
Computing Creativity:
Divergence in Computational Thinking

Vicki Bennett
Department of Communication

University of Colorado at Boulder
Boulder, CO 80309
+1 (303) 995-2802

Vicki.Bennett@colorado.edu

Kyu Han Koh
Department of Computer Science
University of Colorado at Boulder

Boulder, CO 80309
+1 (303) 495-0357

kohkh@colorado.edu

Alexander Repenning
University of Colorado at Boulder

430 UCB
Boulder, CO 80309
+1 (303) 492-1349

ralex@cs.colorado.edu

ABSTRACT
Conventionally creativity is often conceived as an aptitude to be
discovered in an individual that cannot be mathematically
measured. But the concept of creative thinking as a divergence
from a standard “norm” is used in creativity research for the
purpose of assessing creativity and is also linked to non-
traditional or creative processes that lead to unique and divergent
artifacts [1,2]. Using Computational Thinking Pattern Analysis
(CTPA)[3], the divergence between implemented computational
thinking patterns in a student-created game, and that game’s
tutorial “norm” is calculated as an indicator of creativity. Through
a case study of one teacher using three unique learning conditions,
CTPA’s computed divergence is explored as a valid measurement
of creativity in these student games.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computers and Information
Science Education

Keywords
ACM proceedings, Computational Thinking, Computational
Thinking Pattern Analysis, Creativity Measurement, Game Design

1. INTRODUCTION
In our previous research, we reported that a game design class
could foster student creativity in public schools [4]. The aspects of
game design documented were character/agent design and
level/worksheet design. A visual inspection of authored agents
and worksheets, plus classroom observations yielded the data for
our conclusions. This type of data assessment was necessary due
to the lack of a computational tool capable of measuring creativity
in game design programming solutions.

Measuring the creative aspects of programming decisions that
students employ can reveal teaching protocols for successful
increases in the quality and quantity of those creative solutions.
Measuring creativity in programming presents a unique obstacle.
Since manually analyzing game programming patterns for
creative divergence is labor intensive, a computational tool for

creative assessment was sought. CTPA was developed as a tool
for teachers and researchers to gauge game design accuracy. We
surmised that a further expansion of CTPA could possibly assess
indications of creativity as “divergence from the norm,” where the
“norm” is defined as the standard tutorial for each specific game.

1.1 Creativity Defined as Divergence
Defining a multi-faceted concept such as creativity presents
measurement difficulties. Research investigations into creative
processes usually describe them as the identifying or discovery of
a problem and/or its solution. The solution or outcome must be
significantly unique or divergent from other possible solutions [5],
especially from the predetermined solution of the test. Herring et
al [6], report that creativity can be produced regularly through the
exposure to multiple visual examples of a similar nature, and
multiple examples usually support a more divergent perspective of
the problem, which in turn fosters more creative or divergent
solutions. Currently, the most common measure of creativity for
creativity research purposes is based on tests of divergence [1, 5,
7]. Tasks designed to distinguish divergence are currently the
most recognized creative assessments [2, 8]. Although the quality
and quantity of the solutions to the task must be considered,
divergence from the accepted “norm” is commonly considered to
be a significant indicator of creativity. The solution does not need
to be totally unique or of high quality to be assessed as creative.

For example, the figure below (Fig. 1) illustrates several different
Frogger design examples from different Frogger games created by
6th graders. All of them are divergent from the standard solution,
provided by their teachers (Fig. 2). Similar to other skills,
creativity can be learned and practiced. Consequently, creative
efforts are not always of high quality, especially in the beginning.
But, can creativity be measured computationally?

Inspired by the notion of divergent thinking tasks, we devised a
method or tool (CTPA), divergence calculation [9], to more
accurately assess creativity in programming solutions. Using
comparative divergent thinking tasks as a measurement criteria for
creativity in programming solutions should yield valid results,
since computer programming lends itself to computational
solutions and assessing divergent elements in programming
solutions should be possible through a mathematical calculation.

Throughout the 2010/2011 school year, some early stages of
mathematical measurement were investigated to calculate
divergence in game programming in the Scalable Game Design
project [10, 11]. One teacher presented lessons in three different
conditions during 2010/2011 school-year. Since these three
conditions lent themselves to a traditional experimental set-up,
already accounting for the teacher influence as a variable, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGSCE'13, March 6–9, 2013, Denver, Colorado USA.
Copyright © 2013 ACM 978-1-4503-1868-6/13/03... $15.00

359

game divergence from the tutorial norm was calculated with the
addition of the implications of the creativity measurement.

Figure 1. Frogger Design by Students

Figure 2. Standard Frogger Design

1.2 Scalable Game Design Project
Although game design is often believed to be a creative endeavor,
for the programming novice, this is not usually the case. A
student’s first experience can often be boring or disappointing at
best and debilitatingly frustrating at worst. The Scalable Game
Design (SGD) Project investigates the use of game design as a
means to encourage interest in programming and computer
science in middle school students. As members of SGD project
research team, the authors often have opportunities to visit and
observe middle school teachers during project implementation
classes. During these classes the authors often observed an
outpouring of creativity. Even though participating classes follow
specific curriculum content and upload their self-created games to
the Scalable Game Design Arcade (SGDA) at the completion of
each course module, individual teachers add their own style to the
curriculum parameters. This is observed in person and from the
submitted games’ programming analyses with the CTPA. A visual
inspection for agent and worksheet creativity is also conducted.

1.3 Scalable Game Design Arcade
In support of the Scalable Game Design project, we designed and
operated a cyberlearning infrastructure, Scalable Game Design
Arcade (SGDA). SGDA works as an online repository for
collecting games/simulations that are created by middle school
students from participating schools. SGDA consists of three parts:
a main page, an assignment gallery, and an individual page. The
main page displays recently submitted games, the most
downloaded games, and the most played games, while the
assignments gallery shows multiple submitted games/simulations
that are submitted by participant school students in one unit class
(not shown). The individual page displays a screenshot of a
submitted game/simulation, the Computational Thinking Pattern
Analysis (CTPA) graph [[9], links for playing and downloading
games/simulations, and a similarity score between a given
game/simulation and four tutorial games (Fig 3). Any user who
accesses SGDA can play, download, and/or rate a game without a
time lag after the submission is made.

1.4 Using Examples for Creativity
Examples are one of the most commonly employed methods of
facilitating creativity. The use of multiple examples of other
people’s creative activities, often give rise to ideas and solutions
we would not otherwise consider. Most project teachers choose to
have their students play the games on SGDA before formal
instruction, as a motivational tool to engender interest and

encourage familiarity with a specific game. Promoting creativity
in their students’ games was an unexpected effect. The teachers
saw a creative increase in their students’ abilities in comparison to
other project lessons [4]. The use of multiple examples on SGDA
is consistent with stimulating creativity, while providing
motivation, as intended.

Galler
y Page of SGDA

Figure 3. The Individual Page of SGDA. Individual page

illustrates the screenshot of the game (upper left), Run and
Download button (upper right), the game’s similarity score
compared to four tutorial games (middle right), a similarity
score matrix showing similarly programmed games to the
submitted game, and the CTPA graph (bottom right & left).

2. METHODS
Methodology for this case study incorporated multiple classroom
observations, the CTPA of submitted student games, and the
divergence calculation to assess creativity. Inspired by Latent
Semantic Analysis [12], we developed the concept of Semantic
Subject Analysis (SSA) that uses multiple high dimensional
cosine calculations to analyze semantic meanings of a given
context with several pre-defined subjects.

Latent Semantic Analysis (LSA) was devised to compute the
similarity between two given essays: a student-written essay and a
sample essay [12]. LSA can be used as a grading-aid tool for text
assignments by calculating the high dimensional cosine value
between the student-created text and sample/standard text.
However in LSA, the high dimensional cosine value calculations
between the text and the target-text can express the similarity
between these two texts as a single value, only. On the other
hand, SSA can show the semantic meaning of a given text by
calculating multiple high dimensional cosine calculations. These

360

value calculations compare the similarity of the given context to
the pre-defined subjects semantically within that context.

2.1 Computational Thinking Patterns
Computational thinking is a high level concept, and still has not
been clearly defined in one sentence [13]. So we conceptualized
Computational Thinking Patterns within the game design context
to help students and teachers understand how CT can be
practically utilized [10]. A Computational Thinking Pattern (CTP)
is an abstract form of programming, which can be easily found in
game and simulation programming. For example, the CTP,
Generation, represents one agent creating another agent (i.e. a gun
shoots a bullet or one cell splits in two). While CTP, Absorption
represents that same bullet ‘disappearing’ as it enters the target. In
this way, each CTP represents only one complete phenomenon or
behavioral concept in a game or science simulation design.

2.2 Computational Thinking Pattern Analysis
The Computational Thinking Pattern Analysis (CTPA) is a
specified version of SSA, within which nine canonical
computational thinking patterns work as pre-defined subjects
within a given game’s context. The SSA structure appeared to be
a good fit for comparing computational thinking patterns within
student-submitted games to the tutorial standard used to teach
those specific games. Consequently, SSA was revised to analyze
the semantic meaning of the computational thinking pattern
concept. To reflect the tool’s analysis capabilities, we named the
tool, the Computational Thinking Pattern Analysis [3].

CTPA tool consists of two parts: a computational thinking pattern
analysis (CTPA) and a computational thinking pattern analysis
graph (CTPAG). CTPA compares the similarity between a given
programmed artifact and the nine pre-defined subjects (nine
canonical CT patterns). For each programmed artifact nine high
dimensional cosine calculations are computed which results in
nine values between 0 and 1. The result of this CTPA is visualized
as a form of spider graph with nine values displayed graphically
in comparison to the same nine values calculated for the standard
tutorial. The CT patterns for the standard tutorial of a given game
overlap the CT patterns of the submitted game in different colors.
The graphic display is called the CTPA graph or CTPAG. The
CTPAG (Fig 4) visualizes the semantic similarity between a given
game/simulation through each computational thinking pattern
available. The equation below illustrates a high dimensional
cosine calculation for the CTPA [3].

In this equation (below), u and v mean a given game/simulation
and one canonical computational thinking pattern respectively.
Also, n means he vector size of a game/simulation or CT pattern,
and m means the number of computational thinking patterns that
are applied to CTPA, currently 9. The calculated result of CTPA
through CTPA (1) to CTPA (m) could be represented as an m
length vector.

Specifically for the above equation, the Computational Thinking
Pattern Analysis (CTPA) is computed by calculating the value of
cosine � between two n-dimensional vectors that represent a
given game and one computational thinking pattern. Thus, the

CTPA graph in Fig 4 requires nine high dimensional cosine
calculations between the Frogger game and the nine
computational thinking patterns: Cursor Control, Generation,
Absorption, Collision, Transportation, Push, Pull, Diffusion, and
Hill Climbing. The CTPA graph visually depicts the difference or
divergence between the norm (tutorial standard-green) and each
individual student’s submitted artifact (brown) by overlapping the
two images in different colors in one graph.

Figure 4. CTPA Graph Example 1. This graph is an actual
student’s example of a game of Frogger.

2.3 Divergence Calculation
The data previously collected from our class observations and
interviews illustrate that the students’ game artifacts showed
increased creativity within the Scalable Game Design project.
Previously some of these students referred to the making of the
game (agent & worksheet design) as “all their own” [4]. This type
of ownership appears to be consistent throughout the design of the
agent depictions and worksheets. Our classroom observations
confirmed that this “ownership” was related to divergence from
the norm and/or creativity. We wanted to find evidence of creative
ownership in the programming element of the student game
artifacts, as well. With a mathematical method of calculating the
divergence in the game programming, it seemed possible.
Divergence in programming could be assessed through the
evaluation of the differing approaches each student employed
within the specified design parameters. In other words, when
faced with a difficult challenge for agent behavior design, each
student defined that programming challenge in a way that
specified an accurate programming solution [7]. Consequently,
creativity in game programming could be described as the
divergence of a specific programming solution utilized by one
student and not another in comparison to the SGD online tutorial
standard. From this we devised the divergence calculation to
demonstrate student-programming creativity as a divergence
calculation from the “norm” or SGD online tutorial standard.

We recognized that computing creativity as divergence from the
“norm” within the framework of CTPA could be possible. CTPA
was already used to validate the students’ game artifact solution
divergence in comparison to the tutorial. So, it seemed logical to
investigate its use for computing creativity. Figure 4 depicts a
student-submitted game in comparison to the standard SGD online

361

tutorial [3]. In figure 4, the difference or space between the
tutorial (green) and the submitted artifact (brown) visually
displays the divergence of a student’s Frogger game from the
tutorial “norm.” Since each axis on the CTPA graph represents
one element in a vector, the CTPA graph represents a nine-
element vector, where each element represents a CT programming
pattern that could be chosen by the student as part of his/her
programming solution. Thus, the divergence of a student-created
artifact from the tutorial “norm” can be calculated as the
difference between two nine-element vectors; one is from the
tutorial and the other is from the submitted artifact. The
Divergence Score is calculated from the length of vector
difference of the nine-element vector. The equation of the
Divergence Calculation is depicted below.

In this equation, u and v represent a tutorial and a given game
respectively, and n represents the number of computational
thinking patterns, which is equal to 9. At the current point in our
research, 9 computational thinking patterns are used to
accommodate the Agentsheets software, as well as the nine
patterns taught within the Scalable Game Design project
curriculum.

For example in Fig 4, the student-submitted game and the tutorial
can be represented as nine dimensional vectors respectively
(0.525, 0.557, 0.432, 0.641, 0, 0.687, 0.721, 0, 0.197) and (0.373,
0.499, 0.679, 0.623, 0.096, 0.455, 0.51, 0, 0.106). The difference
of those two vectors is (0.152, 0.058, -0.247, 0.018, -0.096, 0.232,
0.211, 0, 0.091). The normalized (divided by the value of rooted
n) length value of that vector is 0.15, and this is the value of
divergence score of the given game.

Equally, when a student-submitted game is exactly the same as
the tutorial, there is no difference between those graphs. So the
submitted game and the tutorial can be represented as following
vectors, (0.373, 0.499, 0.679, 0.623, 0.096, 0.455, 0.51, 0, 0.106)
and (0.373, 0.499, 0.679, 0.623, 0.096, 0.455, 0.51, 0, 0.106). The
difference of those two vectors, of course, is (0, 0, 0, 0, 0, 0, 0, 0,
0). The value of 0 represents no difference between a given game
and the tutorial, so the game’s programming is identical.

2.4 Three Class Conditions
Sheryle (pseudonym), the teacher selected for this study, taught
three unique class conditions. Initially she taught the project class
based on the SGD online tutorial. Subsequently, she designed her
own tutorial for her regular in-class students and then transferred
her tutorial adaptation to an online version of the project class.
This offered a rare opportunity to compare three unique class
conditions without having to consider teacher influence as a
random variable. In all three class conditions the uploaded student
games were noticeably divergent from the SGD tutorial “norm.”

Common factors identified from all three class conditions taught
by Sheryle are as follows:

 Sheryle is the teacher of record for all classes

 She alone helps the students complete their games

 She followed the project curriculum content parameters

 Frogger is the first project game taught to all classes

 Frogger is the game uploaded by all students

 Frogger is the only uploaded game analyzed

3. CREATIVITY IN GAME DESIGN
Runco and Okuda [5] describe creativity as divergence from the
norm. Through observations of the project classes and the sets of
games produced by these classes, we conceptualized that the
differences between the individual student-created games and the
tutorial could logically indicate creativity as computed divergence
from the “norm.” So, the CTPA processed data comparisons were
utilized for measuring/computing creativity from the games
uploaded to the Scalable Game Design Arcade (SGDA).

3.1 Game Dimensions and Creativity
The game design process allows for variations and/or individual
divergence along three main dimensions: character, level and
behavior (descriptions below). Creativity can be expressed within
all three of these described game dimensions. Assessing the
creativity or divergence from the “norm” in agent and level design
can be detected by a simple visual inspection of the artifacts. In
our previous research [4], we demonstrated that divergence in
character design and level design can indicate creativity.

Characters: The characters or agents in AgentSheets [14], make
up the entire game worksheet. If an agent doesn’t exist for a
specific object, that object does not exist in that particular game.
In Frogger, agent depictions include frogs, trucks, streets, turtles
and a river.

Levels: Levels may vary enormously. The only constant is that
each succeeding level should be more difficult than the
proceeding one. In AgentSheets, each game level is represented
by a worksheet, similar to a blank painter’s canvas. The student
lays out his/her created agents into a configuration that is most
pleasing to them. The game level sequence, as well as the
difficulty of the levels can show a students’ creativity or
divergence from the tutorial “norm.”

Behavior: The programming that students create, determines the
behavior of characters, and is the most complex aspect of the
game-design process.

Our current study anticipates the clarification and/or development
of assessment possibilities for the behavioral dimension as well.

3.2 Creativity: Programming (Behavior)
Programming an agent as the student envisions can be
problematic due to multiple available programming solutions. The
specific approach an individual student uses to program his/her
game differently than the tutorial is a divergence from that
standard “norm” and an indication of creative programming.
Although a game’s programming (behavior) can also be examined
through a visual inspection, the process is labor intensive and
time-consuming. Consequently, when evaluating programming,
originality and/or “divergence from the norm” the process is not
as simple as the assessment of the agents and levels. Manually
inspecting each game for creativity in the same manner would be
an extremely time-consuming process. So in order to find a
method for calculating divergence in game programming that was
less time consuming the divergence calculation was developed.

362

4. FINDINGS
For this investigation we chose three unique class conditions that
were taught by a single teacher. This allowed us to keep the
experimental focus on the divergence calculation as an indication
of creativity, as opposed to teacher influence. Findings show a
marked difference between the three class conditions in regards to
programming divergence, as well as class difference, as
represented in Figure 5.

4.1 Divergence Calculation Graph
In Figure 5 (above), the graph depicts the collected data of all
Frogger games during 2010-2011 academic year from Sheryle’s
three-class conditions, using the divergence calculation above.
Each individual student-submitted game is placed on the graph
according to the calculated divergence represented by his/her
game. The different colors represent the three class conditions.
The three distinguishable clusters accurately represent the three
distinct class conditions. The left cluster (blue) displays a sparser
more scattered pattern than the middle (purple) and right (red)
clusters. In this analysis, 296 Frogger games are represented by
this graph. Until the 171st game submission, the students' Frogger
games were highly divergent from each other. From the 172nd
submission the games started to converge into each other.
Coincidentally, the 172nd game submission was the exact time
frame when Sheryle started using her own tutorial in place of the
official SGD online tutorial. It appears that although her teaching
style was unchanged, her presentation of the material had evolved
in some fashion.

Table 1. Standard Deviation Calculation

Using the standard deviation equation above we also calculated
the class standard deviation, as well as the class divergence

average. Those are displayed in Table 2 (below). It appears that
while the “2010 In-class” condition (blue) with the widest pattern
spread in Figure 5, also shows the largest standard deviation
within the class, while the “2011 Online class” (red) with the
narrowest spread, has the smallest standard deviation within the
class. This means that the games in the “2010 In-class” condition
are more divergent to each other than the games in “2011 Online”
class condition.

Table 2. Divergence Calculation Score in Each Class

Divergence Score Standard Deviation Average

In Class 2010 0.074 0.135

In Class 2011 0.057 0.186

Online 2011 0.011 0.314
We conjecture that not only is the revised tutorial a significant
factor in the represented divergence between class conditions, but
that the in-class/online condition comparison also appears to be a
significant factor affecting the divergence calculation for at least
two class conditions, effecting calculated creativity.

5. DISCUSSION
Previously, we have documented indications of creativity in two
game design aspects, agent design and level/worksheet design [4].
Showing creativity in the programming aspect of game design
through the divergence calculation is the goal of this study.
Currently, the most common indication of creativity is based on
divergence assessments [1,5,7]. Using this standard, we have
developed a mathematical measure of divergence for game
programming, that calculates the difference of each programming
sequence of a submitted game from the game tutorial “norm.” The
main difference in our measurement of creativity, is the use of a
mathematical calculation in place of the subjective appraisal by a
trained rater. The “norm” for standard creativity tests is usually a
predetermined standard solution, similar to the SGD online
tutorial. Since, the SGD tutorial is commonly used by most

Figure 5. Scattered Divergence Calculation Graph: X-axis represents time by order of submission. Y-axis represents Divergence
Score. Each dot means individual submission. 296 Frogger games are displayed in this graph.

363

project teachers, it is the “norm” for the SGD curriculum or
standard by which the teachers judge or grade their students’
work. So, based on traditional measures of creativity, individual
game divergence from the SGD tutorial should indicate the
presence of individual and/or group creativity.

Although the same teacher conducted the three, class-conditions
discussed in this paper, operationally eliminating teacher
influence as a mitigating variable in the divergence calculation,
we recognize a teacher rarely teaches multiple classes exactly the
same. However, for the present purpose of beginning a validation
process for the divergence calculation as a measurement method
of creativity, we believe we have documented compelling support.
So, when looking at the Scattered Divergence Calculation graph
(Fig. 5) the three separate clusters, representing these three class
conditions, are obvious. Even without the designating colors, the
three class conditions stand apart from each other, as distinct
clusters. So, although the implications and meanings of the
different cluster spreads is not clear at present, the most
significant feature of the Scattered Divergence Calculation graph
in Figure 5 is that each of the three separate class-learning
conditions generates a unique divergence pattern. Since each of
the separate conditions is unique, then the first validity test should
be to show that the divergence calculation can demonstrate that
uniqueness in the game programming analyses and it does. The
amount of creativity from divergence that each cluster pattern
represents is not as important as the fact that it displays
programming distinctiveness within the divergence calculation
model, in general, in three separate learning conditions.

The divergence calculations are supported by other data sources,
such as the teacher’s unsolicited comments about her students’
creativity and our observations of student enthusiasm and
creativity in the physical classroom settings. Space limitations
prevent us from more disbursing more details of these sources.
Previous research on the use of examples for promoting creativity
would also tend to support the divergence calculation since SGDA
examples are a common teaching tool for student motivation. We
additionally conducted a manual inspection of the programming
code to support the actual divergence calculation within a random
sample of the chosen uploaded games as a fail-safe.

Current creativity research for showing indications of creativity is
founded on common comparisons for divergence. Similarly, our
divergence calculation was utilized for three separate class
conditions and resulted in three separate divergence patterns.
Indications show that these divergence calculations could
demonstrate, not only creativity indications within programming
solutions, but that these calculations are subtle enough to
differentiate between different class learning conditions of the
same teacher.

So grounded on the basis that creativity can be shown through
divergence in thinking [1,5,7], it is logical to conclude that
creativity in game programming solutions can be exposed through
a similar divergence in programming pattern solutions from a
consistent format, in this case the SGD tutorial “norm.”
Consequently, we believe that the divergence calculation model
can significantly inform the measurement of creativity within
programming and possibly other scientific areas. We look forward
to further investigating the more specific indications and
meanings of the divergence calculations, cluster spreads and how
these might relate to the quality of the creative solutions
employed, especially to gain an understanding of how individual
students determine the solutions they use to program their games
and how that relates to the tutorial “norm” within the curriculum.

6. ACKNOWLEDGMENTS
This work is supported by the National Science Foundation under
Grant Numbers DLR-0833612 and IIP-0848962. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

7. REFERENCES
[1] Torrance, E.P. “Creative teaching makes a difference.” In

J.C. Gowan, J. Khatena, & E.P. Torrance (Eds.), Creativity:
Its Educational Implications (2nd ed., pp. 99-108). Dubuque,
IA: Kendall-Hunt, 1981.

[2] Kaufman, J. C., Plucker, J. A., & Baer, J. “Essentials of
creativity assessment.” Hoboken, NJ: Wiley, 2008.

[3] Koh, K. H., Basawapatna, A., Bennett, V., Repenning, A.,
“Towards the Automatic Recognition of Computational
Thinking for Adaptive Visual Language Learning.” IEEE
International Symposium on Visual Languages and Human-
Centric Computing 2010, Leganés-Madrid, Spain, September
21-25, 2010

[4] Bennett, V., Koh, K. H., Repenning, A., “CS Education Re-
Kindles Creativity in Public Schools.” ITiCSE '11: Annual
Conference on Innovation and Technology in Computer
Science Education, Darmstadt, Germany, June 27-29, 2011.

[5] Runco, M.A. & Okuda, S.M. “Problem discovery, divergent
thinking, and the creative process.” Journal of Youth and
Adolescence, 17:3, 211-220, 1988.

[6] Herring, S.R., Chang, C.C., Krantzler, J. & Bailey, B.P.
“Getting inspired! Understanding how & why examples are
used in creative design practice.” CHI2009, 87-96, 2009.

[7] Csikszentmihalyi, M., and Getzels, J. W. “Discovery-
oriented behavior and the originality of creative products: A
study with artists.” J. Personal. & Social. Psychol. 19: 47-52,
1971.

[8] Williams, F.E. “Creativity assessment packet examiner’s
manual.” Austin TX: PRO-ED, 1993.

[9] Koh, K. H., Bennett, V., Repenning, A., “Computing
Indicators of Creativity.” ACM Creativity & Cognition 2011,
The High Museum of Art · Atlanta, Georgia, USA,
November 3-6, 2011

[10] Basawapatna, A., Koh, K. H., Repenning, A., Webb, D.,
Marshall, K., “Recognizing Computational Thinking
Patterns.” SIGCSE 2011: Reaching Out The 42nd ACM
Technical Symposium on Computer Science Education,
Dallas, Texas, USA, March 9-12, 201

[11] Koh, K. H., Bennett, V., Repenning, A., “Inspiring
Collaborative Benefits: An Interaction between a Virtual and
a Physical Group Learning Infrastructure.” Western
Canadian Conference on Computing Education (WCCCE
2010), Okanagan, B.C., Canada May 7-8, 2010.

[12] Landauer, T.K., Foltz, P.W. & Laham, D., “Introduction to
Latent Semantic Analysis. Discourse Processes.” 25, 1998,
259-284.

[13] Wing, J.M. “Computational Thinking.“ Communications of
the ACM, 49:3, 33-35, 2006.

[14] Repenning, A. "AgentSheets®: an Interactive Simulation
Environment with End-User Programmable Agents." In Proc.
Interaction 2000, Tokyo, Japan, 2000.

364

