
On the complexity of inverting integer and polynomial
matrices

Arne Storjohann

David R. Cheriton School of Computer Science

University of Waterloo, Ontario, Canada N2L 3G1

July 24, 2008

Abstract

An algorithm is presented that probabilistically computes the exact inverse of a non-
singular n×n integer matrix A using O (̃n3(log ||A||+log κ(A))) bit operations. Here,
||A|| = maxij |Aij | denotes the largest entry in absolute value, κ(A) := ||A−1|| ||A|| is
the condition number of the input matrix, and the soft-O notation O˜ indicates some
missing log n and log log ||A|| factors. A variation of the algorithm is presented for
polynomial matrices. The inverse of any nonsingular n × n matrix whose entries are
polynomials of degree d over a field can be computed using an expected number of
O (̃n3d) field operations. Both algorithms are randomized of the Las Vegas type: fail
may be returned with probability at most 1/2, and if fail is not returned the output is
certified to be correct in the same running time bound.

1 Introduction

Let A ∈ Zn×n be nonsingular. We denote by ||A|| := max |Aij| the maximum magnitude of
entries in A, and by κ(A) := ||A|| ||A−1|| the condition number of the matrix with respect
to the max norm. We give a Las Vegas probabilistic algorithm that has expected running
time O (̃n3(log ||A|| + log κ(A))) bit operations to compute the exact inverse of A. Thus,
for a well conditioned A, with κ(A) bounded by a polynomial function of n log ||A||, this
cost estimate becomes O (̃n3 log ||A||). For comparison, the sum of the bitlengths of all
entries in the inverse of a nonsingular A ∈ Zn×n may be more than n3 log2 ||A|| bits. To
the best of our knowledge, the best previously known complexity estimate for integer matrix
inversion is O (̃nω+1 log ||A||) bit operations, supported by any of the classical approaches
such as homomorphic imaging and Chinese remaindering [6, Section 5.5], quadratic lifting via
Newton iteration, or a recursive version of fraction-free Gaussian elimination [23, Section 2].
Here, ω is the exponent for matrix multiplication over a ring [2, Chapter 1] and the soft-O
notation O˜ indicates some missing log n and log log ||A|| factors.

1

Now consider the case of polynomial matrices. Let K be a field, and let A ∈ K[x]n×n be
nonsingular with entries bounded in degree by d > 0. The inverse of A may require on the
order of n3d field elements to represent. Similar to the integer case, a variety of classical
approaches for polynomial matrix inversion exist, all with a cost estimate of O (̃nω+1d) field
operations from K. We refer to [10, Section 1] for a brief survey of previous methods, and
for a discussion of some of the progress made in obtaining faster algorithms for problems on
polynomial matrices. Jeannerod and Villard [10] propose a new approach that, for a generic
A with n a power of two, will compute A−1 in O (̃n3d) field operations. In this paper we
adapt our approach for integer matrix inversion to the polynomial case. By incorporating
some algebraic preconditioning techniques that are particular to polynomials, we obtain a Las
Vegas probabilistic algorithm that has expected running time O (̃n3d) for any nonsingular
input.

The discovery of the essentially optimal inversion algorithm for generic polynomial ma-
trices in [10], and the recent progress made in reducing the complexity of many basic linear
algebra problems on integer matrices, motivates us to develop an alternative algorithm for
inversion that is applicable to integer matrices. Assuming ω = 3, we recall in the next two
paragraphs some key results for two problems that are particularly relevant for this paper:
nonsingular rational linear system solving and determinant/Smith-form computation. For a
survey of work that has been done on computing these and other integer matrix invariants,
as well as incorporating fast matrix multiplication techniques, we refer to [12, 24].

It was shown already more than a quarter of a century ago that a rational system solution
A−1b can be computed in O (̃n3 log ||A||) bit operations using linear p-adic lifting [15, 3].
Taking b to be a column of the identity matrix shows that any single column of the inverse
can be computed in O (̃n3 log ||A||) bit operations. Linear p-adic lifting is a key subroutine
of the algorithm in this paper. We show that lifting can be used to compute all n columns
of the inverse of a well conditioned matrix in the same time as a single column.

Now consider the computation of the determinant, assuming ω = 3. Classical methods
such as homomorphic imaging [6, Section 5.5] require O (̃n4 log ||A||) bit operations. A
breakthrough was the Krylov approach of Kaltofen [11] which gives an O (̃n3.5 log ||A||) Las
Vegas algorithm. More recently, a Monte Carlo algorithm with the same running time to
compute the Smith form of A is given by Eberly et al. [5]. The Smith form Diag(s1, s2, . . . , sn)
of an A ∈ Zn×n is a canonical diagonalization under unimodular pre- and post-multiplication,
see Section 2. The invariant factors si satisfy | det A| = s1s2 · · · sn, so the determinant of A is
easily recovered once the form is known. The approach in [5] is based on computing the k ∈
O(
√

n) distinct invariant factors of the Smith form of A, together with their multiplicities,
by computing O (̃k) rational linear system solutions, each at a cost of O (̃n3 log ||A||) using
linear p-adic lifting. The overall cost of the algorithm in [5] is thus sensitive to k, the number
of distinct invariant factors. On the one hand, the algorithm we present here avoids this
sensitivity to k by being able exploit the fact that

∑n
i=1 bitlength(si) ≤ n+bitlength(det A),

independent of the invariant structure of A. On the other hand, our algorithm is sensitive
to the condition number κ(A). We compute all n invariant factors in succession in time
proportional to about n2

∑n
i=1(log si + log κ(A)) bit operations.

2

Next, we motivate our approach for integer matrix inversion by recalling a fact about the
adjoint of an n × n matrix A over a field that has rank n − 1, and then observe how this
gives a simple formula for the adjoint of a class of matrices over Z.

Since A has rank n−1, A has at least one nonzero minor dimension n−1. Assume without
loss of generality (up to a row and column permutation) that the leading (n− 1)× (n− 1)
submatrix Ā of A is nonsingular, and partition A as

A =

[
Ā y
x a

]
.

If we set u := −xĀ−1, a row vector, and v := −Ā−1y, a column vector, then[
In−1

u 1

] [
Ā y
x a

] [
In−1 v

1

]
=

[
Ā

0

]
. (1)

The adjoint of the matrix on the right hand side of (1) will have all entries zero except for
the entry in the last row and last column, which will be equal to det Ā. Replacing both sides
of (1) with the adjoint of that side and solving for Aadj gives

Aadj =

[
(det Ā)v
det Ā

] [
u 1

]
. (2)

Note that the formula for Aadj in (2) is valid also when the entries of A are coming from
a principal ideal ring, even a ring with zero divisors such as a residue class ring of the
integers, provided that det A = 0 and det Ā is a unit from the ring (i.e., Ā is invertible
over the ring). Consider in particular a nonsingular matrix A ∈ Zn×n for which the leading
(n − 1) × (n − 1) submatrix Ā satisfies det Ā ⊥ det A. Then over the residue class ring
Z/〈det A〉, we have det A ≡ 0 (mod det A) and det Ā a unit, so equation (2) holds modulo
det A. In other words, the adjoint of A over Z is element-wise congruent to the rank 1 matrix
in (2). Moreover, if det A is large enough, the exact adjoint of A over Z can be obtained
by multiplying out the outer product in (2) and reducing all entries modulo det A in the
symmetric range [−b(| det A| − 1)/2c, b| det A|/2c].

For example, the matrix

A =

−93 −32 8 44

−76 −74 69 92

−72 −4 99 −31

−2 27 29 67

3

has det A = 64334045, which is relatively prime to det Ā = 533666. Formula (2) gives

Aadj ≡

−28408

861667

181262

533666

 [−27259506 11404741 −8995165 1
]

(mod 64334045)

≡

−853217 368292 −179420 −28408

409178 −744548 233455 861667

−584392 295157 438250 181262

62584 183281 −289125 533666

 (mod 64334045). (3)

For this example, det A is large enough to capture all entries in Aadj; the matrix in (3),
obtained by multiplying out the outer product and reducing entries in the symmetric range
modulo 64334045, is the adjoint of A over Z.

To adapt the approach just described to compute the inverse of an arbitrary input matrix
requires handling the case when all minor of dimension n − 1 in A have a common factor
with det A (i.e., the Smith form of A is nontrivial). Our solution is to extend formula (2) to
an A with nontrivial invariant structure by giving an expression for Aadj mod det A as the
sum of scaled outer products.

Aadj ≡ det A

sn

vnun +
det A

sn−1

vn−1un−1 + · · ·+ det A

s1

v1u1 (mod det A).

Each vi is a column vector and each ui a row vector. We call this construction an outer
product adjoint formula for A. Actually, since all entries in Aadj are divisible by (det A)/sn,
our definition of the formula in Section 4 is as shown above but with det A replaced by sn,
and the left hand side replaced with snA

−1.
We remark that the existence of an outer product adjoint formula for any nonsingular

A ∈ Rn×n over any principal ideal domain R follows directly from the existence of the Smith
form over R. Our contribution in this paper is twofold. First, we identify and exploit some
useful properties of the formula: (1) when R = Z or R = K[x], an outer product adjoint
formula can be represented using about the same space to represent A; (2) an outer product
adjoint formula gives an essentially optimal method to compute Rem(Aadjv, det A) for a
given vector v that has entries reduced modulo det A. Second, we present fast probabilistic
algorithms to compute an outer product adjoint formula.

When applying the outer product adjoint formula to compute Aadj, a problem occurs if
| det A| is too small to capture the entries of Aadj in the symmetric range modulo det A. In this
case we divide the computation of Aadj into two parts. Consider the decomposition snA

−1 =
Rem(snA

−1, sn) + snR where Rem denotes the remainder modulo sn. First we compute
Rem(snA

−1, sn) via an outer product adjoint formula. Then we compute the remaining part
R := (1/sn)(snA

−1 − Rem(snA
−1, sn)) using linear p-adic lifting. Unfortunately, the cost of

computing both of these parts is sensitive to log κ(A).

4

The rest of this paper is organized as follows. In Section 2 we fix some notation and
recall some definitions, including that of the Smith canonical form. Section 3 considers the
problem of computing, for a nonsingular A ∈ Rn×n, a Smith decomposition: A = ∗ snf(A) ∗
where ∗ are n× n matrices over R. Section 4 defines, and gives an algorithm for computing,
the outer product adjoint formula, which is essentially a Smith decomposition snA

−1 =
∗ snf(snA

−1) ∗. Sections 3 and 4 develop results generically so they apply both over R =
Z and R = K[x]. Section 5 gives our integer matrix inversion algorithm, and Section 6
the variation for polynomial matrices. Fortuitously, we can apply some simple algebraic
preconditioning techniques to transform an original input matrix A ∈ K[x]n×n of degree d
into a new matrix B that will have determinant of degree nd. Once the inverse of B has
been determined via an outer product adjoint formula, the preconditioning can be reversed
in the allotted time to recover the inverse of A.

Cost functions

Let M : Z>0 −→ R>0 be such that integers bounded in magnitude by 2t can be multiplied
using at most M(t) bit operations. The Schönhage–Strassen algorithm [21] allows M(t) =
O(t(log t)(log log t)). We assume that M(a) + M(b) ≤ M(a + b) and M(ab) ≤ M(a)M(b) for
a, b ∈ N≥2. We refer to [6, Section 8.3] for further references and discussion about integer
multiplication.

It will be useful to define an additional function B for bounding the cost of integer gcd–
related computations. We can take B(t) = M(t) log t. Then the extended gcd problem with
two integers bounded in magnitude by 2t, and the rational number reconstruction problem [6,
Section 5.10] with modulus bounded by 2t, can be solved with O(B(t)) field operations [20]
(compare with [19]).

We will overload notation slightly and use M : Z≥0 −→ R>0 as a cost functions for
polynomial multiplication: two polynomials in K[x] of degree bounded by d can be multiplied
using at most M(d) field operations. Similarly, B will be used as a cost function for gcd-
related problems like rational function reconstruction and extended gcd. Similar to the
integer case, we can take B(d) = M(d) log d. We refer to [6, Section 11.1] for more details
and references.

2 Definitions, notation and preliminaries

Let R be a principal ideal ring, a commutative ring with identity in which every ideal is prin-
cipal. In this paper our focus is on the integral domains R = Z and R = K[x]. Following [17],
we prescribe a complete set of non-associates A(R) and, for every nonzero s ∈ R, a complete
set of residues R(R, s), as follows.

R = Z R = K[x]
A(Z) = {0, 1, 2, . . .} A(K[x]) = {0} ∪ {f ∈ K[x] | f is monic}
R(Z, s) =

[
−
⌊
|s|−1

2

⌋
,
⌊
|s|
2

⌋]
R(K[x], s) = {f ∈ K[x] | deg f < deg s}

(4)

5

Note that our choice for R(Z, s) corresponds to the usual “symmetric range” modulo s.
For nonzero N , the function Rem(a, N) returns the element of R(R, N) that is congruent

to a modulo N . The next lemma follows as a consequence of our choices for R(R, N).

Lemma 1. Let a, N ∈ R with N nonzero. Then a = Rem(a, N) if

R = Z : |N | ≥ 2|a|+ 2

R = K[x] : deg N ≥ deg a + 1

For a, s ∈ R, we denote by gcd(a, s) the unique principal generator in A(R) of the ideal
generated by a and s. We allow gcd to take an arbitrary number of arguments, including
matrices and vectors as well as individual elements of R. For example, if B is a matrix over
R and s is an element of R, then gcd(B, s) denotes the gcd of s and all entries in B.

We can use the definition of gcd over R to induce definitions of A and R for a residue
class ring R/〈s〉 from the definitions of A and R over R. This will be useful below where we
recall how the Smith form over R can be computed by working over R/〈s〉 for a well chosen s.
For nonzero s ∈ R, we identify the residue class ring R/〈s〉 with the set of elements R(R, s),
and define

A(R/〈s〉) = {gcd(a, s) | a ∈ R(R, s)} and R(R/〈s〉, b) = R(R, gcd(b, s)).

These choices for A and R allow us to easily obtain algorithms for basic operations over
R/〈s〉 in terms of algorithms for basic operations over R, see [23, Section 1].

The Smith canonical form

Corresponding to every A ∈ Rn×n there exist unimodular (invertible over R) matrices P, Q ∈
Rn×n such that snf(A) = S = UAV = Diag(s1, s2, . . . , sn) with S in Smith canonical form [17,
Chapter II], that is, with si|si+1 for 1 ≤ i ≤ n − 1 and si ∈ A(R) for 1 ≤ i ≤ n. When
R is a principal ideal domain, sn is an associate of (det A)/ gcd(Aadj). Thus, the largest
invariant factor sn is the smallest nonzero element of R (minimal degree over K[x] and
minimal magnitude over Z) such that snA

−1 is over R.
The classical approach to compute the Smith form over R = Z or R = K[x] is to ap-

ply a sequence of elementary row and column operations. A well known problem is that
entries in the work matrix can grow excessively large. To avoid this phenomenon, many
authors (e.g., [4, 9, 8]) have used the idea of the following lemma in conjunction with that of
Lemma 1. The lemma holds independently of of the choices for A and R, and follows from
existence and uniqueness of the Smith form over any principal ideal ring [13], in particular
over R/〈s〉.

Lemma 2. Let A ∈ Rn×n be nonsingular, and let s ∈ R be a nonzero multiple of sn, the
largest invariant factor of A. If S is the Smith form of A over R, and S̄ is the Smith form
of Ā = Rem(A, s) over R/〈s〉, then S̄ = Rem(S, s).

6

To help clarify the algorithms developed in the subsequent sections, we sketch here an
approach of [7] to transform a nonsingular A ∈ Zn×n to Smith form. Suppose we have
precomputed s, a nonzero multiple of sn as specified in Lemma 2. Compute c2, c3, . . . , cn ∈ Z
such that the gcd of s with all entries in the column vector A

[
1 c2 c3 · · · cn

]T
equals

gcd(s, A). Now compute x1, x2, . . . , xn with x1 ⊥ s such that
x1 x2 x3 · · · xn

1
1

. . .

1

A

1
c2 1
c3 1
...

. . .

cn 1

 =

s1 u

v ∗

 ,

with s1 equal to the gcd of s and all entries in A. Next, apply some more elementary row
and column operations to zero out entries below and to the right of s1.[

1 −u/s1

In−1

] [
s1 u
v ∗

] [
1

−v/s1 In−1

]
=

[
s1

Ā

]
.

The entries of Ā may be reduced modulo s by applying the idea of Lemma 2. The remaining
invariant factors are computed in a similar fashion by recursing on Ā. Actually, since s1

divides all entries in Diag(s1, Ā), we can work with (1/s)Ā and modulus s/s1 instead.

3 The Smith decomposition

Let B ∈ Rn×n be nonsingular with snf(B) = Diag(g1, g2, . . . , gn). In this section we adapt
the approach for Smith form computation described in the previous section to compute not
only the Smith form of B, but to also construct column vectors v1, v2, . . . , vn ∈ Rn×1 and
row vectors u1, u2, . . . , un ∈ R1×n such that B can be expressed as the sum of scaled outer
products:

B = Tn+1 = g1vnun + g2vn−1un−1 + · · ·+ gnv1u1. (5)

Note that initially we will work directly over R. After, we will apply the idea of Lemma 2
to avoid the problem of expression swell.

For convenience define g0 = 1. Define ej = gj/gj−1 so that gj = e1e2 · · · ej, 1 ≤ j ≤ n.
We will construct matrices B1, B2, . . . , Bn+1 ∈ Rn×n such that

Bj =
1

gj−1

(B −

Tj︷ ︸︸ ︷
(g1vnun + g2vn−1un−1 + · · ·+ gj−1vn−j+2un−j+2)) (6)

with

snf(Bj) = Diag(

gj/gj−1︷︸︸︷
ej ,

gj+1/gj−1︷ ︸︸ ︷
ejej+1 , . . . ,

gn/gj−1︷ ︸︸ ︷
ejej+1 · · · en, 0, 0, . . . , 0). (7)

7

Considering (7), snf(Bn+1) will be the zero matrix, showing that (5) will follow from (6) for
j = n + 1.

We now explain how to construct the Bj by induction on j, 1 ≤ j ≤ n + 1, with base
case j = 1. Initialize B1 = B. Then B1 satisfies (6) and (7). Suppose Bj satisfying (6)
and (7) have been computed for 1 ≤ j ≤ i, for some i with 1 ≤ j ≤ n. We show how to
compute Bi+1 satisfying (6) and (7). Because R is a principal ideal ring, there exist vectors
x ∈ R1×n and y ∈ Rn×1 such that ei := xBiy, the gcd of all entries of Bi. (We defer until
Sections 5 and 6 to describe how to compute x and y.) The nonzero invariant structure of a
matrix does not change if we embed into a larger zero matrix. Let v := Biy and u := xBi,
and consider the unimodular transformation of the matrix obtained from Bi by augmenting
with an initial row and column of zeroes.[

1 x
In

] [
0

Bi

] [
1
y In

]
=

[
ei u
v Bi

]
(8)

Let vn−i+1 := v/ei and un−i+1 := u/ei, and apply another unimodular transformation to the
matrix on the right hand side of (8) to zero out entries below and to the right of ei.[

1 −un−i+1

In

] [
ei u
v Bi

] [
1

−vn−i+1 In

]
=

[
ei

Bi − eivn−i+1un−i+1

]
(9)

All entries of the matrix on the right hand side of (9) are divisible by ei. Let Bi+1 =
(1/ei)(Bi − eivn−i+1un−i+1) ∈ Rn×n, matching (6) for j = i + 1. Since the matrix on the
right of (9) has the same nonzero invariant factors as Bi, we conclude that (7) also holds
for j = i + 1. The procedure just described is summarized by the following code fragment,
correctness of which follows by induction.

Input: • nonsingular B ∈ Rn×n

Let B1 = B.
for i from 1 to n do

Let x ∈ R1×n and y ∈ Rn×1 be such that xBiy = gcd(Bi).
v := Biy; u := xBi; ei := xv;
gi := e1e2 . . . ei; vn−i+1 := v/ei; un−i+1 := u/ei;
Let Bi+1 = 1

ei
(Bi − eivn−i+1un−i+1) ∈ Rn×n.

assert: Equations (6) and (7) hold over R for j = i + 1.
od
assert: B = g1vnun + g2vn−1un−1 + · · ·+ gnv1u1.

Figure 1: Computing a Smith decomposition

Figure 2 adjust the algorithm in Figure 1 to compute a decomposition in (5) that only
holds modulo s, where s is a nonzero multiple of gn. All operations are performed explicitly

8

Input: • nonsingular B ∈ Rn×n

• s ∈ R, a nonzero multiple of the largest invariant factor of B
Let B1 = B.
for i from 1 to n do

Let x ∈ R1×n and y ∈ Rn×1 be such that Rem(xBiy, s/gi−1) = Rem(gcd(Bi, s/gi−1), s/gi−1).
v := Rem(Biy, s/gi−1); u := Rem(xBi, s/gi−1); ei := Rem(xv, s/gi−1);
if ei = 0 then break fi;
gi := e1e2 . . . ei; vn−i+1 := v/ei; un−i+1 := u/ei;
Let Bi+1 = 1

ei
(Bi − eivn−i+1un−i+1) ∈ Rn×n.

assert: Equations (6) and (7) hold modulo s/gi for j = i + 1.
od
assert: B ≡ g1vnun + g2vn−1un−1 + · · ·+ givn−i+1un−i+1 (mod s).

Figure 2: Computing a Smith decomposition modulo s

over R, but Lemma 2 is applied at iteration i to compute modulo s/gi−1. There are two
subtleties to be aware of.

First, at iteration i the matrix Bi is only correct modulo s/gi−1. By Lemma 2, we need
to compute ei as the gcd of all entries of Bi over R/〈s/gi−1〉: over R we compute the gcd of
s/gi−1 with all entries in Bi, and then reduce modulo s/gi−1.

Second, if s is an associate of gn, then there exists a minimal k ≤ n such that gk = gk+1 =
· · · = gn, in which case Bk is congruent the zero matrix modulo s/gk−1: this is handled by
exiting the loop early since the remaining part of the sum gkvn−k+1 + gk+1vn−kun−k + · · ·+
gnv1u1 in (5) is known to congruent to zero modulo s in this case.

4 The outer product adjoint formula

Let R be a principal ideal domain and let A ∈ Rn×n be nonsingular with Smith form S =
UAV = Diag(s1, s2, . . . , sn). Let vi and ui be column i and row i of the unimodular matrices
V and U respectively, 1 ≤ i ≤ n. Inverting both sides of the equation S = UAV , multiplying
by sn, and solving for snA

−1 gives

snA
−1 = V (snS

−1)U =
sn

sn

vnun +
sn

sn−1

vn−1un−1 + · · ·+ sn

s1

v1u1. (10)

Note that snf(snA
−1) = Diag(sn/sn, sn/sn−1, . . . , sn/s1). Now consider taking equation (10)

modulo sn. Since each outer product viui is scaled by sn/si, the equation will still hold
modulo sn if entries in vi and ui are reduced modulo si, 1 ≤ i ≤ n. This idea is made precise
by the following definition.

Definition 3. An outer product adjoint formula of a nonsingular A ∈ Rn×n is set of tuples
(sn−i+1, vn−i+1, un−i+1)1≤i≤k such that:

9

• the Smith form of A is Diag(1, 1, . . . , 1, sn−k+1, sn−k+2, . . . , sn) with sn−k+1 6= 1,

• vn−i+1 ∈ R(R, sn−i+1))
n×1 and un−i+1 ∈ R(R, sn−i+1)

1×n for 1 ≤ i ≤ k,

• snA
−1 ≡ sn

sn
vnun + sn

sn−1
vn−1un−1 + · · ·+ sn

sn−k+1
vn−k+1un−k+1 (mod sn).

Algorithm OuterProductAdjoint shown in Figures 4 will compute an outer product adjoint
formula. The algorithm is identical to that shown in Figure 2 except with s = sn and
gi = sn/sn−i+1.

OuterProductAdjoint(A, sn)
Input: • nonsingular A ∈ Rn×n

• sn ∈ R, the largest invariant factor of A
Output: An outer product adjoint formula of A.
Let B1 = snA

−1 and sn+1 = sn.
for i to n do

Let x ∈ R1×n and y ∈ Rn×1 such that Rem(xBiy, sn−i+2) = Rem(gcd(Bi, sn−i+2), sn−i+2).
u := Rem(xBi, sn−i+2); v := Rem(Biy, sn−i+2); ei := Rem(xv, sn−i+2);
if ei = 0 then break fi;
sn−i+1 := sn−i+2/ei; un−i+1 := u/ei; vn−i+1 := v/ei;
Let Bi+1 = 1

ei
(Bi − eivn−i+1un−i+1) ∈ Rn×n.

od;
return (sn−j+1, vn−j+1, un−j+1)1≤j≤i−1

Figure 3: Algorithm OuterProductAdjoint

When we specialize to the rings R = Z and R = K[x] most of the above loop will be
implemented exactly as written. Note that the vector y that needs to be chosen at the
start of each iteration is required only to construct v. We will appeal to known results to
construct v as an R-linear combination of BiY for a Y that is randomly chosen so that
gcd(BiY, sn−i+2) = gcd(Bi, sn−i+1) with high probability. Once v is known, x is computed
computed as the solution to an extended euclidean problem.

The main technical issue we face is to efficiently compute Rem(BiY, sn−i+2) for a Y ∈
R(R, sn−i+1)

n×m. (The problem of computing a vector-matrix product Rem(xBi, sn−i+2) is
analogous so we focus here on the matrix-vector case.) Exactly as in Section 3, but here
with s = sn and gi = sn/sn−i+1, if we define

Ti =
sn

sn

vnun +
sn

sn−1

vn−1un−1 + · · ·+ sn

sn−i+2

vn−i−1un−i−1 ∈ Rn×n, (11)

then at loop iteration i = 1, 2, . . . , k we work with the matrix

Bi =
sn−i+2

sn

(
snA

−1 − Ti

)
∈ Rn×n (12)

10

and modulus sn−i+2, where sn+1 is defined to be sn. Rem(TiY, sn) can be computed efficiently
for given Y ∈ R(R, sn)n×m by using nested multiplication.

TiY ≡

(
i−1∑
j=1

sn

sn−j+1

vn−j+1un−j+1

)
Y (mod sn)

≡
i−1∑
j=1

sn

sn−j+1

Rem(vn−j+1(un−j+1

Yn−j+1︷ ︸︸ ︷
Rem(Y, sn−j+1)), sn−j+1)︸ ︷︷ ︸

Xn−j+1

≡ sn

sn

(
Xn + · · ·+ sn−i+5

sn−i+4

(
Xn−i+4 +

sn−i+4

sn−i+3

(
Xn−i+3 +

sn−i+3

sn−i+2

Xn−i+2

))
· · ·
)

Algorithm OuterProdMul shown in Figures 4 implements the above scheme. In the first
loop, iteration j does O(nm) arithmetic operations modulo sn−j+1 with operands from
R(R, sn−j+1) and R(R, sn−j+2). Iteration j of the second loop does O(nm) operations mod-
ulo sn−j+1 with operands from R(R, sn−j+1). Lemma 4 follows from the superlinearity of M.

OuterProdMul(s, (sn−j+1, vn−j+1, un−j+1)1≤j≤i−1, Y)

Input: • nonzero s ∈ A(R)
• vn−j+1 ∈ R(R, sn−j+1)

n×1 and un−j+1 ∈ R(R, sn−j+1)
1×n, 1 ≤ j ≤ i− 1

• sn−i+2|sn−i+3| · · · |sn with sn = s and sn−i+2 a nonunit if i > 1
• Y ∈ R(R, s)n×m

Output: Rem((
∑i−1

j=1(s/sn−j+1)vn−j+1un−j+1)Y, s).

if i ≤ 1 then return the n×m zero matrix fi;
Yn+1 := Y ; sn+1 := sn;
for j from 1 to i− 1 do

Yn−j+1 := Rem(Yn−j+2, sn−j+1); Xn−j+1 := Rem(vn−j+1(un−j+1Yn−j+1), sn−j+1)
od;
V := Xn−i+2;
for j from i− 2 downto 1 do V := Rem(Xn−j+1 + (sn−j+1/sn−j)V, sn−j+1) od;
return V

Figure 4: Algorithm OuterProdMul

Lemma 4. Algorithm 4 (OuterProdMul) is correct. The cost of the algorithm is

R = Z : O(nm M(log
∏k

i=1 sn−i+1)) bit operations.

R = K[x] : O(nm M(
∑k

i=1 deg sn−i+1)) field operations from K.

11

Now consider the computation of Rem(BiY, sn−i+2). Notice that that the matrices Bi

are not explicitly computed. Instead, from the definition of Bi in (12) we have that

Rem(BiY, sn−i+2) = Rem

(
sn−i+2

sn

(
snA

−1Y − Rem(TiY, sn)
)
, sn−i+2

)
Let N ∈ R be relatively prime to sn. If Rem(BiY,N) = BiY then also

Rem(Rem(BiY,N), sn−i+1) = Rem(BiY, sn−i+1)

and we can apply the following recipe.

Rem(BiY, sn−i+2) =

 W1 := Rem(A−1Y,N);
W2 := OuterProdMul(s, (sn−j+1, vn−j+1, un−j+1)1≤j≤i−1, Y);
return Rem(Rem(sn−i+2W1 − (sn−i+2/sn)W2, N), sn−i+2)

 (13)

Theorem 5. If Y ∈ R(R, sn−i+2)
n×m then recipe (13) returns Rem(BiY, sn−i+2) if

R = Z : N ≥ sn−i+2(nsn−i+2||A−1||+ 1) + 2.

R = K[x] : deg N ≥ max(deg sn−i+2, deg snA
−1 + deg sn−i+2).

Proof. The matrices snA
−1Y and Rem(TiY, sn) are over R and their difference is divisible by

sn/sn−i+2. The result will follow if we show that N satisfies the bounds of Lemma 1, with
BiY playing the role of a.

Over K[x] we have deg snA
−1Y ≤ deg snA

−1 + deg Y ≤ deg snA
−1 + deg sn − 1 and

deg Rem(TiY, sn) ≤ deg sn−1. The bound for deg N given in theorem is obtained by adding
one to the maximum of these two bounds and subtracting deg sn/sn−i+2.

Over Z we have ||snA
−1Y || ≤ nsn||A−1|| ||Y || ≤ nsn||A−1||sn−i+2/2 and ||Rem(TiY, sn)|| ≤

sn/2, hence the difference of these matrices multiplied by sn−i+2/sn has entries bounded in
magnitude by nsn−i+2||A−1|| ||Y || + sn−i+2/2; the bound for N in the theorem is obtained
by multiplying this bound two and adding two.

5 Computing the inverse of an integer matrix

Algorithm IntInverse is shown in Figure 5. Phase 1 uses randomization to probabilistically
compute the largest invariant factor of the input matrix A ∈ Zn×n, together with a bound for
||A−1||. Phase 2 adapts algorithm OuterProductAdjoint shown in Figure 3 by incorporating
randomization to obtain a probabilistic algorithm for computing the outer product adjoint
of A. Phase 3 certifies correctness of the computed outer product adjoint formula from
phase two and computes the explicit inverse of A. In the following subsections we fill in
the implementation details and prove probability results and complexity estimates for each
phase. First we recall some known results.

By the denominator of a rational matrix or vector we mean the smallest positive integer
multiple that will clear the denominators, assuming the fractions are reduced.

12

IntInverse(A)
Input: Nonsingular A ∈ Zn×n.
Output: A−1 or Fail. Fail will be returned with probability < 1/2.

1. [Initialization]
Choose p̄ uniformly and randomly from among the first 12blog2(n

n/2||A||n)c primes;
p := the smallest positive integer power of p̄ such that p ≥ log

√
n + log ||A||;

if p̄ 6⊥ det A return Fail else C := Rem(A−1, p) fi;
α := ||A−1X||, where X ∈ {−1, 1}n×4 is chosen uniformly and randomly;
M := 6 + d2n(log2 n + log2 ||A||)e; L := {0, . . . ,M − 1};
s := the denominator of A−1X, where X ∈ Ln×12 is chosen uniformly and randomly;
m := 2d(2 + log2 n)/ log2 3e;

2. [Compute Outer Product Adjoint Formula]
Let B1 denote sA−1 and sn+1 = s.
for i to n do

Choose Y ∈ Ln×m uniformly and randomly;
Y := Rem(Y, sn−i+2);
Set N := pk, where k ∈ Z>0 is minimal s.t. pk ≥ sn−i+2(nαsn−i+2 + 1) + 2;
Compute V := Rem(BiY, sn−i+2) using recipe (13);
Use Lemma 9 to compute x and y such that gcd(xV y, sn−i+2) = gcd(V, sn−i+2);
v := Rem(V y, sn−i+2);
Compute u := Rem(BT

i xT , sn−i+2)
T using recipe (13);

ei := Rem(xv, sn−i+2); if ei = 0 then break else sn−i+1 := sn−i+2/ei fi;
if (i = 1 and sn 6= s) or

∏i
j=1 sn−j+1 > nn/2||A||n or ei 6 |u then return Fail fi;

un−i+1 := u/ei; vn−i+1 := v/ei;
Let Bi+1 denote 1

ei
(Bi − eivn−i+1un−i+1) ∈ Zn×n.

od

3. [Compute Inverse and Assay Correctness]
if OuterProductMul(s, (sn−j+1, vn−j+1, un−j+1)1≤j≤i−1, A) 6= 0n×n then return Fail fi;
C0 := OuterProductMul(s, (sn−j+1, vn−j+1, un−j+1)1≤j≤i−1, In);
N1 := pk, where k ∈ Z>0 is minimal s.t. pks ≥ 2αs + 2;
C1 := Rem(s Rem(A−1, N1), N1), computed using p-adic lifting;
C := Rem(N1 Rem(1/N1, s)C0 + s Rem(1/s,N1)C1, N1s);
N2 := pk, where k ∈ Z>0 is minimal s.t. pk ≥ (2n/s)||A||||C||+ 2;
if Rem(A Rem((1/s)C, N2), N2) 6= In then return Fail fi;
return (1/s)C, with fractions reduced

Figure 5: Algorithm IntInverse

13

Lemma 6 ([5, Theorem 2.1]). Let A ∈ Zn×n be nonsingular. If X ∈ Ln×2 is chosen uniformly
and randomly, where L := {0, 1, . . . ,M − 1} with M := 6+ d2n(log2 n+log2 ||A||)e, then the
denominator of A−1X is the largest invariant factor of A with probability at least 1/3.

An inspection of the proof of [5, Theorem 2.1] reveals that the definition of M in Lemma 6
is driven by the size of sn, the largest invariant factor of A, and is otherwise independent
of ||A|| and n. Since sn is a factor of det A, we have sn ≤ det A ≤ nn/2||A||n, the second
inequality being implied by Hadamard’s bound. The next result follows as a corollary of the
proof of [5, Theorem 2.1].

Corollary 7. Let s ∈ Z>0 satisfy the bound s ≤ nn/2||A||n. For any B ∈ Zn×n, if X ∈ Ln×2

is chosen uniformly and randomly, then gcd(BX, s) = gcd(B, s) with probability at least 1/3.

The main computational tool in our algorithm is linear p-adic lifting [3, 15], used to
compute Rem(A−1X, pk) for a given X ∈ Zn×m and k. The presentation and analysis
in [3, 15] assumes standard integer arithmetic, but if the bitlength of p is well chosen then
fast integer arithmetic can be incorporated without much difficulty by appealing to fast
algorithms for arithmetic operations such as radix conversion. We refer to [16, Section 5] for
a derivation of parts (a) and (b) of the following.

Lemma 8. Let A ∈ Zn×n be nonsingular. Suppose we have p ∈ Z>0 with p ⊥ det A and
log p ∈ Θ(log n + log ||A||), together with C := Rem(A−1, p).

(a) If N := pk and Y ∈ Zn×m satisfies log ||Y || ∈ O(log N), then Rem(A−1Y,N) can be
computed with O(n2km B(log n + log ||A||) + nm B(k(log n + log ||A||)) bit operations.

(b) If Y ∈ Zn×m satisfies log ||Y || ∈ O(n(log n+log ||A||)) then A−1Y can be computed with
O(n3m B(log n + log ||A||)) bit operations.

(c) Consider recipe (13). If
∏i−1

j=1 sn−i+1 ≤ nn/2||A||n and log N ∈ O(log sn−i+2 + log n +

log ||A−1||), then Rem(BiY,N) can be computed in

O(nm B(n(log n + log ||A||)) + n2kn−i+2m B(log n + log ||A||))

bit operations, where

kn−i+2 := 1 +
log sn−i+2

log n + log ||A||
+

log κ(A)

log n + log ||A||

with κ(A) := ||A−1|| ||A||.

Proof. For a detailed derivation of parts (a) and (b) we refer to [16, Section 5]. To understand
part (c) it will be helpful to recall the cost analysis of part (a). Each step of p-adic lifting
involves two matrix × matrix products: A× ∗ and C × ∗ where ∗ is an n×m matrix with
entries bounded in bitlength by O(log p). This gives rise to the O(n2km B(log n + log ||A||))
term. The second term bounds the cost of all the additional work, especially, at the end

14

of the lifting, the radix conversion from p-adic to standard representation of nm numbers
bounded in bitlength by log N .

Now consider part (c). Algorithm OuterProdMul computes W2 in O(nm M(n(log n +
log ||A||))) bit operations (Lemma 4). This also bounds the cost of the arithmetic oper-
ations performed in the return statement of recipe (13). The cost of computing W1 :=
Rem(A−1Y,N) is as stated in (a) with k = logp N . The definition of kn−i+2 is such that
kn−i+2 ≥ 1 and kn−i+2 ∈ Θ(logp N). The cost estimate stated in part (c) simplifies the
second term of the cost estimate from part (a) by using kn−i+2 ∈ O(n).

The usual extended euclidean problem takes as input a column vector v ∈ Zn×1 and asks
for a row vector x ∈ Z1×n such that xv = gcd(v). The next lemma recalls a method for
solving deterministically a variation of the problem when the input is a matrix.

Lemma 9. Given V ∈ R(Z, s)n×m, an x ∈ R(Z, s)1×n and y ∈ R(Z, s)m×1 such that
gcd(xV y, s) = gcd(V, s) can be computed in O(nm B(log s)) bit operations.

Proof. In [22, Section 4.1] a method is derived to compute a y such that gcd(V y, s) =
gcd(V, s). The cost of the method is O(nm B(log s)) bit operations, plus m calls to a sub-
routine that takes as input integers a and b, and computes a c such that gcd(a + bc, s) =
gcd(a, b, c): each such c can be computed in O(B(log s)) bit operations using operation Stab
from [25]. Once y has been computed, compute x to be a solution to the standard extended
euclidean problem with input V y.

Phase 1

Phase one uses randomization to compute three numbers probabilistically: a small prime
power p that is relatively prime to det A; an α that satisfies ||A−1|| ≤ α ≤ n||A−1||; the
largest invariant factor s = sn of the input matrix. Part (a) of the following lemma gives
some properties that are guaranteed to hold by construction, while part (b) gives properties
that only hold probabilistically; this distinction is important for our cost analysis of phases 2
and 3 of the algorithm.

Lemma 10. Phase 1 of algorithm IntInverse uses O(n(log n + log log ||A||)) random bits
and completes in O(n3 B(log n+log ||A||)) bit operations. Fail will be returned with probability
at most 1/12. If Fail is not returned, then (a) will hold, and (b) will hold with overall
probability at least 1− 1/6.

(a) p ⊥ det A, log p ≥ log
√

n + log ||A|| and log p ∈ Θ(log n + log ||A||), α ≤ n||A−1||, and
s is a divisor of the largest invariant factor of A.

(b) α ≥ ||A−1||, and s is the largest invariant factor of A.

Proof. By Hadamard’s bound | det A| ≤ nn/2||A||n, so det A is divisible by at most the log
of this many distinct prime divisors. This shows that the randomly chosen prime p̄ will be
a divisor of det A with probability at most 1/12. Assume henceforth that Fail has not been
returned.

15

First consider part (a). From the prime number theorem we know that log p̄ ∈ Θ(log n+
log log ||A||); the upper bound and lower bounds for log p follow by construction. The upper
bound for α uses ||X|| = 1: ||A−1X|| ≤ n||A−1|| ||X|| = n||A−1||. In [1] it is shown that s is
a factor of sn.

Now consider part (b). We will separately bound the probability that that α < ||A−1||
by 1/16, and that s is a proper divisor of the largest invariant factor of A by 64/729. Since
the sum of these two probabilities is less than 1/6, the claim in the lemma that part (b) will
hold with probability at least 1− 1/6 will follow.

To see that α < ||A−1|| with probability at most 1/16, let x =
[

x1 x̄
]T ∈ {−1, 1}n×1

be chosen uniformly and randomly, and let a =
[

a1 ā
]
∈ Q1×n be a row of A−1 which has

a maximal magnitude entry, which without loss of generality we will assume is the principal
entry a1. Consider the dot product ax = a1x1+āx̄. A sufficient condition for |ax| ≥ ||A−1|| to
hold is that sign(a1x1) = sign(āx̄); since x1 is chosen uniformly and randomly from {−1, 1},
the probability that |ax| < ||A−1|| is less than 1/2. Choosing X ∈ {−1, 1}n×4 to have four
columns as in the algorithm gives four independent trials of this idea, so α < ||A−1|| with
probability less than 1/24.

Now consider s. Since X is chosen from Ln×(2×6), the probability that s is a proper
divisor of the largest invariant factor of A is bounded by the probability that 6 independent
trials of the approach of Lemma 6 all fail: this is bounded by (2/3)6 = 64/729.

Now consider the running time. The first 12blog2(n
n/2||A||n)c primes can be constructed

in the allotted time using the sieve of Eratosthenes (see [14, Section 4.5.4]). The modular
inverse C can be computed in the allotted time using Gaussian elimination. By Lemma 8,
part (b), the rational system solutions A−1X can be computed in the allotted time using
p-adic lifting.

Phase 2

Phase 2 of algorithm IntInverse adapts algorithm OuterProductAdjoint shown in Figure 3
to the integer case. The main change is that at iteration i we recover the gcd ei of all entries
in Bi probabilistically by computing gcd(BiY, sn−i+2) for a randomly chosen Y . Not only
might some of the ei be computed incorrectly, phase 2 also depends on the numbers s and
α that are computed probabilistically in phase 1 (cf. part (b) of Lemma 8). For this reason,
we need to to bound the running time of phase 2 independently of the correctness of s, α,
and the ei computed at each loop iteration.

Lemma 11. Phase 2 of algorithm IntInverse uses O(n2(log n)(log n+log log ||A||)) random
bits and completes in

O

(
n2(log n) B(n(log n + log ||A||)) + n3(log n)(log κ(A))

B(log n + log ||A||)
log n + log ||A||

)
(14)

bit operations.

16

Proof. Each loop iteration checks that
∏i

j=1 sn−j+1 ≤ nn/2||A||n, so the sum of the bitlengths
of the moduli sn−i+2 over all loop iterations is bounded by O(n(log n + log ||A||)). Exclud-
ing the calls to recipe (13), a total cost bound of O(nm B(n(log n + log ||A||))) bit op-
erations for the entire phase follows from the superlinearity of B:

∑i−1
j=1 B(log sn−j+1) ∈

O(B(
∑i−1

j=1 log si)).
The cost of the two calls to recipe (13) for single loop iteration is given by part (c) of

Lemma 8. Let kn−i+2 be defined as in Lemma 8. Then

i−1∑
j=1

kn−i+2 ∈ O

(
n +

n log κ(A)

log n + log ||A||

)
.

The bound (14) for the overall cost of all calls to recipe (13) follows.

Lemma 12. If s is the largest invariant factor of A and α ≥ ||A−1||, then phase 2 of
algorithm IntInverse will not return Fail and computes a correct outer product adjoint
formula for A with probability at least 1− 1/4.

Proof. Phase 2 is identical to algorithm OuterProductAdjoint shown in Figure 3 except
that ei is computed probabilistically. Corollary 7 gives that ei 6= gcd(Bi, s) with probability
at most (2/3)m/2. Since m is chosen so that (2/3)m/2 ≤ 1/(4n), the probability that ei 6=
gcd(Bi, sn−i+2) for one or more i is at most 1/4.

Phase 3

Lemma 13. If s is the largest invariant factor of A, α ≥ ||A−1||, and the quantities
(sn−j+1, vn−j+1, un−j+1)1≤j≤i−1 computed in phase 2 comprise an outer product adjoint for-
mula for A, then phase 3 of algorithm IntInverse will not return Fail.

Proof. Assume that s = sn, α ≥ ||A−1|| and (sn−j+1, vn−j+1, un−j+1)1≤j≤i−1 is an outer
product adjoint formula, as specified in the lemma. Then the first call to OuterProdMul

computes Rem(sA−1A, s) which will be the zero matrix and the second call computes C0 =
Rem(sA−1, s). The matrix C1 is equal to Rem(sA−1, N1). The matrix C is obtained by
Chinese remaindering together C0 and C1 to get C = Rem(sA−1, N1s). Since ||sA−1|| ≤ sα,
and N1s ≥ 2αs + 2, by Lemma 1 we have sA−1 = Rem(sA−1, N1s) and we conclude that
C = sA−1. It follows that the second last line will not return Fail since (1/s)AC is indeed
the identity matrix.

Lemma 14. If phase 3 of algorithm IntInverse does not return Fail, then the correct
inverse of A is returned.

Proof. If the first call to OuterProductAdjoint does not return Fail, then C0 as computed
in the next line has the property that Rem(AC0, s) is the zero matrix. By construction of
C, Rem(C, s) = C0, so Rem(AC, s) is also the zero matrix: we conclude that AC is divisible
by s. An a priori bound for ||(1/s)AC|| is (n/s)||A||C||. By Lemma 1, the choice of N2

guarantees that (1/s)AC = Rem((1/s)AC, N2). If (1/s)AC = In then (1/s)C is indeed the
inverse of A.

17

Lemma 15. Phase 3 of algorithm IntInverse completes in

O

(
n2 B(n(log n + log ||A||)) + n3(log n + log κ)

B(log n + log ||A||
log n + log ||A||

)
bit operations.

Proof. The cost of the two calls to algorithm OuterProductAdjoint is O(n2 B(n(log n +
log ||A||))) bit operations (Lemma 3). Since α ≤ n||A−1|| and s ≤ nn/2||A||n, all of N1, N1s
and N2 will have bitlength bounded by O(n(log n + log ||A||)). Thus, the cost of computing
C, Rem((1/s)C, N2), and reducing the fractions in (1/s)C is bounded by O(n2 B(n(log n +
log ||A||))) bit operations as well.

The costs of computing Rem(A−1, N1) via lifting and computing the matrix product
A Rem((1/s)C, N2) are sensitive to α. In particular, both log N1 and log N2 are O(log n +
log κ(A)). By Lemma 8, C1 can be computed in

O

(
n3(log n + log κ(A))

B(log n + log ||A||)
log n + log ||A||

)
(15)

bit operations. Now consider the matrix product A Rem((1/s)C, N2). First we convert
Rem((1/s)C, N2) to a p-adic expansion with O((log κ)/(log n+log ||A||)) terms. Multiplying
each term by A has the same cost as in (15). Convert back to standard representation. The
cost of the radix conversion is bounded by O(n2 B(n(log n + log ||A||))) bit operations.

Theorem 16. Let A ∈ Zn×n be nonsingular. Algorithm IntInverse uses O(n2(log n)(log n+
log log ||A||)) random bits and completes in the cost bound stated in (14). The algorithm
either returns Fail or A−1. Fail is returned with probability less than 1/2.

Proof. Lemma 14 guarantees that an incorrect result will not be returned. By Lemma 13, the
algorithm will not return Fail provided that phase 1 does not return fail and computes s and
α correctly, and that phase 2 computes a correct outer product adjoint formula. Summing
the probabilities from Lemmas 8 and 12 gives 1/12+1/6+1/4 ≤ 1/2. Comparing Lemmas 10,
11 and 13 (the costs of phases 1, 2 and 3) reveals that (14) from phase 2 dominates.

Corollary 17. The exact inverse of a nonsingular A ∈ Zn×n can be computed in an expected
number of O (̃n3(log ||A||+ log κ(A))) bit operations.

6 Computing the inverse of a polynomial matrix

Let A ∈ K[z]n×n be nonsingular with degree d > 0, K a field. Recall that the degree of the
determinant of A is bounded by nd, while entries in the adjoint matrix Aadj := (det A)A−1 are
minors of dimension n−1 and thus are bounded in degree by (n−1)d. Similar to the integer
case, the cost of computing an outer product adjoint formula for A will be sensitive to the
difference between deg Aadj and deg det A. Generically, deg Aadj−deg det A = (n−1)d−nd <

18

PolyInverse(A)
Input: Nonsingular A ∈ K[z]n×n of degree d > 0, K a field.
Output: A−1 or Fail. Fail will be returned with probability < 1/2.
Condition: #K ≥ 10nd.

1. [Initialization]
Let Λ be a set of 10nd distinct elements of K.
Choose α and β uniformly and randomly from Λ;
Compute A1 := A |z=z+α and let A2 := zd

(
A1 |z=1/z

)
;

if det Rem(A1, z) = 0 or det Rem(A2, z − β) = 0 then Fail fi;
p := (z − β)d; C := Rem(A−1

2 , p);
Choose y ∈ Λn×1 is chosen uniformly and randomly;
s := the denominator of A−1y;

2. [Compute Outer Product Adjoint Formula]
Let B1 denote sA−1

2 and sn+1 = s.
for i to n do

Choose y ∈ Λn×1 uniformly and randomly;
Set N := pk, where k ∈ Z>0 is minimal s.t. pk ≥ deg sn−i+2;
Compute v := Rem(Biy, sn−i+2) using recipe (13);
Compute x ∈ R(K[x], sn−i+2)

1×n such that gcd(xv, sn−i+2) = gcd(v, sn−i+2);
Compute u := Rem(BT

i xT , sn−i+2)
T using recipe (13);

ei := Rem(xv, sn−i+2); if ei = 0 then break else sn−i+1 := sn−i+2/ei fi;
if (i = 1 and sn 6= s) or

∑i
j=1 sn−j+1 > nd or ei 6 |u then return Fail fi;

un−i+1 := u/ei; vn−i+1 := v/ei;
Let Bi+1 denote 1

ei
(Bi − eivn−i+1un−i+1) ∈ K[x]n×n.

od;
if
∑i−1

j=1 6= nd then Fail fi;

3. [Compute Inverse and Assay Correctness]
if OuterProductMul(s, (sn−j+1, vn−j+1, un−j+1)1≤j≤i−1, A2) 6= 0n×n then re-
turn Fail fi;
C := OuterProductMul(s, (sn−j+1, vn−j+1, un−j+1)1≤j≤i−1, In);
if Rem(A2 Rem((1/s)C, p), p) 6= In then return Fail fi;
return

(
(zd/s)C)

)
|z=1/(z−α), with fractions reduced

Figure 6: Algorithm PolyInverse

19

0, but in general deg Aadj−deg det A ≤ (n−1)d, the upper bound being achieved for certain
unimodular matrices.

Fortunately, we can apply some simple algebraic preconditioning techniques to transform
the original A into another matrix of degree d that has determinant of degree nd. Consider
the following input matrix over K[z] where K = Z/〈97〉.

A1 =

72 z2 + 37 z + 74 87 z2 + 44 z + 29 7 z + 56

89 z2 + 68 z + 95 11 z2 + 48 z + 50 64 z + 75

87 z2 + 31 z + 46 77 z2 + 95 z + 1 63 z + 8

 .

The determinant of A1 is 17. But consider the matrix obtained from A1 by reverting the
polynomials via a change of variables.

A2 = z2(A1 |z=1/z) =

74 z2 + 37 z + 72 29 z2 + 44 z + 87 56 z2 + 7 z

95 z2 + 68 z + 89 50 z2 + 48 z + 11 75 z2 + 64 z

46 z2 + 31 z + 87 z2 + 95 z + 77 8 z2 + 63 z

 .

The leading coefficient matrix of A2 (the coefficient of z2) is equal to the constant coefficient
matrix of A1: since this is nonsingular the degree of the determinant of A2 will be equal to
nd. Indeed, det A2 = 17z6. If we start with an A that does not have a nonsingular constant
coefficient matrix we apply a shift to produce A1 := A |z=z+α for a randomly chosen α ∈ K.
These ideas are summarized in the following lemma, the proof of which is elementary.

Lemma 18. Let A ∈ K[z]n×n with degree d and let α ∈ K.

• If A1 := A |z=z+α then A−1 = (A−1
1) |z=z−α.

• If A2 := zd(A1 |z=1/z) then A−1
1 = (zd(A−1

2)) |z=1/z and det A2 = znd((det A1) |z=1/z).

• If det Rem(A1, z) 6= 0 then deg det A2 = nd.

The following result is the analogue of Corollary 7.

Lemma 19. Let s ∈ K[z] be nonzero. For any B ∈ K[z]n×n, if y ∈ Λn×1 is chosen uniformly
and randomly, then gcd(By, s) = gcd(B, s) with probability at least 1− (deg s)/#Λ.

Proof. Let g = gcd(B, s). Then gcd(By, s) = gcd(B, s) if and only if gcd((B/g)y, s) = 1.
Let p be an irreducible divisor of s. Then the residue class ring K[z]/〈p〉 is a field and it is
easy to see that gcd((B/g)y, p) = 1 with probability at least 1 − 1/#Λ. The result follows
by noting that s, and hence also s/g, has at most deg s distinct irreducible divisors.

The next result follows from Lemma 19 since the largest invariant factor sn of A has degree
bounded by nd. In particular, A−1y has denominator sn if and only if gcd((snA

−1)y, sn) = 1.

20

Corollary 20. Let A ∈ K[z]n×n be nonsingular of degree d. If y ∈ Λn×1 is chosen uniformly
and randomly, then the denominator of A−1y is equal to the largest invariant factor of A
with probability at least 1− nd/#Λ.

We refer to [16, Section 5] for a derivation of part (a) of the next lemma. The derivation
of part (b) is similar to that of part (c) of Lemma 8. The n B(nd) term comes from the appli-
cation of algorithm OuterProdMul. The n2kn−i+2 B(d) term captures the cost of performing
O(kn−i+2) lifting steps to obtain Rem(A−1y, N).

Lemma 21. Let A ∈ K[z]n×n be nonsingular of degree d. Suppose we have p ∈ K[z]>0 with
p ⊥ det A and deg p = d, together with C := Rem(A−1, p).

(a) If y ∈ K[z]n×1 satisfies deg y ∈ O(nd), then A−1y can be computed with O(n3 B(d)) field
operations from K.

(b) Consider recipe (13). If
∑i−1

j=1 deg sn−i+1 ≤ nd and deg N ∈ O(deg sn−i+2), then

Rem(Biy, N) can be computed in O(n2kn−i+2 B(d) + n B(nd)) field operations from K,
where kn−i+2 := 1 + (deg sn−i+2)/d.

Phase 1

Lemma 22. Phase 1 of algorithm PolyInverse completes in O(n3 B(nd)) field operations.
Fail is returned with probability at most 1/5. If Fail is not returned, then deg det A2 = nd
and s is the largest invariant factor of A with probability at least 1− 1/10.

Proof. Since deg det A ≤ nd, the randomly chosen shift α is a root of det A with probability
at most nd/#Λ. Similarly, det Rem(A2, t − β) = 0 with probability at most nd/#Λ. Since
#Λ = 10nd the claimed bound on the probability of Fail being returned follows.

Now assume that Fail is not returned. That deg det A2 = nd follows from Lemma 18.
Corollary 20 gives the probability estimate for the correctness of s. By Lemma 21, the
computation of A−1y, which dominates the cost of the phase, can be accomplished in the
allotted time.

Note that the second probability estimate in Lemma 22 is conditional. In other words,
the probability that phase does not return fail and s is computed correctly is at least 1 −
1/5− 1/10.

Phase 2

Lemma 23. Phase 2 of algorithm PolyInverse completes in O(n2 B(nd)) field operations.

Proof. Each iteration check that
∑i

j=1 deg sn−j+1 ≤ nd, so the sum of the degrees of the
moduli sn−i+2 over all the loop iterations is bounded by O(nd). Excluding the calls to
recipe 13, a total cost bound of O(n B(nd)) field operations for the entire phase follows from
the superlinearity of B.

21

The cost of the two calls to recipe 13 for a single loop iterations is given by part (b) of
Lemma 21. Let kn−i+2 be as defined in Lemma 21. Then

∑i−1
j=1 kn−i+2 ∈ O(n). The overall

cost of all calls to recipe (13) is thus O(n2 B(nd)) field operations.

Lemma 24. If s is the largest invariant factor of A2, then phase 2 of algorithm PolyInverse

computes an outer product adjoint formula for A with probability at least 1− 1/5.

Proof. Phase 2 is identical to algorithm OuterProductAdjoint shown in Figure 3 except
that ei is computed probabilistically. By assumption s = sn, so during the first itera-
tion the modulus sn+1 and B1 = sA−1

2 are correct. Suppose sn+1, sn, . . . , sn−i+2 and hence
B1, B2, . . . , Bi are computed correctly up to some i. Then by Lemma 19, the probability
that ei is computed incorrectly is bounded by (deg sn−i+2)/(10nd). Since

∑i
j=1 deg sn−i+2 ≤

deg sn +
∑n

j=1 deg si ≤ 2nd, the sum of the failure probability over all loop iterations is
bounded by 1/5.

Phase 3

Lemma 25. If s is the largest invariant factor of A, and phase 2 computes a correct outer
product adjoint formula for A, then phase 3 of algorithm PolyInverse will not return Fail.

Proof. Assume that s = sn and (sn−j+1, vn−j+1, un−j+1)1≤j≤i−1 is an outer product ad-
joint formula for A2, as specified in the lemma. The first call to OuterProdMul computes
Rem(sA−1, s) which will be the zero matrix. The second call computes C = Rem(sA−1

2 , s).
Since deg det A2 = nd, we have deg sA−1

2 < deg s and by Lemma 1 we conclude that
C = sA−1

2 . It follows that the second last line will not return Fail since A2(1/s)C = In.

Lemma 26. If phase 3 of algorithm PolyInverse does not return Fail, then the correct
inverse of A is returned.

Proof. If the first call to OuterProductAdjoint does not return fail, then C as computed in
the next line has the property that Rem(A2C, s) is the zero matrix. Thus A2C is divisible
by s. An a priori upper bound for the degree of (1/s)A2C is deg A2− 1, so if the second last
line does not return Fail, then A2 is indeed the inverse of A.

Theorem 27. Let A ∈ K[x]n×n be nonsingular with degree d. Algorithm PolyInverse

completes in O(n2 B(nd)) field operations. The algorithm either returns Fail or A−1. Fail is
returned with probability ≤ 1/2. This result assume that #K ≥ 10nd.

7 Conclusions

The restriction in K ≥ 10nd in Theorem 27 is not essential. If K is too small we can work over
an algebraic extension of degree O(log nd) over K. The cost bound of Theorem 27 increases
by some factors of log nd.

The main outstanding problem is to remove the dependence of the complexity of the
integer matrix inversion algorithm on κ(A). A promising approach is to use additive pre-
conditioning as described in [18].

22

References

[1] J. Abbott, M. Bronstein, and T. Mulders. Fast deterministic computation of deter-
minants of dense matrices. In S. Dooley, editor, Proc. Int’l. Symp. on Symbolic and
Algebraic Computation: ISSAC ’99, pages 197–204. ACM Press, New York, 1999.

[2] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory, volume
315 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1996.

[3] J. D. Dixon. Exact solution of linear equations using p-adic expansions. Numer. Math.,
40:137–141, 1982.

[4] P. D. Domich, R. Kannan, and L. E. Trotter, Jr. Hermite normal form computation
using modulo determinant arithmetic. Mathematics of Operations Research, 12(1):50–
59, 1987.

[5] W. Eberly, M. Giesbrecht, and G. Villard. Computing the determinant and Smith form
of an integer matrix. In Proc. 31st Ann. IEEE Symp. Foundations of Computer Science,
pages 675–685, 2000.

[6] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, 2 edition, 2003.

[7] M. Giesbrecht. Fast computation of the Smith normal form of an integer matrix. In
A. Levelt, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC
’95, pages 110–118. ACM Press, New York, 1995.

[8] J. L. Hafner and K. S. McCurley. Asymptotically fast triangularization of matrices over
rings. SIAM Journal of Computing, 20(6):1068–1083, Dec. 1991.

[9] C. S. Iliopoulos. Worst-case complexity bounds on algorithms for computing the canon-
ical structure of finite abelian groups and the Hermite and Smith normal forms of an
integer matrix. SIAM Journal of Computing, 18(4):658–669, 1989.

[10] C. P. Jeannerod and G. Villard. Essentially optimal computation of the inverse of
generic polynomial matrices. Journal of Complexity, 21:72–86, 2005.

[11] E. Kaltofen. On computing determinants of matrices without divisions. In P. S. Wang,
editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC ’92, pages
342–349. ACM Press, New York, 1992.

[12] E. Kaltofen and G. Villard. On the complexity of computing determinants. Computa-
tional Complexity, 13(3–4):91–130, 2004.

[13] I. Kaplansky. Elementary divisors and modules. Trans. of the Amer. Math. Soc.,
66:464–491, 1949.

23

[14] D. E. Knuth. The Art of Computer Programming, Vol.2, Seminumerical Algorithms.
Addison–Wesley (Reading MA), 2 edition, 1981.

[15] R. T. Moenck and J. H. Carter. Approximate algorithms to derive exact solutions to
systems of linear equations. In Proc. EUROSAM ’79, volume 72 of Lecture Notes in
Compute Science, pages 65–72, Berlin-Heidelberg-New York, 1979. Springer-Verlag.

[16] T. Mulders and A. Storjohann. Certified dense linear system solving. Journal of Symbolic
Computation, 37(4):485–510, 2004.

[17] M. Newman. Integral Matrices. Academic Press, 1972.

[18] V. Pan, R. R. D. Ivolgin, B. Murphy, Y. Tang, and X. Yan. Additive preconditioning for
matrix computations. In Third International Computer Science Symposium in Russia,
CSR 2008 Moscow, Russia, June 7-12, 2008 Proceedings, LNCS 5010, pages 327–383.
Springer Verlag, 2008.

[19] V. Y. Pan and X. Wang. On rational number reconstruction and approximation. SIAM
Journal of Computing, 33(2):502–503, 2004.

[20] A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta Informatica,
1:139–144, 1971.

[21] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing,
7:281–292, 1971.

[22] A. Storjohann. A solution to the extended gcd problem with applications. In W. W.
Küchlin, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC ’97,
pages 109–116. ACM Press, New York, 1997.

[23] A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Swiss Federal
Institute of Technology, ETH–Zurich, 2000.

[24] A. Storjohann. The shifted number system for fast linear algebra on integer matrices.
Journal of Complexity, 21(4):609–650, 2005. Festschrift for the 70th Birthday of Arnold
Schönhage.

[25] A. Storjohann and T. Mulders. Fast algorithms for linear algebra modulo N . In G. Bi-
lardi, G. F. Italiano, A. Pietracaprina, and G. Pucci, editors, Algorithms — ESA ’98,
LNCS 1461, pages 139–150. Springer Verlag, 1998.

24

