is equal
to

(2.2) (1 + o(1))%(α)
Y

A log Y
tk(Y )ϕwx

(
k − 1
x2

)
F

(
k − 1
x2

)
,

where the functions tk, ϕwx and F are defined by (1.2), (1.4) and (1.6) re-
spectively.
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3. The preliminary lemmas

Lemma 1. Define

(3.1) Tk(x|w) =
∑

p1...pk≤x
w<p1<...<pk

G(p1) . . . G(pk),

where G(p) = 1 + tp, with tp a sequence of real numbers, 0 < tp ≤ 1, such
that

∑
p tp/p <∞. Then

(3.2) Tk(x|w) = O

(
x

log x
· 1

(logw)k/x2
· xk−1

2

(k − 1)!

)
(1 ≤ k ≤ c2x2).

P r o o f. Clearly we have

(3.3) Tk(x|w) ≤ O(
√
x)+

2
log x

∑

p1...pk≤x
w<p1<...<pk

G(p1) . . . G(pk) log(p1 . . . pk).

Denote this last sum by Σ0. Then we have

Σ0 ≤
∑

q1...qk−1p≤x
w<q1<...<qk−1

G(q1) . . . G(qk−1)G(p) log p.

Using the fact that
∑
p≤z G(p) log p < cz for some positive constant c, we

obtain

Σ0 ≤ c
∑

w<q1<...<qk−1<x

G(q1) . . . G(qk−1)
∑

p≤x/(q1...qk−1)

G(p) log p(3.4)

≤ cx 1
(k − 1)!

( ∑
w<q<x

G(q)
q

)k−1

.

Now

(3.5)
∑

w<q<x

G(q)
q
≤ x2 − log logw + εx,

where εx → 0 as x→∞. On the other hand,

(x2 − log logw + εx)k−1 = xk−1
2

(
1− log logw − εx

x2

)k−1

� xk−1
2 e−(log logw)k/x2 ≤ xk−1

2
c

(logw)k/x2
,

for some positive constant c > 0. This last estimate, combined with (3.3),
(3.4) and (3.5), proves (3.2).

Lemma 2. Let c1 ≥ 5, limx→∞ wx = ∞, wx = O(x3),
√
x ≤ Y ≤ x and

1 ≤ k ≤ c2x2. Then, writing for short w = wx, the following three estimates
hold:
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N
(0)
k (Y |w) =

Y

log Y
tk(Y )ϕw

(
k − 1
x2

)
F

(
k − 1
x2

)(
1 +O

(
k

x2
2

))
,(3.6)

Nk(Y |w) =
Y

log Y
tk(Y )E

(
1,
k − 1
x2

)
ϕw

(
k − 1
x2

)
F

(
k − 1
x2

)
(3.7)

×
(

1 +O

(
k

x2
2

))
,

N
(1)
k (Y |w) = O

(
1

w logw
N

(0)
k (Y |w)

)
.(3.8)

P r o o f. Consider the generating function

1 +
∞∑
n=2

p(n)>w

zω(n)|µ(n)|
ns

=
∏
p>w

(
1 +

z

ps

)
= ζz(s)h(s),

where

h(s) :=
∏

p≤w

(
1 +

z

ps

)−1∏
p

(
1 +

z

ps

)(
1− 1

ps

)z
.

Using an analytic method successively developed and refined by Sathe, Sel-
berg and Kubilius (see Kubilius [6]), one can prove that

S(x) :=
∑

n≤Y
p(n)>w

zω(n)|µ(n)| =
(
h(1)
Γ (z)

+O

(
1

log Y

))
Y logz−1 Y,

from which we easily deduce (3.6).
Similarly, starting with

1 +
∞∑
n=2

p(n)>w

zω(n)

ns
=
∏
p>w

(
1 +

z

ps − 1

)
=
∏
p>w

(
1 +

z

ps

)
E(s, z),

we obtain (3.7).
Finally, since

E(s, z) =
∏
p>w

1 + z
p−1

1 + z
p

= 1 +O

(
1

w logw

)
,

a relation valid for 0 ≤ z < c, we deduce (3.8). This ends the proof of
Lemma 2.

4. The proofs of Theorems 1 and 2. First we prove Theorem 1.
Let c3 be a positive constant, l0 < l1 < . . . be knot-points in the interval
[wx, Y ] such that l0 = wx, lj+1 = lj + lj/(log lj)c3 (j = 1, 2, . . .). We also
define l−1 by the equation l−1 + l−1/(log l−1)c3 = l0. A k-tuple (u1, . . . , uk)
of knot-points is said to be feasible if it satisfies l0 ≤ u1 ≤ . . . ≤ uk and
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u1 . . . uk ≤ Y . Further, let ũj = [uj , uj + ∆uj ]. Here ∆uj = lk+1 − lk if
uj = lk.

Let u = (u1, . . . , uk) be a feasible k-tuple and, given α = i1 . . . ik, write

πk(u|α) := #{(p1, . . . , pk) : pj ∈ ũj and H(pj) = ij , for j = 1, . . . , k}.
We also define

πk(u) =
∑

λ(α)=k

πk(u|α),

where the sum runs through all words α of length k.
Since we have assumed (see (1.1)) that

π(ũν |℘j) = δjπ(ũν)
(

1 +O

(
1

(log uν)c1−c3

))
,

it follows that

(4.1)
1

S(u)
≤ πk(u|α)
%(α)πk(u)

≤ S(u),

where

(4.2) S(u) :=
k∏
ν=1

(
1 +

c4
(log uν)c1−c3

)
,

and c4 > 0 is a large constant.
Let c5 > 0 be another constant which is to be determined implicitly

by (4.5).
The feasible u’s are subdivided into three classes, B0, B1 and B2, as

follows:

• u ∈ B0 if there exists at least one ν for which

(4.3) uν+1 − uν ≤ uν
(log uν)c5

,

• u ∈ B1 if u 6∈ B0 and

(4.4) (u1 +∆u1) . . . (uk +∆uk) > Y,

• B2 contains all the other u’s.

First observe that if u 6∈ B0 and st denotes the number of uν ∈ [et, et+1],
then st � tc5 , and consequently, if we set t0 = [log l0], we have

logS(u)�
∑

t≥t0

tc5

tc1−c3
� 1

tc1−c3−c5−1
0

= O

(
1

logwx

)
,

provided

(4.5) c5 + c3 + 2 ≤ c1.
We have thus proved that
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(4.6) S(u) = 1 +O

(
1

logwx

)
for u 6∈ B0.

From (4.6) and (4.1), it follows that

(4.7)
∑

u∈Bξ
πk(u|α) = %(α)

(
1 +O

(
1

logwx

)) ∑

u∈Bξ
πk(u) (ξ = 1, 2).

On the other hand, it is clear that∑

u∈B2

πk(u|α) ≤ N (0)
k (Y |wx;α)

≤
∑

u∈B1

πk(u|α) +
∑

u∈B2

πk(u|α) +
∑

u∈B0

πk(u|α).

We now proceed to estimate

Σ1,α :=
∑

u∈B0

πk(u|α).

Clearly, because of (4.1), we have

(4.8) Σ1,α ≤ %(α)
∑

u∈B0

πk(u)S(u) = %(α)(Σ1,1 +Σ1,2),

where in Σ1,1 we sum over those u ∈ B0 for which (u1 +∆u1) . . . (uk+∆uk)
≤ Y , and in Σ1,2 we sum over the other u’s.

Now define

G(p) = 1 +
2c4

(log p)c1−c3
.

We then have

(4.9) Σ1,1 ≤
∑∗

p1...pk≤Y
G(p1 . . . pk),

where the asterisk in the sum indicates that 0 < pν+1 − pν < 2pν/(log pν)c5

is satisfied for at least one ν ∈ [1, k].
In order to estimate Σ1,2, we replace u by u′ = (u′1, . . . , u

′
k) where u′l is

the left neighbour of ul among the knot-points. If l0 occurs among the ut’s,
then it is simply shifted into l−1. Note that it is clear that l−1 ≥ l0/2.

By construction, we have

π(ũ′ν) = π(ũν)
(

1 +O

(
1

(log uν)2

))
,

say, and since u′1 . . . u
′
k ≤ Y , it follows that

(4.10) Σ1,2 �
∑∗∗

p1...pk≤Y
G′(p1 . . . pk) = ΣA,

say, where the double asterisk in the sum indicates that we sum over those
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p1, . . . , pk for which 0 < pν+1 − pν < 2pν/(log pν)c5 holds for at least one ν,
l−1 ≤ p1 < . . . < pk, and where G′ = 1 + fp, with fp = 1/ log p.

The sums (4.9) and (4.10) being similar, we only need to find an upper
bound for ΣA. First we set g(p) = 2p/(log p)c5 .

Clearly we have

(4.11) ΣA ≤ 4
∑

pq<Y
p<q<p+g(p)

∑

q1...qk−2≤Y/qp
l−1≤q1<...<qk−2

G′(q1 . . . qk−2) = 4
∑
p,q

∑
q1,...,qk−2

,

say. We consider the cases p > Y 1/10 and p ≤ Y 1/10 separately. For the first
case, since G(p) ≤ 2 and

∑

p<q<p+g(p)

1
q
� 1

(log p)c5+1 ,

we have
∑

p>Y 1/10

p<q<p+g(p)

∑
q1,...,qk−2

≤ 2k−2Y
∑

p>Y 1/10

1
p

∑

p<q<p+g(p)

1
q

(4.12)

� 2kY
∑

p>Y 1/10

1
p(log p)c5+1

� 2kY
∞∫

Y 1/10

dt

t(log t)c5+2 �
Y

(log x)c5
,

because 2k = O(log x) and since log Y � log x.
For the second case, we use the inequality (3.2) of Lemma 1 and obtain

(4.13)
∑

p≤Y 1/10

p<q<p+g(p)

∑
q1,...,qk−2

�
∑

p≤Y 1/10

Y

x1
· 1

(k − 3)!

( ∑

l−1<q<x

1 + fp
q

)k−3 ∑

p<q<p+g(p)

1
pq

� Y

x1

(
log

log x
log l−1

+ o(1)
)k−1 1

(k − 1)!

∑

p<q<p+g(p)

1
pq

� Y

x1
· xk−3

2

(k − 3)!
· 1

(logwx)k/x2
· 1

(logwx)c5
∑

p<q<p+g(p)

1
pq

= O

(
Y

x1
· 1

(logwx)k/x2+c5
tk−2(x)

)
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as x→∞. Thus in view of (4.8) and the estimates (4.11)–(4.13), as well as
Lemma 2, we have proved that, for every word α of length k,

Σ1,α = o(1)%(α)N (0)
k (Y |wx)

and in particular that
∑

u∈B0

πk(u) =
∑
α

Σ1,α = o(1)N (0)
k (Y |wx).

If u ∈ B1, then, using (4.6), we have

Y < (u1 +∆u1) . . . (uk +∆uk) ≤ Y S(u) ≤ Y +O

(
Y

logwx

)
,

and

u1 . . . uk ≥ Y −O
(

Y

logwx

)
.

Thus, with a suitable large number B, we have, using Lemma 2,
∑

u∈B1

πk(u|α) ≤ %(α)
(

1 +O

(
1

logwx

))
(4.14)

×
{
N

(0)
k

(
Y +

Y B

w2
x

∣∣∣∣wx
)
−N (0)

k

(
Y − Y B

w2
x

∣∣∣∣wx
)}

� 1
w2
x

%(α)N (0)
k (Y |wx) = o(1)%(α)N (0)

k (Y |wx).

Hence ∑

u∈B1

πk(u)� o(1)N (0)
k (Y |wx).

We have therefore proved that

(4.15) N
(0)
k (Y |wx;α) = (1 + o(1))%(α)N (0)

k (Y |wx).

We now proceed to estimate N (1)
k (Y |wx;α), which, as we may recall from

the definition given in Section 1, represents the number of positive integers
n = pa1

1 . . . pakk ≤ Y , where wx < p1 < . . . < pk, such that H(n) = α and
have at least one ai > 1.

We write such an n as n = n1n2, where n1 stands for the square-full
part of n and n2 stands for the square-free part of n. Note that we have
%(α) ≥ δk1 . Observe first that we can omit all those integers n for which the
corresponding n1 ≥ xc1, where c is a large constant depending on δ1: the
reason is that their contribution to N (1)

k (Y |wx;α) is less than %(α)Y/x2
1. We

can thus assume that n1 � (log x)c for some large constant c > 0.
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For each n1, consider those n for which the square-full part is n1. Let
H(n2) = αn1 . Thus, using (4.15), we may write

N
(1)
k (Y |wx;α) ≤

∑

1<n1<x
c
1

n1 square-full
p(n1)>wx

N
(0)
k−ω(n1)

(
Y

n1

∣∣∣∣wx;αn1

)

�
∑
n1

%(αn1)N (0)
k−ω(n1)

(
Y

n1

∣∣∣∣wx
)

� %(α)
∑
n1

(
1
δ1

)ω(n1)

N
(0)
k−ω(n1)

(
Y

n1

∣∣∣∣wx
)
.

Let us first assume that k ≤ x2. In this case, N (0)
k−ω(n1)

(
Y
n1

∣∣wx
)

is essen-
tially monotonic in k, that is,

N
(0)
k−ω(n1)

(
Y

n1

∣∣∣∣wx
)
� 1

n1
N

(0)
k (Y |wx),

and therefore

(4.16) N
(1)
k (Y |wx;α)� %(α)

(∑
n1

(
1
δ1

)ω(n1) 1
n1

)
N

(0)
k (Y |wx).

But since
∑
n1

(
1
δ1

)ω(n1) 1
n1

=
∏
p>wx

(
1 +

1
δ1

(
1
p2 +

1
p3 + . . .

))
(4.17)

< exp
{

2
δ1

∑
p>wx

1
p2

}
− 1 <

4
δ1wx logwx

,

it follows that

(4.18) N
(1)
k (Y |wx;α)� 1

wx logwx
N

(0)
k (Y |wx;α).

It remains to consider the case where x2 < k ≤ c2x2. In this case,
N

(0)
k−ω(n1)

(
Y
n1

∣∣wx
)

is essentially decreasing in k. Hence we proceed as follows.
We have

N
(0)
k−ω(n1)

(
Y

n1

∣∣∣∣wx
)
� 1

n1
N

(0)
k−ω(n1)(Y |wx)� 1

n1
N

(0)
k (Y |wx)

tk−ω(n1)(Y )
tk(Y )

.

Since

tk−ω(n1)(Y )
tk(Y )

�
ω(n1)∏

j=1

(
k − j
x2

)
≤
(
k − 1
x2

)ω(n1)

≤ cω(n1)
2 ,
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it follows that

N
(0)
k−ω(n1)

(
Y

n1

∣∣∣∣wx
)
� %(α)

( ∑
n1>1

(
c2
δ1

)ω(n1) 1
n1

)
N

(0)
k (Y |wx).

But, similarly to (4.17), one can show that

∑
n1>1

(
c2
δ1

)ω(n1) 1
n1

= O

(
1

wx logwx

)
.

Thus (4.18) still holds in the case x2 < k ≤ c2x2.
We have thus proved that, if 1 ≤ k ≤ c2x2 and if α is an arbitrary

sequence of length k, then

(4.19) N
(1)
k (Y |wx;α)� %(α)

wx logwx
N

(0)
k (Y |wx).

A consequence of this result is that N (1)
k (Y |wx;α) = o(1)N (0)

k (Y |wx;α) in
the whole range 1 ≤ k ≤ c2x2, a result which, combined with (4.15), ends
the proof of Theorem 1.

Theorem 2 follows easily by taking into consideration (4.15), (4.19) and
Lemma 2.

5. Immediate applications. Theorems 1 and 2 have a wide range of
applications in number theory. An important one will be treated extensively
in Section 7. Nevertheless, here we mention two classical situations where
the results of Theorem 1 and of Theorem 2 can be applied.

Congruence classes. Let D > 1 be a fixed integer. Subdivide the set
of primes ℘ into congruence classes mod D, that is, in d = ϕ(D) distinct
classes, where ϕ stands for the Euler function. We have ℘0 = {p : p |D}.
Then %(i) = 1/d for each i 6= 0, and %(α) = 1/dλ(α), where λ(α) denotes the
length of the word α.

Distribution of primes in special sequences. Let the interval [0, 1] be sub-
divided into disjoint intervals I1, . . . , Id of length |Iν | = δν . Let η be an
irrational number and set

℘ν = {p ∈ ℘ : pη − [pη] ∈ Iν} (ν = 1, . . . , d).

Assume that η is a number for which the corresponding ℘ν ’s satisfy

π([u, v]|℘ν) = δνπ([u, v]) +O

(
u

(log u)c1

)
(ν = 1, . . . , d),

for every fixed large number c1 > 0. It is a classical result of I. M. Vinogradov
that such a relation holds for almost all irrational numbers η.
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6. The main results

Theorem 3. Let c6 be an arbitrary positive constant and assume that
c1 ≥ 5. Set

(6.1) P = Pw,y :=
∑

w<p<y

1
p

and assume that as w → ∞, we have y = y(w) → ∞ so that Pw,y → ∞.
Then, uniformly for 1 ≤ k ≤ c6Pw,y, and uniformly for α ∈ Ak, we have

1
%(α)

∑
w<p1<...<pk<y
H(p1...pk)=α

1
p1 . . . pk

= (1 + ow(1))
∑

w<p1<...<pk<y

1
p1 . . . pk

.

Furthermore,
1

%(α)

∑
w<p1<...<pk<y

H(pa1
1 ...p

ak
k

)=α
max(a1,...,ak)>1

1
pa1

1 . . . pakk
= ow(1)

∑
w<p1<...<pk<y

1
p1 . . . pk

.

P r o o f o f T h e o r e m 3. The proof is very similar to that of Theo-
rem 1. Let

Sk(α) =
∑

w<p1<...<pk<y
H(p1...pk)=α

1
p1 . . . pk

, Sk =
∑

w<p1<...<pk<y

1
p1 . . . pk

.

Divide the interval [w, y] by knot-points l0 < . . . < lt, where l0 = w, li+1 −
li = li/(log li)c7 , for some constant c7 > 0. For an arbitrary k-tuple of
subintervals ũν = [uν , uν +∆uν ] (ν = 1, . . . , k), u1 ≤ . . . ≤ uk, let

L(u) =
∑

pν∈ũν

1
p1 . . . pk

and L(u|α) =
∑

pν∈ũν
H(p1...pk)=α

1
p1 . . . pk

,

where u = (u1, . . . , uk). Since

u1 . . . uk ≤ p1 . . . pk ≤ (u1 . . . uk)
k∏
ν=1

(
1 +

∆uν
uν

)
,

it follows that
1

S(u)
≤ L(u)
%(α)L(u|α)

≤ S(u),

where

S(u) :=
k∏
ν=1

(
1 +

c

(log uν)c7

)
,

for some large constant c > 0.
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We shall say that u is well spaced if S(u) ≤ 1 + ε, where ε > 0 is an
arbitrary but fixed positive number. Hence, if u is not well spaced, it means
that there exists at least one couple of primes pν , pν+1 such that

pν < pν+1 < pν + g(pν),

where g(p) = p/(log p)c8 , with a positive constant c8. We shall see that the
main contribution to the sum Sk(α) comes from the well spaced u’s.

In order to find an upper bound for the contribution of the badly spaced
prime sequences {p1, . . . , pk}, we subdivide them into classes J(l1, t1, . . .
. . . , lr, tr), where the lν ’s and the tν ’s are positive integers such that

l1 < l1 + t1 < l2 < l2 + t2 < . . . < lr + tr ≤ k,
the subdivision being made according to the following rule: {p1, . . . , pk} ∈
J(l1, t1, . . . , lr, tr) if for every ν (1 ≤ ν ≤ r),

(a) plν+j+1 − plν+j < g(plν+j) (j = 0, 1, . . . , tν − 1) and
(b) ph+1 − ph > g(ph), ph − ph−1 > g(ph−1) for each h 6∈ ⋃rν=1{lν , lν +

1, . . . , lν + tν}.
Further, define

P1 = p1 . . . pl1−1, Q1 = pl1 . . . pl1+t1 , . . . , Pr+1 = plr+tr+1 . . . pk.

Note that it may happen that P1 and/or Pr+1 are empty. Then set

U = P1 . . . Pr+1, V = Q1 . . . Qr.

Note that the value of V determines its factorization into Q1, . . . , Qr. Ob-
serve also that the primes occurring in U are well spaced. Furthermore, if
V is given, then only one factorization of U exists with the property that
P1, Q1, P2, Q2, . . . , Pr+1 contain the primes in increasing order.

Let us now fix both J(l1, t1, . . . , lr, tr) and V .
Since α = H(p1 . . . pk) = H(P1)H(Q1)H(P2)H(Q2) . . . H(Pr+1), it fol-

lows that all the H(Pν) = βν (ν = 1, . . . , r+ 1) are determined by α. So let
us fix Q1, . . . , Qr and consider the sum

Kα :=
∑∗

H(Pν)=βν

1
P1 . . . Pr+1

,

where the asterisk indicates that we sum over {p1, . . . , pk} ∈ J(l1, t1, . . .
. . . , lr, tr) with the corresponding fixed V . We can compare Kα with

K :=
∑∗ 1

P1 . . . Pr+1
,

where we have dropped the condition H(Pν) = βν but kept all the others.
Since the primes pi’s in P1 . . . Pr+1 are well spaced, we have

Kα ≤ (1 + ε)%(β1) . . . %(βr+1)K.
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Using the fact that

%(α) ≥
r+1∏

i=1

%(βi)(δ1)ω(Q1...Qr),

it follows that, denoting by Tα the contribution of the badly spaced u to the
sum, we get, recalling notation (6.1),

Tα � %(α)
∑

lν ,tν

(1/δ1)ω(Q1...Qr)

(Q1 . . . Qr)(P1 . . . Pr+1)

� %(α)
∑

V

(1/δ1)ω(V )

V

∑

ω(U)=k−ω(V )

1
U

� %(α)
∑

V

(1/δ1)ω(V )

V
· P k−ω(V )

(k − ω(V ))!
,

where we used the fact that
∑

w<pi<y

1
p1 . . . pt

≤ 1
t!
P t (t ≥ 1).

Now since

P k−ω(V )

(k − ω(V ))!
=
P k

k!

ω(V )∏

j=0

(
k − j
P

)
� P k

k!

(
k

P

)ω(V )

≤ P k

k!
c
ω(V )
6 ,

we have

Tα � %(α)
P k

k!

∑

V

(c6/δ1)ω(V )

V
,

where in
∑
V we sum over all the V = Q1 . . . Qr, where the Qν ’s run over

those integers all prime factors of which are close to each other in the sense
mentioned earlier.

For each fixed r, we have
(∑

Q1

1
Q1

)
. . .

(∑

Qr

1
Qr

)
≤
(

c6/δ1
(logw)c8

)r
,

whence it follows that
∑

V

(c/δ1)ω(V )

V
� 1

(logw)c4
.

Thus we have

Tα � %(α)
(logw)c8

· P
k

k!
.



Subsets of primes in the factorization of integers 183

Similarly (and more easily!), one can prove that the contribution of the
badly spaced {p1, . . . , pk} to Sk can be estimated from above by

∑
α

Tα � 1
(logw)c8

· P
k

k!
.

Now since Sk � P k/k! in the range 1 ≤ k ≤ c2x2, by summing over all
the well spaced u’s and taking into account the above estimates, the first
assertion of the theorem follows. The second assertion can be proved in a
similar way; hence we will omit its proof.

Notation. For a given word α, let Jα denote the set of words β such that
α = βγ for some γ, including the word β = Λ. Furthermore, assume that z
satisfies 0 ≤ z ≤ c9 for some constant c9, and let

g(z|α,w) :=
∑

H(A)∈Jα
P (A)≤w

zω(A)

A%(H(A))
,

where the sum runs over all numbers A such that P (A) ≤ w and for which
H(A) ∈ Jα, including A = 1. Let also

(6.2) κ(z|α,w) := g(z|α,w)ϕw(z),

where ϕw(z) is defined by (1.4). Note also that we shall assume that α is
a word of length greater than π(w), which implies that H(A) ∈ Jα has a
meaning for each A occurring in the definition of g.

Let w = w1 be fixed for the moment and let w2 > w1. Then

(6.3) g(z|α,w2) =
∑

H(A1)∈Jα
P (A1)≤w1

zω(A1)

A1%(H(A1))

∑∗ zω(A2)

A2%(H(A2))
,

where the asterisk in the inner sum indicates that summation is to be taken
over those A2 for which H(A1)H(A2) ∈ Jα and satisfying w1 < P (A2) ≤
P (A1) ≤ w2, with A2 = 1 being included.

Assume that the length of α is greater than π(w2). To estimate the inner
sum on the right hand side of (6.3), we use Theorem 3; indeed, for

t ≤ c10 log
logw2

logw1
= τ,

we have
∑

ω(A2)=t

1
A2%(H(A2))

= (1 + ow1(1))
∑

w1<p1<...<pt<w2

1
p1 . . . pt
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and thus

(6.4)
∑

ω(A2)≤τ

zω(A2)

A2%(H(A2))
= (1 + ow1(1))

∑

t≤τ
zt

∑
w1<p1<...<pt<w2

1
p1 . . . pt

.

On the other hand,

(6.5)
∑

t≤τ
zt

∑
w1<p1<...<pt<w2

1
p1 . . . pt

=
∏

w1<p≤w2

(
1 +

z

p

)
+O

(∑
t>τ

zt

t!

(∑ 1
p

)t)
.

Note that in (6.5) the first term on the right hand side is clearly of order
ePz, where P =

∑
w1<p≤w2

1/p, while the error term is o(ePz) if we assume
that 2z < c10, say. Furthermore,

∑

ω(A2)>τ

zω(A2)

A2%(H(A2))
�

∑

ω(A2)>τ

(
z

δ1

)ω(A2) 1
A2

(6.6)

�
∑
t>τ

(z/δ1)tP t

t!
= o(1)ePz

if τ > c11z, where c11 is a sufficiently large constant. Note that clearly we
can also assume that c10 > c11.

Combining (6.4)–(6.6), we have thus proved that
∑∗

A2

zω(A2)

A2%(H(A2))
= (1 + ow1(1))

∏

w1<p≤w2

(
1 +

z

p

)
.

Hence (6.3) becomes

g(z|α,w2) = (1 + ow1(1))
∏

w1<p≤w2

(
1 +

z

p

)
g(z|α,w1),

and consequently,

(6.7) κ(z|α,w2) = (1 + ow1(1))κ(z|α,w1)

uniformly in α.
Note that κ(z|α,w) depends at most on the first π(w) digits of α.
Now given an infinite sequence ξ defined over A, let

κ(z|ξ, y) :=
∑

H(A)∈Jξ
P (A)≤y

zω(A)

A%(H(A))
ϕy(z)

and
q(z|ξ) := lim

y→∞
κ(z|ξ, y).
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From (6.7), it is clear that q(z|ξ) exists and furthermore that

1
2κ(z|ξ, w0) ≤ q(z|ξ) ≤ 2κ(z|ξ, w0),

provided w0 is large enough.
For a finite sequence α, we let α̃ be the infinite sequence α̃ = α1 . . . 1 . . .
We are now ready to formulate Theorem 4 and deduce its proof mainly

by using Theorem 2.

Theorem 4. Let kx be an arbitrary sequence tending to infinity
with x. Then, for every k satisfying kx ≤ k ≤ c2x2 and for every α ∈ Ak,
as x→∞,

Nk(x|α) = (1 + ox(1))q
(
k − 1
x2

∣∣∣∣α̃
)
%(α)

x

x1
tk(x)F

(
k − 1
x2

)
.

P r o o f. Let wx be the 6-fold iterated logarithm of kx. Write each n
satisfying H(n) = α in the form n = An1, where P (A) ≤ wx, and p(n1) >
wx. Then clearly

(6.8) Nk(x|α) =
∑

H(A)∈Jα
Nk−ω(A)

(
x

A

∣∣∣∣wx; γA

)
,

where γA is the word defined implicitly by α = H(A)γA. As in the proof of
Theorem 3, we can drop from the sum all the A’s for which A > (log x)c,
for some large c, their contribution to the sum being O(x/(log x)c). For the
other A’s, we have, using Theorem 2,

(6.9) Nk−ω(A)

(
x

A

∣∣∣∣wx; γA

)

= (1 + owx(1))
%(γA)x
Ax1

tk−ω(A)(x)ϕwx

(
k − ω(A)

x2

)
F

(
k − ω(A)

x2

)
.

Since ω(A) is small, one can write that

tk−ω(A)(x) =
(
k − 1
x2

)ω(A)

(1 + ox(1))tk(x),

and since the functions ϕw and F are continuous, (6.9) may be written as

(6.10) Nk−ω(A)

(
x

A

∣∣∣∣wx; γA

)

= (1 + owx(1))
x

x1
· %(γA)

(
k−1
x2

)ω(A)

A
tk(x)ϕwx

(
k − 1
x2

)
F

(
k − 1
x2

)
.

Using (6.10) in (6.8) and the fact that %(γA) = %(α)/%(H(A)), we have
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Nk(x|α) = (1 + owx(1))%(α)
x

x1
tk(x)(6.11)

× ϕwx
(
k − 1
x2

)
F

(
k − 1
x2

) ∑∗

H(A)∈Jα

(
k−1
x2

)ω(A)

A%(H(A))
,

where the asterisk in the sum indicates that we sum for A up to (log x)c,
the contribution of the A’s larger than (log x)c being o(1); this explains why
one can, in view of (6.2) and of the definition of q(z|ξ), replace the sum
in (6.11) by g(z|α,wx) and thereafter g(z|α,wx)ϕwx

(
k−1
x2

)
by κ(z|α,wx),

thereby completing the proof of Theorem 4.

7. Counting subwords in H(n). Let β be a particular word in A∗. For
an arbitrary κ ∈ A∗, we define uβ(κ) to be the number of occurrences of β
as a subword of κ, i.e. the number of possible ξ ∈ A∗ for which κ = ξβη for
some η ∈ A∗. For short, we sometimes write uβ(n) instead of uβ(H(n)).

Let %(β) be defined as in Section 1, i.e. if β = i1 . . . ik, then %(β) =
%(i1) . . . %(ik) = δi1 . . . δik .

By using Theorem 2 and some purely probabilistic theorems we can
provide asymptotic estimates for

M(x, r, l) = Mβ(x, r, l) := #{n ≤ x : ω(n) = r, uβ(n) = l}
for a wide variety of r and l, and also for

M(x, l) = Mβ(x, l) := #{n ≤ x : uβ(n) = l}.
We further need to introduce the quantities m = m(β) and σ = σ(β), which
represent respectively the mean value and the variance of a random variable
X: their exact meaning is given later in (8.3).

Theorem 5. Let m and σ be as above. Then as x→∞,

(7.1) M(x, r, l) = (1 + o(1))
x

x1
tr(x)

m

σ
√
l
φ

(
r −ml
σ
√
l

)
,

uniformly for r − x2 = O(x2/x3), and l − x2/m = O(x2/x3), where φ is
defined by (1.3). Furthermore,

(7.2) M(x, l) =
1 + o(1)√

x2

√
m

m+ σ2 φ

(√
m

m+ σ2 (x2 −ml)
)

uniformly for l − x2/m = O(x2/x3). Consequently ,

(7.3) lim
x→∞

1
x

#
{
n ≤ x :

uβ(n)− x2/m√
m(m+ σ2)

√
x2

< y

}
= Φ(y),

where Φ(y) is defined in (1.3).

The proof of Theorem 5 is given in Section 9.



Subsets of primes in the factorization of integers 187

R e m a r k. Most likely, similar assertions are valid for “diophantinely
smooth” subsequences of integers, such as substitutional values of polyno-
mials at integer values, or at prime values, but at this moment we are only
able to prove such global theorems.

In order to illustrate the method, we shall consider the distribution of
the vectorial

(uβ0(n), uβ1(n+ 1), . . . , uβh(n+ h))

(see Theorem 6) and the set of shifted primes (see Theorem 7).

In order to do this we set

τβ(n) :=
uβ(n)−m(β)x2

c(β)
√
x2

,

where m(β) = 1/m and c(β) =
√
m(m+ σ2). We shall prove the following

results.

Theorem 6. Assume that β0, β1, . . . , βh are fixed words belonging to A∗.
Then

lim
x→∞

1
x

#{n ≤ x : τβl(n+ l) < yl (l = 0, 1, . . . , h)}

=
h∏

l=0

lim
x→∞

1
x

#{n ≤ x : τβl(n+ l) < yl} =
h∏

l=0

Φ(yl).

Theorem 7. Let β ∈ A∗ be fixed. Then

lim
x→∞

1
π(x)

#{p ≤ x : τβ(p+ 1) < y} = Φ(y).

The proofs of these two theorems are given in Sections 10 and 11 respec-
tively.

8. Auxiliary probabilistic results

Lemma 3. Let k be a fixed positive integer and let ξ0, ξ1, . . . be a sequence
of independent random variables, Xj = f(ξj , ξj+1, . . . , ξj+k−1), where f is a
Baire function. Let M denote the mean value. Assume that MXj = 0. Let

σ2 = MX2
0 + 2

k−1∑

j=1

MX0Xj (<∞),

and assume that σ 6= 0. Then

(8.1) lim
n→∞

P

(
1

σ
√
n

n∑

j=1

Xj < z

)
= φ(z).



188 J.-M. De Koninck and I. Kátai

For the proof, see Theorem 19.2.1 in Ibrakhimov and Linnik [5] or Dia-
manda [1], [2].

Lemma 4 (Esseen [3]). Let X1, X2, . . . be independent identically dis-
tributed integer valued random variables for which MXj = 0 and M |Xj |%
< ∞, with % ≥ 3. Assume furthermore that for a suitable l, P (Xj = l)
× P (Xj = l + 1) 6= 0. Then

P (X1 + . . .+Xn = k) =
1

σ
√
n
φ(zn,k) +O

(
1
n

)
,

where φ is defined in (1.3) and where

zn,k =
k

σ
√
n
, σ = MX2

j .

R e m a r k. The condition P (Xj = l)P (Xj = l + 1) > 0 stands only
in order to guarantee that the maximal step between possible consecutive
values of X is not larger than 1.

Setting up the problem. Let A = {1, . . . , d}. Let ξν be identically dis-
tributed independent random variables, P (ξν = j) = δj (j = 1, . . . , d),
δj > 0,

∑d
j=1 δj = 1. Note that ξν may be an infinite sequence or a finite

one.
Let β = b1 . . . bs, γ = g1 . . . gs−1 be arbitrary but fixed sequences of

length s and s− 1 over A respectively. For a random sequence ξ1 . . . ξn, we
shall denote by Πγ(r) the probability of the event that both of the following
conditions are satisfied:

1. ξ1 . . . ξs−1 = γ,
2. the number of l’s satisfying 1 ≤ l ≤ n−s+1 for which ξlξl+1 . . . ξl+s−1

= β is exactly r.
Further, assume that the independent variables Yi are distributed as the

ξν ’s. Then for an arbitrary s− 1 tuple γ, let Πγ(t) be the probability of the
event that

(8.2) g1 . . . gs−1Y1 . . . Yt

ends with β, that is, that Yt−s+1 . . . Yt = β and that this is the only occur-
rence of β as a subsequence in (8.2). Further, let ηγ denote the length of the
sequence Y1 . . . Yt. Then P (ηγ = t) = Πγ(t).

Similarly, for the s-tuple β, let σβ(t) be the probability of the event that
the random sequence

b2 . . . bsY1 . . . Yt

has the same property. Thus, using the notation β = b1β
∗, it is clear that

σβ(t) = Πβ∗(t) and also that
∑∞
t=1 σβ(t) = 1. Furthermore, let X be the

random variable such that P (X = t) = Πβ∗(t).
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Finally, let τβ(t) be the probability of the event that

b2 . . . bsY1 . . . Yt

does not contain β as a subword.
It is clear that

τβ(t) = σβ(t) + σβ(t+ 1) + σβ(t+ 2) + . . . ,

and hence that

τβ(t) = P (X > t).

For the random sequence ξ1 . . . ξn starting with γ, let t1 < . . . < tr be
the indices of the last digits of occurrences of the word β. Then clearly
t1, t2− t1, . . . , tr− tr−1, n− tr are independent random variables, where t1 is
distributed as ηγ and the (tj+1− tj)’s are distributed as independent copies
of X. Consequently, denoting by Πγ(r, n) the probability that ηγ + X1 +
. . .+Xr ≤ n and that Xr+1 > n− (ηγ +X1 + . . .+Xr), we have

Πγ(r, n) =
∑

u,v≥0
u+v≤n

P (ηγ = u)P (X1 + . . .+Xr = v)P (Xr+1 > n− (u+ v)).

We would like to apply Esseen’s theorem in order to prove that

P (X1 + . . .+Xr = v) =
1

σ
√
r
φ

(
v − rm
σ
√
r

)
+O

(
1
r

)
,

where

(8.3) m = m(β) = MX =
∑

tΠβ(t), σ2 = σ2(β) = M(X −m)2.

Let β = b1 . . . bs and c 6= bs, and consider the sequence

b1 . . . bs c . . . c︸ ︷︷ ︸
E times

b1 . . . bs,

E being a large number.
Let TE denote the length of the shortest prefix ending with β in the

word b2b3 . . . bsc . . . cb1b2 . . . bs. Since the last digit of β is different from c,
we have TE ≥ E + s, and thus

TE+1 = TE + 1.

It follows that

Πβ(TE) 6= 0 and Πβ(TE + 1) 6= 0, for every large number E.

This condition guarantees as well that σ 6= 0. Note that the finiteness of
the third moment is satisfied; moreover, it is true that M(eλX) < ∞ holds
for a suitable positive λ. Indeed, P (X > t) is the probability of the event
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that the sequence ξ = ξ1 . . . ξt does not contain β. If it occurs, then none
of ξ(u−1)s+1 . . . ξus, with u = 1, . . . , [t/s], equals β, these sequences being
independent; thus

P (X > t) ≤ (1− P (ξ1 . . . ξs = β))[t/s],

and the assertion follows immediately.
We have thus obtained that

(8.4) Πγ(r, n)

=
∑

0≤u≤c logn
0≤t≤c logn

P (ηγ = u)P (X > t)P (X1 + . . .+Xr = n− u− t) +O

(
1
n2

)

=
1

σ
√
r

∑

0≤u≤c logn
0≤t≤c logn

φ

(
(n− u− t)−mr

σ
√
r

)
P (ηγ = u)P (X > t)

+O

(
1
r

) ∑

0≤u≤c logn
0≤t≤c logn

P (ηγ = u)P (X > t) +O

(
1
n2

)
.

Clearly the last sum is O(1). On the other hand, since φ(y1) − φ(y2) =
(y1 − y2)φ′(y∗) for some y∗ ∈ (y2, y1), and since φ′(y∗) = −y∗φ(y∗), it
follows that ∣∣∣∣φ

(
n−mr
σ
√
r

)
− φ

(
n− t−mr

σ
√
r

)∣∣∣∣ ≤
t

σ
√
r
φ(y∗),

where y∗ is a suitable number located between n−t−mr
σ
√
r

and n−mr
σ
√
r

. This
implies that the first term in (8.4) above can be written as

(8.5)
1

σ
√
r
φ

(
n−mr
σ
√
r

) ∑

0≤u≤c logn
0≤t≤c logn

P (ηγ = u)P (X > t)

+O
(

1√
r

∑
u,t

u+ t√
r

{∣∣∣∣
n−mr
σ
√
r

∣∣∣∣+
∣∣∣∣
u+ t

σ
√
r

∣∣∣∣
}
φ

(
n−mr
σ
√
r

)
P (ηγ=u)P (X > t)

)
.

Now observe that
∑

0≤u≤c logn
0≤t≤c logn

P (ηγ = u)P (X > t)

=
( ∞∑
u=1

P (ηγ = u)
)( ∞∑

t=0

P (X > t)
)

+O

(
1
n2

)
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and that
∞∑
u=1

P (ηγ = u) = P (ξ1 . . . ξs−1 = γ), while
∞∑
t=0

P (X > t) = m.

Finally, the O(. . .) in (8.5) is O(1/r), because
∣∣n−mr
σ
√
r

∣∣φ(n−mr
σ
√
r

)
is bounded

and
∑

(u+ t)2P (ηγ = u)P (X > t) <∞.
From these estimates it follows that (8.4) becomes

Πγ(r, n) =
m

σ
√
r
φ

(
n−mr
σ
√
r

)
+O

(
1
r

)
+O

(
1
n2

)
.

We have thus proven the following result.

Lemma 5. Assume that ξν are identically distributed independent random
variables, distributed as P (ξν = j) = δj (j = 1, . . . , d),

∑d
j=1 δj = 1, δj > 0.

Let β be a fixed element of As, and let γ ∈ As−1. Let m and σ be as
in (8.3). Denote by Πγ(r, n) the probability of the event that the random
sequence ξ1 . . . ξn satisfies ξ1 . . . ξs−1 = γ and that β occurs exactly r times
as subword of γ. Then

Πγ(r, n) =
m

σ
√
r
φ

(
n−mr
σ
√
r

)
+O

(
1
r

)
+O

(
1
n2

)
.

9. Proof of Theorem 5. Every integer n ≤ x satisfying ω(n) = r and
uβ(n) = l can be written uniquely as n = Am (≤ x), where P (A) ≤ w
and p(m) > w. Now consider all the possible α ∈ Ar for which uβ(α) =
l. The integers n satisfying H(n) = α are subdivided according to their
corresponding number A. It is clear that A occurs in the structure of α
if H(A) ∈ Jα, where Jα was defined in Section 6. Let γA be defined by
α = H(A)γA. Further, define J(A, γA) to be the occurrence of β in the
sequence composed from the last s − 1 digits of H(A) concatenating with
the first s− 1 digits of γA. It is clear that

uβ(α) = uβ(H(A)) + uβ(γA) + J(A, γA).

For each θ, η ∈ As−1, define Eθ to be the set of words ending with θ,
and Fη to be the set of words starting with η in the following sense. Let
θ = e1 . . . es−1 and η = f1 . . . fs−1 be arbitrary elements of As−1. We define
Eθ to be the set of words Λ, es−1, es−2es−1, . . . , e2 . . . es−1 and also all γ
which can be factorized as γ = τθ for some τ . On the other hand, we define
Fη to be the set of words Λ, f1, f1f2, . . . , f1 . . . fs−2 and also all γ which can
be factorized as γ = ηµ for some µ.
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With this notation, we clearly have

M(x, r, l) =
∑

θ,η

∑

A
H(A)∈Eθ
P (A)≤w

∑

γ∈Fη
λ(γ)=r−ω(A)

uβ(γ)=l−uβ(H(A))−uβ(θη)

Nr−ω(A)

(
x

A

∣∣∣∣ω; γ
)
.

Assume that r − x2 = O(x2/x3). Then, by Theorem 2,

M(x, r, l) = (1 + ow(1))
∏

p≤w

(
1− 1

p

)

×
∑

θ,η

∑

A
H(A)∈Eθ
P (A)≤w

1
A

∑

γ∈Fη
λ(γ)=r−ω(A)

uβ(γ)=l−uβ(H(A))−uβ(θη)

x

x1
tr−ω(A)(x)%(γ).

Note that here we have dropped the terms corresponding to A� x2, since
their contribution was small. In this range for r, we have

tr−ω(A)(x) = (1 + o(1))tr(x), assuming that w = O(x3).

Thus we deduce that

M(x, r, l) = (1 + ow(1))ErFl,

where

Er :=
∏

p≤w

(
1− 1

p

)
x

x1
tr(x),

and

Fl :=
∑

θ,η

∑

H(A)∈Eθ
P (A)≤w

1
A
Πη(l − uβ(H(A))− uβ(θη), r − ω(A)).

Thus, by Lemma 5, observing that the Πη’s occurring in the sum are
(1 + o(1))Πη(l, r), summing on η and afterwards on A, we obtain

Fl =
( ∑

P (A)≤w

1
A

)
m

σ
√
l
φ

(
r −ml
σ
√
l

)
+O

(
logw
l

)
.

Since
∑

P (A)≤w

1
A

=
∏

p≤w

(
1− 1

p

)−1

,

we obtain

M(x, r, l) = (1 + ow(1))
x

x1
tr(x)

m

σ
√
l
φ

(
r −ml
σ
√
l

)
,

an estimate which is valid as x→∞, r−x2 = O(x2/x3), |l−x2/m| ≤ x2/x3.
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The second formula of Theorem 5 is an easy consequence of the first one,
and the third one follows immediately.

This ends the proof of Theorem 5.

10. Proof of Theorem 6. Set wx = x3, zx = x1/
√
x2 and

E(n) :=
∏

pα‖n
wx<p

α<zx

pα.

Let E be the set of integers all prime factors of which belong to the interval
(wx, zx).

Let E0, E1, . . . , Eh ∈ E be mutually coprime integers, chosen so that

max
0≤ν≤h

logEν
log x

= ox(1).

Then, by the sieve method, we have
1
x

#{n ≤ x : E(n+ j) = Ej (j = 0, 1, . . . , h)}

= (1 + o(1))
∏

wx<pα<zx

(
1− h+ 1

p

)
= (1 + o(1))

∏
wx<pα<zx

(
1− 1

p

)h+1

.

Now let ω1(n) be the number of prime divisors of n/E(n). Since
∑
p<wx

1
p

+
∑

zx<p<x

1
p

= O(x3),

by using the Turán–Kubilius inequality, we have ω1(n) = O(x3) for almost
all integers n. Furthermore, observe that uβ(n) − uβ(E(n)) = O(ω1(n));
thus, neglecting a set of integers n having zero density, we have

τβj (n+ j)− τβj (E(n+ j)) = o(1).

Because of this, and since Φ is continuous, it is sufficient to prove the theorem
for τβj (E(n+ j)) instead of τβj (n+ j).

Now it is clear that the set of integers n ≤ x with maxj=0,1,...,hE(n+j) >
xx3/

√
x2 is of zero density.

We have
1
x

#{n ≤ x : τβj (E(n+ j)) < yj (j = 0, 1, . . . , h)}

= (1 + o(1))
∑∗

E0,E1,...,Eh

x

E0E1 . . . Eh
+ o(1),

where the asterisk in the sum indicates that the sum is taken over those
E0, E1, . . . , Eh for which τβj (E(n+ j)) < yj (j = 0, 1, . . . , h), Ej ≤ xx3/

√
x2 ,

(Ei, Ej) = 1 for every i 6= j.
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Now we can drop the condition of coprimality in Σ∗. Indeed, if we set
F = E0E1 . . . Eh, one can observe that F can be factorized as E0E1 . . . Eh in
no more than dh+1(F ) different ways. Hence if (Ei, Ej) > 1 for some i 6= j,
then p2 |F for some p > wx; the contribution of such p’s is less than

∑ dh+1(u)
u

∑ dh+1(v)
v

,

where v runs over the square-free integers with p(v) > wx, P (v) < zx, and
u runs over the square-full integers with p(u) > wx, P (u) < zx, u = 1 being
excluded. But clearly

∑ dh+1(v)
v

�
∏

wx<p<zx

(
1 +

h+ 1
p

)
�
(

log zx
logwx

)h+1

and
∑ dh+1(u)

u
=

∏
wx<p<zx

(
1 +

dh+1(p2)
p2 +

dh+1(p3)
p3 + . . .

)
− 1

< exp
{
h(h+ 1)

∑
p>wx

1
p2

}
− 1� 1

wx logwx
.

Hence we have

∑∗

E0,E1,...,En

x

E0E1 . . . En
=

h∏

j=0

R(yj) +O

(
1

wx logwx

)
,

where R(yj) is the number of those Ej for which Ej < xx3/
√
x2 and

τβj (Ej) < yj .
We have thus proved that the conditions τβj (Ej) < yj , j = 0, 1, . . . , h,

are independent. It is therefore enough to prove that

1
x

#{n ≤ x : τβj (E(n+ j)) < yj} = (1 + o(1))
(

log zx
logwx

)
R(yj)(10.1)

= (1 + o(1))Φ(yj),

say A = B = C. But we have just proved that A = B. Relation (7.3) of
Theorem 5 implies that

log zx
logwx

R(y) = (1 + o(1))Φ(y) as x→∞

and therefore that B = C. This therefore ends the proof of Theorem 6.

11. Proof of Theorem 7. Let wx, zx, E(n), ω1(n) and E be as in the
proof of Theorem 6. Denote by Π(x|E) the number of primes p ≤ x for
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which E(p+ 1) = E. By the Eratosthenian sieve, we have

(11.1) Π(x|E) =
∑

δ

π(x;Eδ,−1)µ(δ),

where δ runs over the divisors of

K :=
∏

wx<p<zx

p

and where π(x; a, b) stands for the number of primes p ≤ x such that
p ≡ b (mod a). Using (11.1), we have

(11.2)
∣∣∣∣Π(x|E)−

∑

δ|K

µ(δ)
ϕ(Eδ)

π(x)
∣∣∣∣ ≤

∑

δ|K
δ≤x/E

∣∣∣∣π(x;Eδ,−1)− π(x)
ϕ(Eδ)

∣∣∣∣,

where ϕ stands for the Euler function. But it is clear that

S(E) :=
∑

δ|K

µ(δ)
ϕ(Eδ)

=
1

ϕ(E)

∏

p|E

(
1− 1

p

) ∏

p -E
wx<p<zx

(
1− 1

p− 1

)
(11.3)

=
1

ϕ(E)
· logwx

log zx

(
1 +O

(
1
wx

))
.

First summing up over all E ≤ xx3/
√
x2 := X, say, we have

(11.4)
∑

E<X

|Π(x|E)− S(E)π(x)| �
∑

u≤x
u∈E

∣∣∣∣π(x;u,−1)− π(x)
ϕ(u)

∣∣∣∣d(u),

where as usual d(u) stands for the divisor function.
We shall prove that the right hand side of (11.4) is O(x/ logc x) for any

given positive constant c.
We split the integers u ≤ x into three distinct classes, namely those

which are ≤ X, those satisfying X < u ≤ x1−ε and finally those such that
x1−ε < u ≤ x; here ε is a small positive number. We name the corresponding
sums Σ1, Σ2 and Σ3 respectively.

First we notice that, since π(x;u,−1)� π(x)/ϕ(u),

Σ2 � π(x)
∑

u≤x1−ε
u∈E

d(u)
ϕ(u)

and that

Σ3 � x
∑

x1−ε<u≤x
u∈E

d(u)
u

.

These sums are indeed essentially small because P (u) < zx. Hence we have
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Σ2, Σ3 = O

(
x

logc x

)
.

We now write

Σ1 =
∑

d(u)<logBx
u∈E

+
∑

d(u)>logBx
u∈E

= Σ1,1 +Σ1,2,

say, where B is some positive constant. We first estimate Σ1,2 and obtain

Σ1,2 ≤ (log x)−Bπ(x)
∑ d2(u)

ϕ(u)
� π(x)(log x)−B

∏
wx<p<zx

(
1 +

4
p

+ . . .

)

� π(x)(log x)−B
(

logwx
log zx

)4

.

In order to estimate Σ1,1, we use the Bombieri–Vinogradov theorem in a
weaker form and this allows us to obtain

∑

E<X

|Π(x|E)− S(E)π(x)| = O

(
x

logc x

)
.

From the above estimates, it also follows that
∑

E>X

Π(x|E) = o(1)π(x).

By using the Turán–Kubilius inequality for the shifted primes p+ 1, we
find that

ω1(p+ 1) = ω

(
p+ 1

E(p+ 1)

)
= o(1)x2

for all but o(π(x)) primes p ≤ x.
Let y be given. We shall now prove that

#
{
p ≤ x :

∣∣∣∣
uβ(E(p+ 1))− x2/m

c(β)
√
x2

∣∣∣∣ < y

}
= (1 + ox(1))Φ(y)π(x).

In order to count the number of primes satisfying the condition contained
in {. . .}, we observe that

∑

τβ(E)<y

Π(x|E) =
∑

τβ(E)<y
E<X

Π(x|E) + o(π(x))(11.5)

= π(x)
∑

τβ(E)<y
E<X

S(E) + o(π(x))

= π(x)
logwx
log zx

∑

τβ(E)<y
E<X

1
ϕ(E)

+ o(π(x)),
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where we made use of (11.3). We have thus reduced the problem to that of
estimating

Σ :=
∑

τβ(E)<y
E<X

1
ϕ(E)

.

To do this, we use formula (7.3) of Theorem 5. First we observe that, since

ϕ(E)
E

=
∏

p|E

(
1− 1

p

)

and writing

Σ∗ :=
∑

τβ(E)<y
E<X

1
E
,

we have

0 ≤ Σ −Σ∗ =
∑

E

(
1

ϕ(E)
− 1
E

)
=
∑

E

1
E

(∏

p|E

1
1− 1/p

− 1
)

=
∏

wx<q<zx

(
1 +

q

(q − 1)2

)
−

∏
wx<q<zx

1
1− 1/q

=
∏

wx<q<zx

(
1− 1

q

)−1{ ∏
wx<q<zx

(
1 +

q

(q − 1)2

)(
1− 1

q

)
− 1
}

=
(

log zx
logwx

){
exp

( ∑
q>wx

c

q2

)
− 1
}
�
(

log zx
logwx

)
1
wx

.

Thus ∑

τβ(E)<y

Π(x|E) = π(x)
logwx
log zx

R(y) + o(π(x)).

Hence, combining this with (11.5) and taking into account (10.1), the result
follows immediately.

12. A higher dimensional problem. Let β1, . . . , βh be given distinct
words of length s and let

v(n) := (uβ1(H(n)), . . . , uβh(H(n))).

By a more sophisticated method, we are able to give an asymptotic estimate
for the size of integers n for which ω(n) = r and v(n) = (l1, . . . , lh) are
satisfied at least in the range r ∼ x2 and li ∼ x2/mi (i = 1, . . . , h). In this
case, the components of v(n) are dependent and their correlation depends
on the special choice of βj .
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It is much easier to prove the global distribution theorem by using
Lemma 3 and Theorem 2.

Let wx be a function tending to ∞ very slowly and divide the integers
n ≤ x into classes n = Aν, where ω(ν) = r, P (A) ≤ wx, p(ν) > wx, and
according to H(ν) = α.

For a fixed A, each α occurs (1 + o(1)) xx1
tr(x)%(α) times.

Furthermore,

v(n)− V (α) = (O(ω(A)), O(ω(A)), . . . , O(ω(A))),

where
V (α) := (uβ1(α), . . . , uβh(α)).

Consider now the random variables ξi which were defined in Lemma 5 and
set

f1(ξ1, . . . , ξs) :=

{
tν if ξ1 . . . ξs = βν

(ν = 1, . . . , h),
0 if ξ1 . . . ξs 6= βν .

Thus
Mf1(ξ1, . . . , ξs) = t1%(β1) + . . .+ th%(βh) := t.

Then further set

Xj := f1(ξj , ξj+1, . . . , ξj+s−1)− t.
Let σ = σ(t1, . . . , th) be defined by

σ2 = MX2
1 + 2

s−1∑

j=2

MX1Xj .

It remains to prove that the quadratic form σ is positive definite.
To prove that σ(t1, . . . , th) > 0, we proceed as follows. First recall that

ξ1, ξ2, . . . are identically distributed random variables with P (ξi = l) = δl
for l = 1, . . . , d. Now let f be defined on As by

f(γ) :=
{
tν − t if γ = βν ,
−t otherwise.

Let
Yr = ξrξr+1 . . . ξr+s−1, Zn = f(Y1) + . . .+ f(Yn−s+1).

Then choose a particular γ∈As and consider those sequences Y1, . . . , Yn−s+1

for which Yi = γ. Let (1 = τ0 <)τ1 < . . . < τr denote the sequence of the
indices m for which Ym = γ, and let

Sl = f(Yτl) + . . .+ f(Yτl+1−1) (l = 0, 1, . . . , r − 1),

T = f(Yτr ) + . . .+ f(Yn−s+1).

Thus Zn = S0 + S1 + . . . + Sr−1 + T , and the summands are mutually
independent. Furthermore, all the moments of Sν and T are finite. By



Subsets of primes in the factorization of integers 199

using the same argument as in the proof of Lemma 5, we first find that
P (τν = k) > 0 for every large k. Thus M(Sν −MSν)2 = σ2

γ > 0 can be
deduced immediately. From classical theorems on the distribution of sums of
random variables with random number of summands, one can deduce that

min
a
M(Zn − a)2 > cn (c > 0),

and hence that σ(t1, . . . , th) is positive definite.
To prove that the limit distribution of

(12.1)
h∑

l=1

τluβl(H(n))

exists, and that it is the normal law with variance σ(t1, . . . , th), we can
repeat the argument used in the proof of Theorem 6.

Since the limit distribution of v(n) is completely characterized by that
of the projections (12.1) (see Galambos [4], Theorem 19), Theorem 8 follows
immediately:

Theorem 8. Let

Fx(y1, . . . , yh) :=
1
x

#{n ≤ x : τβj (n) < yj (j = 1, . . . , h)}.

Then

lim
x→∞

Fx(y1, . . . , yh) = Φσ(y1, . . . , yh),

where Φσ denotes the Gaussian law with covariance matrix corresponding
to σ.

13. Additional remarks. For each α ∈ A∗ let κ(α) denote the largest
integer k such that all possible words of length k occur as subwords in α.

To prove a sharp theorem for the order of κ(H(n)) seems to be hard in
the general case. However, assuming that δ1 = . . . = δd = 1/d, we can apply
the following nice result of Tamás F. Móri [7]:

If ξν is an infinite sequence of independent random variables with
P (ξν = j) = 1/d (j = 1, . . . , d), then for every ε > 0, the event that
[

1
log d

(
logm− log logm− ε log logm

logm

)]

≤ κ(ξ1 . . . ξm) ≤
[

1
log d

(
logm− log logm+ (1 + ε)

log logm
logm

)]

holds for every large enough m, is of probability 1.
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As a straightforward consequence we have the following result:

If δ1 = . . . = δd = 1/d and if (1.1) holds, then for all but o(x) of the
integers n ≤ x, we have

κ(H(n)) =
1

log d
(x2 − x3) +O(1).

This comes out by observing that λ(H(n)) = x2+O(x3/4
2 ) for all but o(x)

of the integers n ≤ x, and using Theorem 2, taking into account that x2 is a
very slowly varying function, in the sense that log log(xc)−log log x = O(1).
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