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Abstract. In this research note, the follower location problem where the cus-
tomers’ choice is based on an attraction function is analysed. The attraction
function depends on both the distance between customers and facilities, and the
characteristics (quality) of the facilities. Customers at each node impose a
minimum level of attraction in order to patronise a facility and then they share their
buying power among the facilities that pass this threshold. The amount of demand
captured by each of these facilities is proportional to the attraction perceived by the
customers. In this case, a discretisation of this network problem is proved.
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1 Introduction

In this article, we investigate the follower competitive location problem in the
leader-follower model. In this model, a firm, the leader, operates in the market with
p � 1 facilities and a competitor, the follower, wants to enter the market opening
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r � 1 new facilities. If the market is represented by a network where any point is
a candidate location for a facility, the resulting follower problem is the (r|Xp)-
medianoid problem formalised by Hakimi (1983).

Many competitive location models studied in the field of Operations Research
assume that customers choose the facilities taking the distance as the unique
criterion. Nevertheless, this criterion is not very convincing when qualitative
differences between the facilities exist and the transport is not difficult. In some
papers, such as Eiselt and Laporte (1989b), Eiselt et al. (1989), Peeters and Plastria
(1998), Suárez-Vega et al. (2004), and Thill (1992, 2000), the models involve other
aspects related to the characteristics of the facilities in addition to the distance
between them and the customers, who take a choice according to the attraction or
utility that they perceive from the facilities. Useful reviews on competitive location
models can be found in Friesz et al. (1988), Eiselt and Laporte (1989a, 1996),
Serra and ReVelle (1995), and Plastria (2001).

The attraction perceived by the customers from the facilities has been repre-
sented mathematically by an attraction function that is increasing of certain
attributes such as the facility size, and decreasing of the distance. Different attrac-
tion functions, sometimes derived from utility functions, have been defined: mul-
tiplicative functions (Huff 1964; Nakanishi and Cooper 1974; Eiselt and Laporte
1988a,b, 1989b; Eiselt et al. 1989; Drezner 1994b, 1998; Plastria 1997), additive
functions (Drezner 1994a) and exponential functions (Hodgson 1981). Attraction
functions are used to define the customer choice rule, which represents the cus-
tomer’s behaviour and the flows of consumers in the market. Assuming certain
customer’s preferences, the firms, whose natural objective is the maximisation of
the market share or the profit, make location and facility attribute decisions,
influencing with their actions the results and strategies of their competitor. This
movement of individuals in the market leads to spatial interaction which can be
broadly defined as movement or communication over space that results from a
decision process (Fotheringham and O’Kelly 1989). A recent review of spatial
interaction modelling can be found in Roy and Thill (2004). Previous papers such
as those by Williams et al. (1990), and Williams and Kim (1990a,b), explore
different location-spatial interaction models.

The first spatial interaction models were gravity models, which assume analo-
gies between the human behaviour and the Newtonian gravity laws. The basic
gravity formulation, in which the movement of individuals between two points is
inversely proportional to the distance separating these two points, was applied by
Reilly (1929, 1931) and Converse (1949) to analyse retail market areas. Later,
Huff (1964) proposed an alternative model to overcome certain limitations of the
Reilly-type approach. According to this new model, the probability that a customer
at i buys at a facility j is given by:
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where aj represents the size of a service centre j, dij is the distance (or travel time)
from demand point i to facility j and l is a parameter which reflects the effect of
the distance on the consumer’s behaviour, and whose value is estimated empiri-
cally. The quotient a dj ij

λ can be interpreted as an attraction function representing
that the attraction felt by a customer at point i towards facility j is directly
proportional to the size of the facility, and inversely proportional to a power of the
distance between them. Different probabilistic choice models can be derived from
different assumptions about the sampling design, and about the size distribution of
large enough errors (Leonardi and Papageorgiou 1992).

The most frequent customer choice rules treated in the related literature are
binary and proportional preferences. Customers show binary preferences when
they patronise only the most attractive facility. Proportional preferences mean that
customers purchase the product from all the facilities operating in the market, and
the amount of buying power captured by each facility depends on the attraction
exerted on the customers.

The assumption imposing that all the customers behave according to the same
choice rule, that is everybody patronise the most attractive facility or everybody
shares their buying power among all the facilities in the market, seems too
restrictive. To deal with a more realistic model, we propose the proportional choice
model with attraction threshold. In this case, we suppose that customers at each
demand node have associated a minimum level of attraction in order to patronise
a facility, and then they share their buying power among the facilities that pass this
threshold. This customer choice rule implies that different preferences can appear
in the same scenario. For example, when the attraction threshold is very low, this
rule is similar to that of the proportional preferences model. For higher threshold
values this procedure coincides with the binary preferences model. For interme-
diate threshold values, the customers’ choices may be different to both the above
cases. Note that when different attraction thresholds exist in the same node, the
problem can be easily solved defining artificial nodes with their corresponding
demand. The attraction threshold term utilised in this article is in some way similar
to the constrained choice-set concept used by Thill (1992, 1997, 2000). Since the
thresholds reflect the customers’ preferences, their values would be estimated by
means of a sample survey of the customers’ tastes.

In this research note, we analyse a competitive location model on networks
assuming proportional preferences with attraction thresholds. Among other
results, we prove an optimality node property. The remainder of the note is
structured as follows. The model is defined in Sect. 2. Discretisation results for the
network location problem are presented in Sect. 3. In Sect. 4, the problem assum-
ing different attraction thresholds at the same node is solved. Section 5 includes
some concluding remarks.

2 The model

Let N(V, E) be a weighted network with node set V vi i

n= { } =1 and edge set E, where
each node v has associated a weight w(v) (�0) and each edge e = [vi, vj] ∈ E, with
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vi, vj ∈ V, has associated a length l(e) (�0). Given x1, x2 ∈ [vi, vj], the closed
segment [x1, x2] is the subset of points of [vi, vj] between and including x1 and x2.
The open segment ]x1, x2[ is the set [x1, x2]\{x1, x2} and the semi-open segments
]x1, x2[ and [x1, x2[ are the sets ]x1, x2] = [x1, x2]\{x1} and [x1, x2[ = [x1, x2]\{x2},
respectively. It is assumed that N(V, E) represents a market where w(v) is the
demand (or buying power) at node v and l(e) represents the unitary transportation
cost along the edge e. For points x, y ∈ N(V, E), d(x, y) is the length of a shortest
path joining x and y.

The attraction felt by customers at node v towards a facility j at xj ∈ N(V, E )
with quality level aj is given by:

a
a

fvj
j

vj

= ,

where fvj = fv(d(v, xj)), with fv:ℜ →ℜ+
0 as an increasing concave function.

Let Yr = (x1, x2, . . . , xr) and Xp = (xr+1, xr+2, . . . , xr+p) be the locations of facili-
ties belonging to the entry firm, FY, and the existing firm FX, respectively, with
quality levels Ar = (a1, a2, . . . , ar) and Ap = (ar+1, ar+2, . . . , ar+p). Let Xp+r = (x1, . . . ,
xr, xr+1, . . . , xr+p) and Ap+r = (a1, . . . , ar, ar+1, . . . , ar+p) Demand at v captured by a
facility at xj is denoted by wj(v), "v ∈ V, 0 � j � p + r. Suppose that values for Ar,
Xp, and Ap are given, then the demand captured by the entry firm is given by:
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For each node v, an attraction threshold tv exists such that customers at v patronise
facility j at xj only if aj/fvj � tv.

Example 1. Consider the market in Fig. 1 where there exist a demand node v and
three facilities with different sizes (inside the boxes), and the digit next to the

v

2

0.75
6

5

4

0.5

F1

F3
F2

Fig. 1. Network for Example 1
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edges shows its length. Consider fv(d(v, xj)) = 1 + d(v, xj), then av1 = 0.4, av2 = 1,
and av3 = 0.5. If customers at v are very demanding, for example if 0.5 < tv � 1,
they only patronise facility 2 (binary preferences), but if they are not strict, such as
tv � 0.4, then they patronise the three facilities (proportional preferences). But for
intermediate thresholds, 0.4 < tv � 0.5, customers at v patronise facility 3, small
but the closest, and facility 2, distant but very big. Of course, if at a certain node,
customers with different preferences exist, the problem can be solved defining
several artificial nodes with their corresponding demand.

Let ϒ = {tv}v∈V then:

S v Y A S v x
a

f
j rv r r Y j

j
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is the set of the locations belonging to Yr that capture demand at v. Thus, the set:

S Y A S v V j r x S vr r Y j Yr r

− −( ) = = ∈ ∃ ∈{ } ∈ ( ){ }1 1 1ϒ, , , . . . with:

contains the nodes whose customers patronise a facility belonging to Yr. These sets
are defined in a similar way for Xp and Ap, and Xp+r and Ap+r. In this model, w(v) is
shared among the facilities belonging to the set SXp r+

( )ν , and the market share
captured by FY is:
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3 Discretisation of the problem

In this section we prove that this network problem can be solved evaluating a finite
set of network points. To obtain this result the following definition is necessary.

Definition 1. Given a quality level aj, a point x ∈ N(V, E) is a (v, tv, aj)-threshold
point if:

f d v x
a

v
j

v

, .( )( ) =
τ

Note that under the conditions imposed on fv, this equality is equivalent to:

d v x f
a

v
j

v

,( ) = ⎛
⎝⎜

⎞
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−1

τ
.

Let T(v, tv, aj) = {x ∈ N(V, E):x is a (v, tv, aj) - threshold point}, T(aj) =
∪v∈VT(v, tv, aj), and
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Each element in T is called a threshold point.
Consider the case where FY wants to enter the market with only one new

facility, Y1 = x1, with a given quality level a1. The facility x1 will capture demand
from node v if:
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Suppose x1 is located along the edge [s,t] ∈ E. The amount of demand at node v
captured by x1 along this edge is shown in Figs. 2 and 3.

Let d f av v
1 1

1= ( )− τν , then w1(v) along [s,t] is given by:
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Fig. 2. Market share captured by x1 along an edge (zero or one threshold points)
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1. d d v s d v tv
1 < ( ) ( ){ }min ., , ,

In this case, x1 never captures demand from v because d v x d x s tv, , ,1
1

1( ) > ∀ ∈[ ]
(Fig. 2 (i)).

2. d d v s d v tv
1 ≥ ( ) ( ){ }min , , ,

Suppose that min{d(v, s), d(v, t)} = d(v, s) (the case min{d(v, s), d(v, t)} = d(v, t)
is similar). In this case, depending on the number of (v, tv, a1)-threshold points
on [s,t], three situations may occur.
(a) There is no (v, tv, a1)-threshold point on [s,t].

As d v x d x s tv, , ,1
1

1( ) < ∀ ∈[ ] , every point x1 ∈ [s,t] captures demand at v
(Fig. 2 (ii)).

(b) A unique (v, tv, a1)-threshold point exists on [s,t].

Let x s t1* ,∈[ ] , such that d v x dv, *
1

1( ) = .

i. If x1
* is not a bottleneck, every point x s x1 1∈[ ], * captures demand at v

(Fig. 2 (iii)). The capture for x x t∈] ]1
*, is null.

ii. If x1
* is a bottleneck, every point x1 ∈ [s,t] captures demand at v (Fig. 2

(iv)).
(c) Two (v, tv, a1)-threshold points exist on [s,t].

If x1
* and x2

* are the threshold points, then points * *, ,x s x x t1 1 2∈[ ]∪[ ]
capture demand at v (Fig. 3).

For each edge [s,t] ∈ E, consider the partition generated by s, t and the (v, tv, a1)-
threshold points on ]s,t[ with v ∈ V. The demand captured by the facility at x1 is a
sum of functions, as are the ones plotted in Figs. 2 and 3, and then it is a convex
function when x1 moves along each subinterval of the partition. Therefore the
maximum capture is reached at a subinterval endpoint, that is to say, at a node or
at a threshold point.

t

d(v,x1)

demand at v captured by x1

*
2x

1
vd

*
1xs

Fig. 3. Market share captured by x1 along an edge (two threshold points)
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Proposition 2. Given Xp, Ap, and Ar, let Yr = (x1, . . . , xj, . . . , xr). Then the set SYr

−1

is constant when xj varies on ]s,t[ with ]s,t[ ∩ T(aj) = Ø and {s,t} ⊂ V ∪ T(aj).

Proof. Suppose, without loss of generality, that j = 1. If S x SYr

− −( ) =1
1

1 is not
constant when x1 varies on ]s,t[, then there exist ′ ′′∈] [x x s t1 1, , such that
S x S x− −′( ) ≠ ′′( )1

1
1

1 . Thus v S x S x∈ ′( ) ′′( )− −1
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1
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As fv(d(v, x1)) is a continuous and increasing function of x1 on ]s, t[, it follows that:
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and then there exists a point z x x s t∈ ′ ′′] [ ⊆ ] [1 1, , such that d v z f av v,( ) = ( )−1
1 τ

which means that z is a (v, tv, a1)-threshold point, and this is not possible.

Lemma 3. If g is non-decreasing and (strictly) concave and f is concave, then the
composite function g ° f is (strictly) concave.

Lemma 4. If g is non-increasing and (strictly) convex and f is concave, then the
composite function g ° f is (strictly) convex.

Proposition 5. Given Xp, Ap, Ar and the edge [s,t], let y s t Tk k

q{ } = ] [∩=1 , , ordered
by increasing value of the distance to node s. Let y0 = s and Yq+1 = t. Then the
function W x W Yj r0

( ) = ( ) with Y x x Xr = ( )1 0, . . . , , . . . , r , is convex on ]yk, yk+1[,
k = 0, 1, . . . , q.

Proof. Suppose, without loss of generality, that j0 = 1 and x1 ∈ ]yk, yk+1[. The
demand captured by firm FY is:

W Y w v

a

f

a

f

a

f

r

j

vjx S v

j

vj

j

vjx S vx S v

v

j Yr

j Xpj Yr

( ) = ( )
+

∈ ( )

∈ ( )∈ ( )

∑

∑∑
.

∈∈ −
∑

SYr
1

Let K
a

fvX
j

vjx S vj X

=
∈ ( )
∑ , and ′ = ∀ ∈ =

∈ ( ) { }( )
∑K

a

f
v V X X YvX

j

vjx S v x

p

j X \ 1

, , , r, then, W Yr( ) =

w v
K

K K
vY

vY vXv S

r

r pYr

( )
+∈ −

∑
1

.

130 R. Suárez-Vega et al.

Papers in Regional Science, Volume 86 Number 1 March 2007.



Let K
a

fvX
j

vjx S vj X

=
∈ ( )
∑ , and ′ = ∀ ∈ =

∈ ( ) { }( )
∑K

a

f
v V X X YvX

j

vj
p r

x S v xj X

, , ,
\ 1

, then, W Yr( ) =

w v
K

K K
vY

vY vXv S

r

r pYr

( )
+∈ −

∑
1

.

If x S vYr1 ∉ ( ), then
K

K K
vY

vY vX

r

r p
+ does not depend on x1.

If x S vYr1 ∈ ( ), then
K

K K

a

f
K

a

f
K K

a f K

a f

vY

vY vX

v
vY

v
vY vX

v vY

v

r

r p

r

r p

r

+
=

+ ′

+ ′ +
=

+ ′

+

1

1

1

1

1 1

1 11 ′ +( )K KvY vXr p

.

Since d(v, x1) is a concave function of x1 on ]yk, yk+1[ and fv is increasing and concave,
from Lemma 3, fv1 = fv(d(v, x1)) is concave, and K K KvY vY vXr r p

+ is convex

(applying Lemma 4 to (g ° fv1) with g x a xK a x K KvY vY vXr r p
( ) = + ′( ) + ′ +( )1 1 ).

Therefore, W(Yr) is a convex function of x1 on ]yk, yk+1[.

Proposition 6. Given Xp, let Ap, Ar, let Yr = (x1, . . . , xj, . . . , xr) and consider the
function W(xj) = W(Yr) with xj ∈ [s,t], such that ]s,t[ ∩ T(aj) = Ø and {s,t}
⊂ V ∪ T(aj), then the maximum of W(xj) on [s,t] is reached at either s or t.

Proof. Suppose, without loss of generality, that j = 1. Three different cases may
occur:

1. If {s,t} ∩ T(a1) = Ø, function W(x1) is continuous on [s,t] and as W(x1) is
convex on ]s,t[, it follows that:

max max .
x s t

W x W s W t
1

1∈[ ]
( ) = ( ) ( ){ }

,
,

2. If s ∈ T(a1) (the case for t is analogous), then there exists v0 ∈ V such that s is
a v av0 10

, ,τ( ) – threshold point, that is d v s f a fv v0
1

1 10 0
,( ) = ( )− . Let H = {v ∈ V :

$j = 1 . . . , r with s a (v, tv, a1) - threshold point}.
As {s,t} ∩ T(a1) = Ø, for each node v0 ∈ H only two situations can occur:

(a) If d(v0, s) > d(v0, s + d ), with d > 0 (sufficiently small), then function w1(v0)
(the amount of w1(v0) captured by x1) is continuous in [s,t] because node v0

patronises facility x1, "x1 ∈ [s,t].
(b) If d(v0, s) < d(v0, s + d ), with d > 0 (sufficiently small), then w1(v0) presents

a discontinuity at point s such that customers at node v0 patronise facility x1

if it is located at point s but not to the right of s.
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Let H define the following subsets:
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δ δ
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If H< = Ø then W(x1) is continuous and convex on [s,t] and this situation is similar
to case (i). Otherwise, W(x1) is convex on ]s,t] and it holds that W(s) > W(s + d )
with d > 0 sufficiently small, since x1 = s + d losses all the capture from nodes
belonging to H<. Therefore:

max max .
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W x W s W t
1
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( ) = ( ) ( ){ }

,
,

Proposition 7. Given Xp, Ap and Ar, there exists an r-tupla Y x x xr* *, *, . . . , *= ( )1 2 r

∈ ( )N V E r, , with x V T aj j
* ∈ ∪ ( ), such that:
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Proof. It follows from Proposition 6.

As on each edge, at most two (v, tv, aj)-threshold points for each node v exist, the
maximum number of candidates to locate a new facility is 2|V ||A| + |V |. If:

τ v
j

ik
j p r i k
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f
a A v v V v V≤ ∈ ∈⎧

⎨
⎩

⎫
⎬
⎭
∀ ∈+min : , , , ,

then all points belonging to xp+r capture part of the demand at v, "v ∈ V. In this
case, the model coincides with the proportional (r|Xp)-medianoid problem studied
by Hakimi (1990).

4 Considering nodes with different threshold levels

In this section, we present an example that shows the possible applications of this
model to the case where nodes with different attraction thresholds exist. Suppose
that there exists a market where the leader has a facility operating, and the follower
wants to enter the market with a new centre. This new facility must compete with
the existing one to maximise the market share captured. Each facility, new or
existing, is characterised by its quality level, and exerts an attraction to the demand
nodes that is directly proportional to its quality level, and inversely proportional to
an increasing function of the distance between facility and customers. In this note,
we suppose that customers at each demand node have associated a minimum level
of attraction in order to patronise a facility, and then they share their buying power
among all the facilities that pass this threshold.
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In general, the following assumption can be considered:

1. Each node vi contains customers with K different threshold levels, tik, k = 1 . . . ,
K, such that w v w vi k

K k
i( ) = ( )=Σ 1 , with w vk

i( ) the buying power of customers
located at vi with threshold level tik.

2. To solve the problem for every node vi, K artificial nodes vik with buying power
wk(vi), are considered.

Example 2. Consider the market proposed in Fig. 4. In this market there exist
three demand points located at the nodes of the network with a buying power of
two units (w(vi) = 2, i = 1, 2, 3). An existing facility is located at node v3 with a
quality level equal to one, that is X1 = v3, aX1

1= . Suppose that there exist two types
of customers with different threshold levels at each node, half of them with a
threshold value of 1/6 and the other half with a threshold value of 1/4.

Suppose now, that a competing firm wants to enter a new facility into the
market whose quality level is equal to one aY1

1=( ), and it has to decide the facility
location that maximises the market share. To take into account the different
threshold levels, three artificial nodes are considered; see Fig. 5 for the correspon-
dence between real and artificial nodes. Note that when only the leader is operat-
ing, its facility captures all the demand apart from the one belonging to v5 (the most
demanding customers at v2). As pointed out in Proposition 7, a solution to the
network problem of locating the follower’s facility can be found evaluating the
nodes and the threshold points of the network. In this case, the threshold points
obtained for customers at node v1 with threshold 1/6 when aY1
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See Fig. 5 for the physical location of these points. Note that, at most, two
threshold points may exist in the arc [vi, vj] because d(v1, x) = 5 can be reached both
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Fig. 4. Network used in Example 2
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through vi and vj. The rest of the threshold points are calculated in the same way.
Table 1 summarises the buying power, the threshold level, and the threshold points
for each demand node. Fig. 5 shows the potential locations for the problem
solution. Evaluating these points, we obtain the solution that maximises the market
share to be Y1 = x6, with W(Y1) = 3.1. The market share obtained at each possible
location, and the nodes that would patronise the new facility in each case are
presented in Table 2.

Fig. 6 shows the demand distribution pattern for the problem solution. Note
that customers at node v6 do not patronise facility Y1, whereas customers at v5 only
patronise the new facility. The rest of the nodes share their demand, proportionally
to the attraction perceived, between the two facilities operating in the market.

5 Conclusions

In this research note, the follower location problem on networks with attraction
threshold is analysed. The amount of node demand that is captured by a facility
depends on the attraction that the facility exerts towards customers at that node.
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Fig. 5. Network for Example 2 with the artificial nodes

Table 1. Data for the nodes of Example 2

Node w(vi) τ vi
T vi vi

, ,1τ( )
v1 1 1/6 {x1, x2}
v2 1 1/6 {v3, x3}
v3 1 1/6 {v2, x4}
v4 1 1/4 {v3, x5}
v5 1 1/4 {x2, x6}
v6 1 1/4 {v1, x7}
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This attraction is a function of the facility quality level, and the distance between
facility and demand node. While most of the related models consider the same
choice rule for all the customers in the market, in this article a differentiation
among the consumers’ preferences is included. In this case, it is assumed that
customers located at each node impose a minimum level of attraction in order to
patronise a facility, and then they share their buying power among the facilities that
pass this threshold. This implies that customers at certain nodes may present
binary preferences (high attraction thresholds), proportional preferences (low
attraction thresholds) or a behaviour that combines these two preferences (inter-
mediate thresholds).

A discretisation result for the proposed model has been proved. Taking into
account this result, an example has been solved to illustrate the applicability of this
customer choice rule. Although a single facility problem is studied in the example,
the theoretical results presented in the article can be used to solve the multi-facility
problem. Nevertheless, when the number of new facilities increases, the comple-
xity of the problem may hinder the exhaustive search of the solution and the use
of combinatorial tools would be necessary.

Table 2. Results obtained for the potential locations

Location W(Y1) Captured nodes

v1 2.545 v1, v2, v3, v4, v6

v2 2.746 v1, v2, v4, v5

v3 2.500 v1, v2, v3, v4, v6

x1 2.316 v1, v2, v3, v5

x2 2.433 v1, v2, v3, v5, v6

x3 2.264 v1, v2, v3, v4, v6

x4 2.952 v1, v2, v3, v4, v5

x5 2.750 v1, v2, v4, v5

x6 3.100 v1, v2, v3, v4, v5

x7 2.066 v2, v3, v5, v6

5

3

4
v2

v5

v1

v4

v3

v6

Y1

X1

Fig. 6. Demand distribution pattern
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