
disturbance. Here the reliance has been placed on its most 
plausible feature, namely its independence of input. This 
yields a set of assumptions in excess of the minimal 
requirement and an endeavor has been made to exploit this 
excess to reduce the sum of squares of estimation errors. 
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Model Reduction and Control System Design by Shifted 
Legendre Polynomial Functions 

Rong-Yeu Chang1 and Maw-Ling Wang1 

A method of model reduction for reducing a higher order 
transfer function to its lower order model is developed based 
on the shifted Legendre function approximation. The ex­
pansion coefficients of the shifted Legendre series which 
represents the approximate responses of transfer functions are 
computed by the recursive formula, via operational matrix 
approach. The significances of applying shifted Legendre 
function to model reduction problem are that the method is 
simple, straightforward and the computational results ob­
tained are accurate as well as the final time of the control 
system can be adjustable without any restriction. Based on the 
model reduction technique, a new algebraic method is 
proposed for the design of a feedback control system to 
satisfy specifications. Illustrative examples are given and 
satisfactory results are obtained. 

developed operational matrix, the expansion coefficients of 
the shifted Legendre series which represents the approximate 
responses of transfer functions are computed by the recursive 
formula. The significance of the present research is that the 
present method is simple, straightforward and the com­
putational results are accurate as well as the final time of the 
system can be adjustable without any restriction. Based on the 
model reduction technique, the design of a feedback control 
system to satisfy the prescribed specifications is studied by the 
proposed new algebraic method. Satisfactory examples are 
given to illustrate the method. 

Properties of Shifted Legendre Functions 
The shifted Legendre function, P„ (t) is related to the well-

known Legendre function P„ ( T) by transforming the in­
dependent variable as T = 2(t/ Tj) - 1. 

One of the properties of shifted Legendre polynomial 
functions is, 

2(2« +1) 
P„(t)=P„ + l(t)-Pn^U) (1) 

Thus, the integration of P„(t) with respect to t can be ob-

Introduction 
Model reduction has been receiving great attention in the 

field of process analysis and synthesis with the last twenty 
years. The purpose of model reduction is to provide a lower 
order model which is computationally simpler than the 
original higher order system. Typical methods for ap­
proaching model reduction problems are error minimization 
[1], retaining dominant eigenvalues [2], moment matching [1], 
continued fractions [3], stability equation method [4], and 
Pade and Routh approximation [5], Recently, the model 
reduction problems have also been investigated by block pulse 
functions [6] and Laguerre functions [7] and Chebyshev 
function [8]. Satisfactory examples are given to illustrate the 
effectiveness of those methods. 

In this paper, an effective method of shifted Legendre 
functions is employed to approach the problems of model 
reduction. The operational matrix for the integration of the 
shifted Legendre polynomial vectors whose elements are 
shifted Legendre function are first developed. Using the 

Fig. 1 Step response of original and reduced models 
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Fig. 2 Comparison of the desired and actual response 
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tained directly from the above equation. Generally, the 
general form of matix integration can be written as, 

s: 
M') = L 7</(2y + UPjU) =rfP(t) 

j = 0 
(11) 

P( / ) r f /=HP{() (2) 

Where 

P(t)=[P0(t),3PiU),5P2U) • .{2m-\)Pm_i(t)V r , = [7,.0,7,,,. . . . - y ^ . , ] 

(3) From equations (7) and (8), we have 

Where the shifted Legendre spectrum vectors A, and T, are, 

A, = [a,0 ,a ; l cti,m-iV (12) 

(13) 

H = 7> 

1 

2 

1 

2 

0 

0 

0 

1 

6 

0 

1 

~ 6 

0 

0 

0 

1 

10 

0 

1 

~10 

0 

0 

0 

1 

14 

0 

0 

0 

0 

0 

0 

- 1 1 
2(2/w-5) 2 ( 2 m - l ) 

0 0 0 0 - 1 

2(2/w--3) 

(4) 

The matrix H as shown by equation (4) is called operational 
matrix for the integration of the shifted Legendre vector. In 
the following section, the reduction of higher order transfer 
function to its lower order model is studied. 

Model Reduction 

Consider a linear time-invariant system characterized by the 
rational transfer function, 

C(s) = blS"-l+b2s"-2+ . . .b„_lS + bn 

U(s) s"+ais"~x+ . . . +a„„ls + a„ 

Where C(s) and U(s) are the Laplace transforms of the 
output variable, c(t), and the input variable, u(t), respec­
tively. Cross multiplication of equation (5) and on dividing s" 
give, 

c/(0 = j o £ , _ , ( / ' ) * ' 

W/(0 = j o M;- i (*')<#' 

(14) 

(15) 

Using equations (2), (4), (14), and (15), it can be easily shown 
that, 

A,= HrA,_ 

and 

Let 

and 

C(s)+ £ « , - S - ' C ( J ) = ^biS-'Uis) 

Ci(s)=s-[Ci_l(s),i=l,2, • • -n 

Ui(s)=s-lU,-1,i=l,2 n 

(6) 

(7) 

(8) 

u 2(2./'+1) 

r,=Hrr,_, 

(«/- i j - i 

7,; ' / 
2(2/+1) (7, i-U-l 

• " i - l j + l ) 

• 7 / - 1 J + 1 ) ; 

(16) 

(17) 

(18) 

W i t h C 0 ( s ) = C ( s ) , and U0(s)=U(s), then equation (6) 
becomes 

/= 1,2,3, . . . n 

y = 0,l,2, . . . m-\ 

Where a,- _ v = ocifi, 7,- _, = 7,- 0 and ai%m = yKm = 0. 
Substituting equations (10) and (11) into equation (9) and 
equating the coefficients of P (t) , we obtain, 

C 0 ( s ) + £ a , C , ( s ) = 5 > , £ / , ( s ) (9) 
Ao + I > , A,) = X>, I\. (19) 

The shifted Legendre series approximation of ct(t) and U/(t) 
are, respectively, represented by 

ci(t)=^au(2j+l)Pj = Ai
TP(t) (10) 

( i+E«/H^)Ao=£*/r , 

Therefore, A0 can be obtained from above equation, 

(20) 
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Ao=(i+E^H^y (x>,r;) (21) 

As indicated in equation (4), H is a tridiagonal matrix. The 
elements of the diagonal are zero except H(\, 1). Therefore, 
the summation of the polynomial matrix of H as shown in 
equation (21) is very easily to be calculated. Once A0 are 
calculated, A, can be obtained from the recursive algorithm 
which is shown in equation (17). 

Let a reduced model of the given system as shown in 
equation (5) be 

U(s) 

,r~\ + bi sr-2 + . . . . + bt\s + b? 

sr + af sr 

r<n 

+ . . . .+a+_i5 + a + 

(22) 

Where af and bf are unknown parameters to be determined. 
Using the previous method, equation (22) can be simplified 

as, 

A*+Y,atA-i=i,b?Tl (23) 
;'=1 

or 

,+ lT 

ne = A0 

Where the parameter vector G is, 

Q=[at,al,al . . . a?, bf , b2
+,b3

+ . 

and ft is an m x 1r matrix given by 

O = [ - A „ - A 2 , - A 3 . . . -Ar,r,,r2,r3 . . . r,] 
Following the argument by Hwang and Shih [7], the 
parameter af and b? must be chosen to satisfy 

af an 

which can be written in a matrix form 

v re=o 
Where V is a 2r vector as follows: 

V = [0 ,0 , . . .,b„,0,0, -anY 

In order to get the unknown coefficient vector, 0 , for best 
representing the original model, the sum of squares of the 
algebraic equation errors of equation (24) is a minimum 
subject to the constraint of equation (28), i.e., 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

minimize J= [ft 6 - A0]T [ft 6 - A0] (30) 

with the adjustable parameter vector 0 and the constraint of 
equation (28), we have 

7=(fie-A0)
r(ne-A0) + xve 

The necessary condition to mimimize / i s , 

dJ 

(31) 

= 0 

which leads to 

39 

2 f i r ( f t e - A 0 ) + XV = 0 (32) 

Equation (32) together with equation (28) forms a set of linear 
simultaneous equations which can be solved to give the 
unknown parameter vector 0 and X. Thus, af~ and b?, 
( = 1,2, . . . , rare determined. 

Example 1: Consider a fourth order system [10] 

C(s) 

U(s) 
= G(s) = 

28s3 + 496s2 + 1800* + 2400 

2s4 + 36s3 + 204s2 + 360s + 240 
(33) 

Table 1 at and bf of the reduced model 

77=5 

« i «2 bi 
m = 10 
m = l5 
m = 20 

77= 10 

1.42828 
1.42490 
1.42492 

a\ 

0.270364 
0.265935 
0.265961 

a2 

12.39181 
12.39243 
12.39243 

bt 

2.70364 
2.65935 
2.65961 

bi 
m = lQ 
m = 20 
m = 32 

77= 10 

1.86883 
1.86972 
1.86971 

0.859908 
0.861142 
0.861121 

ai 

12.25560 
12.25508 
12.25508 

bt 

8.59908 
8.61142 
8.61121 

b2
+ 

m* = \6 
m* = 32 
m* = 64 

15.2964 
24.7809 
55.7868 

16.8514 
30.2187 
54.5533 

17.4487 
12.0232 
12.9676 

168.514 
302.187 
545.533 

•Data were obtained from the work of Hwang and Shih [7]. 

Table 2 Square root of impulse response energy 

Method J0%(02*] 
Shifted Legendre 
matching 

Laguerre[71 

spectra 
matching 

Routh 
approximation 

original model 

Z/=5 

77=7.5 
7/=I0 
m= 16 
m = 32 
m = 64 

7.95111 
7.95078 
7.94930 
8.06442 
7.99303 
7.99788 

7.63800 

8.03335 

Table 3 Parameters of designing control system 

Kc Td 

Shifted Legendre 
method 

77=2.0, N=10 
77=3.0, N = 20 
77=4, N=15 
77=5, N = 20 
Tf=5, N = 25 
7 / = 10, N = 40 
Laguerre method[7) 

13.58053 
13.68791 
13.75941 
13.80771 
13.80771 
13.90792 
13.6079 

1.32689 
1.35229 
1.36651 
1.37507 
1.37507 
1.39033 
1.3398 

0.18438 
0.18053 
0.17742 
0.17493 
0.17493 
0.16768 
0.1841 

Let the reduced model be a second-order, 

C+(s) 
= G+(s)=-

bts + b} 
(34) 

U(s) v"' s2+a,+ s + a2
+ 

Equations (32) and (28) give the results for several values of m 
and Tf which are shown in Table 1. The results obtained from 
the Laguerre functions is also shown in Table 1 for com­
parison. 

The comparison of c{t) and c+ (t) with respect to a unit 
step input, u(t), is shown in Fig. 1. The frequency responses 
of the original and reduced model are shown in Fig. 2. Other 
comparisons of the impulse response energy of the original 
and reduced model and those of the Routh approximation 
[10] are shown in Table 2. The agreement is very satisfactory, 
especially for the present proposed method. 

Control System Design 

The control system design problems are frequently in-
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vestigated through the techniques of model reduction [6, 9]. 
Because of the availability of industrial specifications and the 
easiness to construct the low-order model, the industrial 
specifications are used to specify a lower order reference 
model. In this section, a set of PID controller parameters are 
found by employing the matching of information-bearing 
shifted Legendre spectra of the response of the reference 
model and those of the actual system with respect to a 
specified input. In general, the set of industrial specifications 
which are used by Chen and Shieh [9] for closed loop system is 
velocity error constant, kv, cross-over frequency, coc, and 
damping ratio, £. Usually a second order system, 

G = 
4.0615+16.83 

s2 + 5.745^+16.83 
(35) 

is able to satisfy these specifications. The above equation is 
obtained for kv = 10, coc = 5, and £ = 0.7 [7, 9]. 

The transfer functions of the process, Gp (s), and the 
proportional-integral derivative controller, Gc(s), are 
respectively, 

Gp (s) = 
1.6 

s 2 +2.8s+1.6 

Gc(s)=Kc(l+ — +Tds) 

(36) 

(37) 

Where Kc, T, and rd are to be determined to meet the 
specifications. The overall closed-loop transfer function of 
the control system is given as 

C(s) 

U(s) 
= G(s) 

1.6Kc(rds
2+s + - ) 

s1 +(2.8+1.6KcTd)s
2 + 1.6(1 +Kc)s+ • 

l.6Kr 

(38) 

For u(t) = 1, the series representation of the above equation 
is, 

A0 + (2.8 + 1.6ATcTd)A, +1.6(1 +KC)A2 

+ 1.6 — A3 = l.6Kc (7dr , +T 2 + 1/T,T 3 ) (39) 

Kc, Tj, and rd are then determined by least squares estimate. 
The computational results are shown in Table 3. The results 
are very close to the values obtained by Laguerre vector 
method [7]. 

Results and Discussion 

The main advantage of using shifted Legendre function to 
approach to model reduction problem is its stable charac­
teristics of the Legendre series. As shown in Table 1, the 
values of a,+ , a2

+ , bf < and Z>2
+ obtained by the present method 

approach to a finite value, respectively. In addition, the 
computational results are insensitive to the value of m chosen. 
For example, a,+ =1.42490 for m= 15 and a,+ =1.42492 for 
m = 20 by using Tf = 5. However, one probably cannot receive 
such good computational results for using Laguerre function 
method [7]. It is obviously to see the results in Fig. 1, the 
reduced model for m = 32 will be better than that of m = 64 by 
employing the Hwang and Shih's approach [7]. 

The other significance of using Legendre function is that 
the final time of the system can be arbitrarily chosen. Typical 
results for various values of Tf are also shown in Table 1. 

Comparing the frequency responses of the reduced model 
as shown in Fig. 2, the present proposed reduced model is 
better than that of the Routh approximation [10]. The 
computational values obtained from the present method 
receive a goodness of fit in frequency responses. 

In the present paper, a recursive algorithm for computing 
the expansion coefficients of the shifted Legendre function 
which is similar to the Laguerre function [7], is introduced. 
Therefore much computational time is reduced. In addition to 
calculation of the parameters are simple and straightforward. 
Therefore, the shifted Legendre function provides an effective 
tool in the reduction of models. 
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