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Abstract. An algorithm is presented that probabilistically com-
putes the exact inverse of a nonsingular n × n integer matrix A using

(n3(log ||A||+ log κ(A)))
1+o(1)

bit operations. Here, ||A|| = maxij |Aij |
denotes the largest entry in absolute value, κ(A) := n||A−1|| ||A|| is the
condition number of the input matrix and the “+o(1)” in the exponent
indicates a missing factor c1(log n)c2(loglog ||A||)c3 for positive real con-
stants c1, c2, c3. A variation of the algorithm is presented for polynomial
matrices that computes the inverse of a nonsingular n×n matrix whose

entries are polynomials of degree d over a field using (n3d)
1+o(1)

field
operations. Both algorithms are randomized of the Las Vegas type: fail-
ure may be reported with probability at most 1/2, and if failure is not
reported then the output is certified to be correct in the same running
time bound.

Keywords. Integer matrix, polynomial matrix, matrix inverse, Smith
normal form, bit complexity, randomized algorithm

Subject classification. 68W30, 15A35

1. Introduction

Let A ∈ Zn×n be nonsingular. We denote by ||A|| := max |Aij| the
maximum magnitude of entries in A, and by κ(A) := n||A|| ||A−1||
the condition number of the matrix with respect to the max norm.
We describe an algorithm to compute the exact inverse of A using

an expected number of (n3(log ||A||+ log κ(A)))
1+o(1)

bit opera-
tions. Thus, for a well conditioned A, with κ(A) bounded by a
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polynomial function of n log ||A||, the running time is bounded by

(n3 log ||A||)1+o(1) bit operations. For comparison, the sum of the
bitlengths of all entries in the inverse of a nonsingular A ∈ Zn×n
may be more than n3 log2 ||A|| bits.

To illustrate the new algorithm and to clarify concepts as they
arise we will use two running examples. The first example is based
on the matrix

(1.1) Awell =


133 25 −75 192

−165 −36 270 72

−246 −99 −99 198

−60 375 21 −150


with

A−1
well =


56100

27010673
− 7843

27010673
− 206069

81032019
− 22627

27010673

48563
27010673

27298
81032019

17819
162064038

140897
54021346

13850
27010673

777005
243096057

− 883015
486192114

− 33517
162064038

201813
54021346

683501
486192114

252293
243096057

25913
162064038


and κ(Awell) < 7.373. This example illustrates a property of a well
conditioned matrix: for each entry in A−1

well, the bitlength of the
numerator is less than, or at least not too much larger than, the
bitlength of the denominator.

The second example is based on the matrix

(1.2) Aill =


−195 −105 9 242

−387 −633 300 508

63 −216 69 19

−399 −513 513 260


with

A−1
ill =


−3285673

2394
54655
63

−182789
171

−812713
2394

−2227201
2394

37048
63

−123905
171

−550897
2394

−1503910
1197

50033
63

−167332
171

−371989
1197

−8777
6

2774
3

−3418
3

−2171
6


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and κ(Aill) = 3703894. This example illustrates a property of an ill
conditioned matrix: for some entries in A−1

ill , the bitlength of the
numerator can be significantly larger than the bitlength of denom-
inator. For ill conditioned input matrices the n3 log κ(A) term the
running time bound for our algorithm can dominate. In the worst
case, for example for a unimodular matrix (i.e., with an integral

inverse), we can have log κ(A) = (n log ||A||)1+o(1).
To the best of our knowledge, the best previously known com-

plexity estimate for integer matrix inversion is (nω+1 log ||A||)1+o(1)

bit operations, supported by any of the classical approaches such as
homomorphic imaging and Chinese remaindering (von zur Gathen
& Gerhard 2013, Section 5.5), quadratic lifting via Newton iter-
ation, or a recursive version of fraction-free Gaussian elimination
(Storjohann 2000, Section 2). Here, ω is the exponent for matrix
multiplication over a ring (Bürgisser et al. 1996, Chapter 1).

The discovery of an essentially optimal inversion algorithm for
generic polynomial matrices by Jeannerod & Villard (2005), and
the recent progress made in reducing the complexity of many ba-
sic linear algebra problems on integer matrices, motivates us to
develop an algorithm for inversion that is applicable to integer ma-
trices. Assuming ω = 3, we recall in the next two paragraphs some
results for two computational problems that are particularly rele-
vant for this paper: nonsingular rational linear system solving and
determinant/Smith-form computation. For a survey of work that
has been done on computing these and other integer matrix invari-
ants, as well as incorporating fast matrix multiplication techniques,
we refer to Kaltofen & Villard (2004) and Storjohann (2005).

It was shown by Dixon (1982) that, given as input a nonsingular
matrix A ∈ Zn×n and a column vector b ∈ Zn×1, the rational

system solution A−1b can be computed in (n3 log ||A||)1+o(1) bit
operations using linear p-adic lifting. Taking b to be a column
of the identity matrix shows that any single column of the inverse

can be computed in (n3 log ||A||)1+o(1) bit operations. Linear p-adic
lifting is a key subroutine of the algorithm in this paper. We show
that lifting can be used to compute all n columns of the inverse of
a well conditioned matrix in essentially the same time as a single
column.
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Now consider the computation of the determinant, assuming
ω = 3. Classical methods such as homomorphic imaging (von zur

Gathen & Gerhard 2013, Section 5.5) require (n4 log ||A||)1+o(1) bit
operations. A breakthrough is the Krylov approach of Kaltofen

(1992) which gives an (n3.5 log ||A||)1+o(1) Las Vegas algorithm.
Eberly, Giesbrecht & Villard (2000) describe a Monte Carlo al-

gorithm with running time (n3.5(log ||A||)1.5)1+o(1) to compute not
only the determinant but the entire Smith form of A. The Smith
form Diag(s1, s2, . . . , sn) of an A ∈ Zn×n is a canonical diagonaliza-
tion under unimodular pre- and post-multiplication, see Section 2.
The invariant factors si satisfy | detA| = s1s2 · · · sn, so the de-
terminant of A is easily recovered once the form is known. By
nontrivial invariant factors of A we mean those that are > 1. Al-
though an input matrix may have up to n nontrivial invariant fac-
tors, if k is the number of distinct invariant factors then it can be
shown that k ∈ O(

√
n(log n+ log ||A||)). The approach of Eberly

et al. (2000) is based on computing the distinct invariant factors,

together with their multiplicities, by computing k×(log n)1+o(1) ra-
tional linear system solutions, each of which can be accomplished

in (n3 log ||A||)1+o(1) bit operations using linear p-adic lifting. The
overall cost of the algorithm of Eberly et al. (2000) is thus sensitive
to k, the number of distinct invariant factors. On the one hand, the
algorithm we present here avoids this sensitivity to k by being able
exploit the fact that

∑n
i=1 bitlength(si) ≤ n+ bitlength(detA), in-

dependent of the invariant structure of A. On the other hand, our
algorithm is sensitive to the condition number κ(A). We compute
all n invariant factors in succession in time proportional to about
n2
∑n

i=1(log si + log κ(A)) bit operations. The sensitivity of our
inversion algorithm to log κ(A) will be explained later in the paper
using our running examples Awell and Aill.

Next, we motivate our approach for integer matrix inversion by
recalling the definition of the adjoint of an n× n matrix A over a
field, denoted by Aadj. Recall that Aadj is the n × n matrix with
entry in row i column j equal to (−1)i+j times the determinant
of the (n − 1) × (n − 1) submatrix of A obtained by deleting row
j and column i. If A is nonsingular then Aadj = (detA)A−1, but
note that the adjoint is well defined also for singular matrices. If
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the rank of A is strictly less than n− 1 then the adjoint is the zero
matrix. But suppose that A has rank n − 1. Then A has at least
one nonzero minor of dimension n − 1. Assume without loss of
generality (up to a row and column permutation) that the leading
(n − 1) × (n − 1) submatrix C of A is nonsingular, and partition
A as

A =

[
C y
x a

]
.

If we set u := −xC−1, a row vector of dimension n − 1, and v :=
−C−1y, a column vector of dimension n− 1, then

(1.3)

[
In−1

u 1

] A[
C y
x ∗

] [
In−1 v

1

]
=

[
C

0

]
.

The adjoint of the matrix on the right hand side of (1.3) will have
all entries zero except for the entry in the last row and last column,
which will be equal to detC. Replacing both sides of (1.3) with
the adjoint of that side and solving for Aadj gives

(1.4) Aadj =

[
v
1

]
(detC)

[
u 1

]
=

[
(detC)v

detC

] [
u 1

]
.

Note that the expression for Aadj in (1.4) is valid also when the
entries of A are coming from a principal ideal ring, even a ring with
zero divisors such as a residue class ring of the integers, provided
that detA = 0 and detC is a unit from the ring (i.e., C is invertible
over the ring). Consider in particular a nonsingular matrix A ∈
Zn×n for which the leading (n− 1)× (n− 1) submatrix C satisfies
detC ⊥ detA, where ⊥ denotes relative primality. Then over the
residue class ring Z/〈detA〉 we have detA = 0 and detC is a
unit, so equation (1.4) holds modulo detA. In other words, the
adjoint of A over Z is element-wise congruent to the rank 1 matrix
in (1.4). Moreover, if | detA| is large enough, the exact adjoint of
A over Z can be obtained by multiplying out the outer product
in (1.4) and reducing all entries modulo detA in the symmetric
range [−b(| detA| − 1)/2c, b| detA|/2c].
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For example, the matrix

A =


−1 7 8 1

3 −2 7 −4

7 −8 −1 −1

−6 9 −6 −4


has detA = −2677, which is relatively prime to detC = 226.
Formula (1.4) gives

Aadj ≡


−221

−241

155

226

 [ −1209 −934 −154 1
]

(mod − 2677)

≡


−511 285 −767 −221

−424 226 −364 −241

−5 −212 223 155

−180 399 −3 226

 (mod − 2677).(1.5)

For this example, which is well conditioned, detA is large enough
to capture all entries in Aadj; the matrix in (1.5), obtained by multi-
plying out the outer product and reducing entries in the symmetric
range modulo −2677, is the adjoint of A over Z.

To adapt the approach just described to compute the inverse
of an arbitrary input matrix requires handling the case when all
minors of A of dimension n− 1 have a common factor with detA
(i.e., the Smith form of A is nontrivial). (Our running example
matrices Awell and Aill both have nontrivial Smith forms, which
necessitated our choice of a different matrix with trivial Smith
form for the example in (1.5).) Our solution is to extend (1.4) to
an A with nontrivial invariant structure by giving an expression
for Aadj mod detA as the sum of scaled outer products.

Aadj ≡ detA

sn
vnun+

detA

sn−1

vn−1un−1+· · ·+
detA

s1
v1u1 (mod detA).
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Each vi is a column vector and each ui a row vector. We call
this construction an outer product adjoint for A. Actually, since
all entries in Aadj are divisible by (detA)/sn, our definition of the
outer product adjoint in Section 3 is as shown above but with detA
replaced by sn, and the left hand side replaced with snA

−1, that
is,

snA
−1 ≡ sn

sn
vnun +

sn
sn−1

vn−1un−1 + · · ·+ sn
s1
v1u1 (mod sn).

If we let Rem(·, sn) denote reduction modulo sn, then expanding
the outer product adjoint yields Rem(snA

−1, sn).
When applying the outer product adjoint to compute snA

−1, a
problem occurs if sn is too small to capture the entries of snA

−1

in the symmetric range modulo detA. In this case we divide the
computation of snA

−1 into two parts by using the decomposition
snA

−1 = Rem(snA
−1, sn) + snR.

1. Compute an outer product adjoint for A and then expand to
recover Rem(snA

−1, sn) explicitly.

2. Compute R using a classical technique such as p-adic lifting.

The bitlength of entries in R is O(log κ(A)), leading directly to the

cost (n3 log κ(A))
1+o(1)

for part 2. We remark, however, that the
cost of our algorithm for part 1 is also sensitive to log κ(A) and

has running time (n3(log ||A||+ log κ(A)))
1+o(1)

; the sensitivity on
log κ(A) of the running time of computing an outer product adjoint
is explained in Example 4.8.

We adapt our approach for integer matrix inversion to obtain
an algorithm for polynomial matrix inversion. Let K be a field,
and let A ∈ K[z]n×n be nonsingular with entries bounded in de-
gree by d > 0. The inverse of A may require on the order of n3d
field elements to represent. Similar to the integer case, a variety of
classical approaches for polynomial matrix inversion exist, all with

a cost estimate of (nω+1d)
1+o(1)

field operations from K. We refer
to Jeannerod & Villard (2005) for a brief survey of previous meth-
ods, and for a discussion of some of the progress made in obtaining
faster algorithms for problems on polynomial matrices. Jeannerod
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& Villard (2005) propose a new approach that, for a generic A with

n a power of two, will compute A−1 in (n3d)
1+o(1)

field operations.
A natural analogue of the condition number for polynomial matrix
is degA+ degA−1, the sum of the maximal entry degree in A and
the maximum over all entries in A−1 of the difference of the numer-
ator and denominator degree. A direct application of our approach
would lead to an algorithm for polynomial matrix inversion with
running time of

(n3d+ n3(degA+ degA−1))
1+o(1)

field operations, which could be (n4d)
1+o(1)

in the worst case. How-
ever, by first performing a random shift z → z + α of the indeter-
minant and reverting the polynomials in A, we can instead work
with B := zd((A |z=z+α) |z=1/z) that has degB + degB−1 = 0. We
thus obtain a Las Vegas probabilistic algorithm with running time

(n3d)
1+o(1)

for any nonsingular input.
The rest of this paper is organized as follows. In a paragraph

at the end of this section we define our complexity model in terms
of some standard cost functions for basic arithmetic operations
over Z and K[z]. Section 2 fixes some notation and recalls some
definitions, including that of the Smith canonical form.

Section 3 defines the outer product adjoint and develops a
recipe for its computation. Section 4 gives a recipe for a key com-
putational step that the recipe in the previous section leaves un-
specified. Sections 3 and 4 develop results generically so they apply
over both R = Z and R = K[z].

Section 5 shows how to use the recipes of the previous sections
to obtain a Las Vegas randomized algorithm for integer matrix
inversion algorithm. Section 6 gives the adaptation of the inversion
algorithm to polynomial matrices. Section 7 concludes.

Cost functions. Let M : Z>0 −→ R>0 be such that integers
bounded in magnitude by 2t can be multiplied using at most M(t)
bit operations. The algorithm of Schönhage & Strassen (1971) al-
lows M(t) = O(t(log t)(loglog t)), and recently some asymptotically
faster algorithm have been developed (De et al. 2013; Fürer 2009).
We assume that M(a) + M(b) ≤ M(a + b) and M(ab) ≤ M(a)M(b)
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for a, b ∈ N≥2. We refer to von zur Gathen & Gerhard (2013, Sec-
tion 8.3) for further references and discussion about integer multi-
plication.

It will be useful to define an additional function B for bound-
ing the cost of integer gcd–related computations. We can take
B(t) = M(t) log t. Then the extended gcd problem with two inte-
gers bounded in magnitude by 2t, and the rational number recon-
struction problem (von zur Gathen & Gerhard 2013, Section 5.10)
with modulus bounded by 2t, can be solved with O(B(t)) bit op-
erations (Schönhage 1971).

We will overload notation slightly and use M :Z≥0 −→ R>0 as
a cost function for polynomial multiplication: two polynomials in
K[z] of degree bounded by d can be multiplied using at most M(d)
field operations. Similarly, B will be used as a cost function for gcd-
related problems like rational function reconstruction and extended
gcd. Similar to the integer case, we can take B(d) = M(d) log d.
We refer to von zur Gathen & Gerhard (2013, Section 11.1) for
more details and references.

2. Definitions, notation and preliminaries

Let R be a principal ideal ring, a commutative ring with identity
in which every ideal is principal. In this paper our focus is on the
integral domains R = Z and R = K[z]. Following Newman (1972),
we prescribe a complete set of non-associates A(R) and, for every
nonzero s ∈ R, a complete set of residues R(R, s). For Z we choose

A(Z) = {0, 1, 2, . . .} and R(Z, s) =

[
−
⌊
|s| − 1

2

⌋
,

⌊
|s|
2

⌋]
.

Note that our choice for R(Z, s) corresponds to the usual “sym-
metric range” modulo s. For K[z] we choose

A(K[z]) = {0} ∪ {f ∈ K[z] | f is monic}

and
R(K[z], s) = {f ∈ K[z] | deg f < deg s}.

For nonzero N ∈ R, the function Rem(a,N) returns the element
of R(R, N) that is congruent to a modulo N . The next lemma
follows as a consequence of our choices for R(R, N).
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Lemma 2.1. Let a,N ∈ R, N nonzero. Then a = Rem(a,N) if

R = Z : |N | ≥ 2|a|+ 2

R = K[z] : degN ≥ deg a+ 1

For a, s ∈ R, we denote by gcd(a, s) the unique principal generator
in A(R) of the ideal generated by a and s. We allow gcd to take
an arbitrary number of arguments, including matrices and vectors
as well as individual elements of R. For example, if B is a matrix
over R and s is an element of R, then gcd(B, s) denotes the gcd of
s and all entries in B.

We can use the definition of gcd over R to induce definitions of
A and R for a residue class ring R/〈s〉 from the definitions of A
and R over R. This will be useful below where we recall how the
Smith form over R can be computed by working over R/〈s〉 for a
well chosen s. For nonzero s ∈ R, we identify the residue class ring
R/〈s〉 with the set of elements R(R, s), and define

A(R/〈s〉) = {gcd(a, s) | a ∈ R(R, s)}

and
R(R/〈s〉, b) = R(R, gcd(b, s)).

These choices for A and R allow us to easily obtain algorithms
for basic operations over R/〈s〉 in terms of algorithms for basic
operations over R (Storjohann 2000, Section 1.1).

The Smith canonical form. Corresponding to every A ∈ Rn×m

there exist unimodular (invertible over R) matrices U ∈ Rn×n and
V ∈ Rm×m such that

snf(A) = S = UAV = Diag(s1, s2, . . . , sr, 0, 0, . . . , 0)

with S in Smith form (Newman 1972, Chapter II), that is, with
si|si+1 for 1 ≤ i ≤ r − 1 and si ∈ A(R) for 1 ≤ i ≤ r. The
Smith form is a canonical form for matrices under left and right
multiplication of unimodular matrices.

In this paper we are particularly interested in the case when
R is a principal ideal domain (e.g., R = Z and R = K[x]) and
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A ∈ Rn×n is square and nonsingular. In this case, r = n and sn
is an associate of (detA)/ gcd(Aadj). Thus, the largest invariant
factor sn is the “smallest” nonzero element of R (minimal degree
over K[z] and minimal magnitude over Z) such that snA

−1 is over
R.

The classical approach to compute the Smith form of a matrix
over the Euclidean domains R = Z or R = K[z] is to apply a
sequence of elementary row and column operations. A well known
problem is that entries in the work matrix can grow excessively
large. To avoid this phenomenon, many authors (e.g., Domich et al.
1987; Hafner & McCurley 1991; Iliopoulos 1989) have used the idea
of the following lemma in conjunction with that of Lemma 2.1. The
lemma follows from existence and uniqueness of the Smith form
over any principal ideal ring (Kaplansky 1949), in particular over
the residue class ring R/〈s〉. For a proof of Lemma 2.2 we refer to
Storjohann (1996, Theorem 12).

Lemma 2.2. Let A ∈ Rn×n, and let s ∈ R be a nonzero multiple
of the largest nonzero invariant factor of A. If S is the Smith form
of A over R, and S̄ is the Smith form of Ā = Rem(A, s) over R/〈s〉,
then S̄ = Rem(S, s).

3. The outer product adjoint

Let R be a principal ideal domain and let A ∈ Rn×n be nonsingular
with Smith form S = UAV = Diag(s1, s2, . . . , sn). Let ui and vi be
row i and column i of the unimodular transformation matrices U
and V respectively, 1 ≤ i ≤ n. Inverting both sides of the equation
S = UAV , multiplying by sn, and solving for snA

−1 gives

snA
−1 = V (snS

−1)U

=
sn
sn
vnun +

sn
sn−1

vn−1un−1 + · · ·+ sn
s1
v1u1(3.1)

= (e1)vnun + (e1e2)vn−1un−1 + · · ·+ (e1e2 · · · en)v1u1,(3.2)

where ei = sn−i+2/sn−i+1, 1 ≤ i ≤ n, sn+1 := sn. Note that that
the Smith form of snA

−1 is Diag(e1, e1e2, . . . , e1e2 · · · en).
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Now consider taking equation (3.1) modulo sn. Since the outer
product viui is scaled by sn/si, the equation will still hold modulo
sn if entries in vi and ui are reduced modulo si, 1 ≤ i ≤ n.

Definition 3.3. An outer product adjoint of a nonsingular A ∈
Rn×n is set of tuples (sn−i+1, vn−i+1, un−i+1)1≤i≤k such that

◦ the Smith form ofA is Diag(1, 1, . . . , 1, sn−k+1, sn−k+2, . . . , sn)
with sn−k+1 6= 1,

◦ vn−i+1 ∈ R(R, sn−i+1))
n×1 and un−i+1 ∈ R(R, sn−i+1)

1×n for
1 ≤ i ≤ k, and

◦ snA−1 ≡ sn
sn
vnun + sn

sn−1
vn−1un−1 + · · · + sn

sn−k+1
vn−k+1un−k+1

(mod sn).

Example 3.4. The example input matrix Awell in (1.1) has

snf(Awell) = Diag(s1, s2, s3, s4) = Diag(1, 3, 6, 486192114)

and

s4A
−1
well =


1009800 −141174 −1236414 −407286

874134 163788 53457 1268073

249300 1554010 −883015 −100551

1816317 683501 504586 77739

 .

An outer product adjoint for Awell is given by

v4u4 + (81032019)v3u3 + (162064038)v2u2

≡


1009800 −141174 −1236414 −407286

874134 163788 53457 1268073

249300 1554010 −883015 −100551

1816317 683501 504586 77739

 (mod s4).

Note that for this example, which is well conditioned, expanding
the outer product adjoint and reducing modulo s4 = 486192114
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yields s4A
−1
well. Valid choices for the v∗ and u∗ are

(3.5)
[
v2 v3 v4

]
=


1 2 59489394

2 1 −59489391

−2 3 −176554567

0 1 −41655398


and

(3.6)

 u2
u3
u4

 =


3 3 81659997

3 3 −81024481

0 0 −394319

1 1 −242809128


T

.

Because Awell only has three nontrivial invariant factors, the outer
product v1u1 (comprised of zero vectors because entries are reduced
modulo 1) is not included in the outer product adjoint. ♦

Example 3.7. Example input matrix Aill in (1.2) has snf(Aill) =
Diag(s1, s2, s3, s4) = Diag(1, 3, 3, 2934) and

A−1
ill =


−3285673 2076890 −2559046 −812713

−2227201 1407824 −1734670 −550897

−3007820 1901254 −2342648 −743978

−3502023 2213652 −2727564 −866229

 .

An outer product adjoint for Aill is given by

v4u4 + (798)v3u3 + (798)v2u2

≡


−1105 −1102 140 −1147

−781 152 980 −277

−956 418 1078 556

399 −798 −798 399

 (mod s4).
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Valid choices for the v∗ and u∗ are

(3.8)
[
v2 v3 v4

]
=


1 1 1

−1 0 −1019

0 −1 −340

0 0 −399


and

(3.9)

 u2
u3
u4

 =


−1 −1 1 1

1 −1 1 −1

−1105 494 938 −1147

 .
Note that for this example, which is ill conditioned, expanding the
outer product adjoint only yields (2934)A−1

ill mod 2934. ♦

The goal of the remainder of this section is to describe a pro-
cedure to compute an outer product adjoint. Instead of directly
giving the procedure, we first develop in Section 3.1 a procedure
that takes as input a nonsingular B ∈ Rn×n with

snf(B) = Diag(e1, e1e2, . . . , e1e2 · · · en)

and computes a decomposition for B as in (3.2): we call this a
Smith decomposition of B. Then, Section 3.2 gives a procedure to
compute an outer product adjoint for a nonsingular A ∈ Rn×n by
adapting the Smith decomposition procedure to the special case
when B = snA

−1.

3.1. Computing a Smith decomposition. Let a nonsingular
B ∈ Rn×n be given. We will show how to compute column vectors
vn, . . . , v1 ∈ R1×n and row vectors un, . . . , u1 ∈ Rn×1 such that

B = (e1)vnun + (e1e2)vn−1un−1 + · · ·+ (e1 · · · en)v1u1(3.10)

= e1(vnun + e2(vn−1un−1 + · · ·+ en(vnun) · · · )),

where snf(B) = Diag(e1, e1e2, . . . , e1e2 · · · en). The ei do not need
to be known in advance but are computed during the course of
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the procedure. The procedure works by constructing matrices
B1, B2, . . . , Bn+1 ∈ Rn×n such that

(3.11) Bj =
1

e1e2 · · · ej−1

(B − e1(vnun + e2(vn−1un−1+

· · ·+ ej−1(vn−j+2un−j+2) · · · )))

with

(3.12) snf(Bj) = Diag(ej, ejej+1, · · · , ej, ej+1, · · · en, 0, 0, . . . , 0).

Considering (3.12), snf(Bn+1) will be the zero matrix, showing
that (3.10) will follow from (3.11) for j = n+ 1.

A key feature of the procedures that we develop here is that the
matrix Bj does not need to be represented explicitly, that is, as a
single n×n matrix filled with elements of R. Rather, we only need
construct explicitly the scalars ei and vectors vn−i+1 and un−i+1,
1 ≤ i ≤ j − 1. Then, if Bj needs to be applied to a vector, an
algorithm based on the definition of Bj in (3.11) can be used; the
design and analysis of such an algorithm is deferred to Section 4.

We now explain how to construct the Bj by induction on j,
1 ≤ j ≤ n + 1, with base case j = 1. Initialize B1 = B. Then B1

satisfies (3.11) and (3.12). Suppose Bj satisfying (3.11) and (3.12)
have been computed for 1 ≤ j ≤ i, for some i with 1 ≤ j ≤ n. We
show how to compute Bi+1 satisfying (3.11)) and (3.12). Because
R is a principal ideal ring, there exist vectors x ∈ R1×n and y ∈
Rn×1 such that ei := gcd(Bi) = xBiy, the gcd of all entries of Bi.
The nonzero invariant structure of a matrix does not change if we
embed into a larger matrix banded with zeroes. Let v := Biy and
u := xBi, and consider the following unimodular transformation of
the matrix obtained from Bi by augmenting it with an initial row
and column of zeroes.

(3.13)

[
1 x

In

] [
0

Bi

] [
1
y In

]
=

[
ei u
v Bi

]
Let vn−i+1 := v/ei ∈ Rn×1 and un−i+1 := u/ei ∈ R1×n, and apply
another unimodular transformation to the matrix on the right hand
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side of (3.13) to zero out entries below and to the right of ei.

(3.14)

[
1

−vn−i+1 In

] [
ei u
v Bi

] [
1 −un−i+1

In

]
=

[
ei

Bi − eivn−i+1un−i+1

]
All entries of the matrix on the right hand side of (3.14) are divis-
ible by ei. Let Bi+1 = (1/ei)(Bi − eivn−i+1un−i+1) ∈ Rn×n, match-
ing (3.11) for j = i+ 1. Since the matrix on the right of (3.14) has
the same nonzero invariant factors as Bi, we conclude that (3.12)
also holds for j = i + 1. The procedure just described is summa-
rized by Recipe 3.15, correctness of which follows by induction.

Recipe 3.15. Computing a Smith decomposition.

Input: A nonsingular B ∈ Rn×n.

1. Let B1 = B.
2. For i = 1, . . . , n do 3–10
3. Find x ∈ R1×n and y ∈ Rn×1 such that xBiy = gcd(Bi).
4. v ← Biy.
5. u← xBi.
6. ei ← xv.
7. vn−i+1 ← v/ei.
8. un−i+1 ← u/ei.
9. Let Bi+1 = 1

ei
(Bi − eivn−i+1un−i+1) ∈ Rn×n.

10. assert: Eqs. (3.11) and (3.12) hold for j = i+ 1.
11. assert: B = (e1)vnun+(e1e2)vn−1vn−1+· · ·+(e1 · · · en)v1u1.

We defer until Sections 5 and 6 to describe how to compute the
row and column vectors x and y in Step 3 in Recipe 3.15.

3.2. Computing an outer product adjoint. Now consider
using Recipe 3.15 with an input matrix B that is equal to snA

−1

with snf(A) = Diag(s1, s2, . . . , sn). Note that the Smith form of B
is given by

snf(B) = Diag(

sn/sn︷︸︸︷
e1 ,

sn/sn−1︷︸︸︷
e1e2 , . . . ,

sn/s1︷ ︸︸ ︷
e1e2 · · · en).
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Given as input such a B, loop iteration i of Recipe 3.15 computes
the first invariant factor of Bi which has

snf(Bi) = Diag(ei, eiei+1, . . . , eiei+1 · · · en, 0, 0, . . . , 0).

By Lemma 2.2 we can recover the Smith form of Bi by working
modulo its largest invariant factor eiei+1 · · · en = sn−i+2. (For con-
venience, define sn+1 := sn.)

Recipe 3.16 adapts Recipe 3.15 to compute an outer product
adjoint of A while keeping intermediate quantities reduced modulo
the largest invariant factor.

Recipe 3.16. Computing an outer product adjoint.

Input: A nonsingular A ∈ Rn×n and sn ∈ R, the largest invariant
factor of A.

1. Let B1 = snA
−1 and sn+1 = sn.

2. For i = 1, . . . , n do 3–11
3. Find x ∈ R(R, sn−i+2)

1×n and y ∈ R(R, sn−i+2)
n×1 such

that Rem(xBiy, sn−i+2) = Rem(gcd(Bi, sn−i+2), sn−i+2).
4. v ← Rem(Biy, sn−i+2).
5. u← Rem(xBi, sn−i+2).
6. ei ← Rem(xv, sn−i+2).
7. If ei = 0 then break.
8. vn−i+1 ← v/ei.
9. un−i+1 ← u/ei.

10. sn−i+1 ← sn−i+2/ei.
11. Let Bi+1 = 1

ei
(Bi − eivn−i+1un−i+1) ∈ Rn×n.

12. assert: (sn−j+1, vn−j+1, un−j+1)1≤j≤i−1 is an outer product
adjoint for A.

Recipe 3.16 requires as input the largest invariant factor sn of
A, and computes sn−i+1 at loop iteration 2, 3, . . . , n. There two
subtleties to be aware of. First, at iteration i the matrix Bi is only
correct modulo sn−i+2. By Lemma 2.2, we need to compute ei as
the gcd of all entries of Bi over R/〈sn−i+2〉: over R we compute
the gcd of sn−i+2 with all entries in Bi, and then reduce modulo
sn−i+2. Second, if there exists a minimal i ≤ n such that ei = 0,
then Bi is congruent modulo sn−i+2 to the zero matrix: this is
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handled by exiting the loop early since the trailing part of the sum
(sn/sn−i+1)vn−i+1un−i+1 + · · · + (sn/s1)v1u1 in (3.10) is known to
be congruent to zero modulo sn in this case.

Sections 5 and 6 specialize Recipe 3.16 to the rings R = Z and
R = K[z]. Note that the vector y that needs to be chosen at the
start of each iteration is required only to construct v. We will ap-
peal to known results to construct v as an R-linear combination of
BiY for a Y that is randomly chosen so that gcd(BiY, sn−i+2) =
gcd(Bi, sn−i+2) with high probability. Once v is known, x is com-
puted as the solution to an extended euclidean problem.

The key computational step that Recipe 3.16 leaves unspecified
is how to compute the product Biy efficiently when Bi is repre-
sented implicitly as snA

−1 plus a sum of outer products; this is the
topic of the next section.

4. Matrix multiplication with a partial outer
product adjoint

Let (sn−i+1, vn−i+1, un−i+1)1≤i≤k be an outer product adjoint for a
nonsingular A ∈ Rn×n, such as computed by Recipe 3.16. If we
define

(4.1) Ti :=
sn
sn
vnun +

sn
sn−1

vn−1un−1+

· · ·+ sn
sn−i+2

vn−i+2un−i+2 ∈ Rn×n,

then at loop iteration i = 1, 2, . . . , k, Recipe 3.16 needs to pre- and
post-multiply a vector by the matrix

(4.2) Bi =
sn−i+2

sn

(
snA

−1 − Ti
)
∈ Rn×n,

working modulo sn−i+2, where sn+1 is defined to be sn. Recall that
that Bi is represented implicitly as the original input matrix A and
the scalars s∗ and vectors v∗ and u∗ in (4.1). In this section we
consider the problem of computing Rem(BiY, sn−i+2) for a given
Y ∈ R(R, sn−i+2)

n×m.
Our approach is to compute A−1Y and Rem(TiY, sn) separately

and then take a linear combination to arrive at the target matrix

(4.3) T := sn−i+2A
−1Y − (sn−i+2/sn) Rem(TiY, sn) ∈ Rn×m.
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The final result is obtained as Rem(T, sn−i+2). In general, both
sn−i+2A

−1Y and (sn−i+2/sn)Rem(TiY, sn) will be over the fraction
field of R with denominators being divisors of sn−i+2/sn, but the
linear combination T in (4.3) is guaranteed to be over R by con-
struction of the outer product adjoint. To avoid computing A−1Y
at full precision we will work modulo an N that is relatively prime
to sn and that is large enough to capture exactly the entries in T
in (4.3). The approach can be summarized as follows.

1. Choose a modulus N such that N ⊥ sn and the target matrix
T in (4.3) is contained in R(R, N)n×m.

2. Compute W1 := Rem(A−1Y,N).

3. Compute W2 := Rem(TiY, sn).

4. Compute W := Rem(sn−i+2W1 − (sn−i+2/sn)W2, N).

5. Return Rem(W, sn−i+2).

We call this recipe to compute Rem(BiY, sn−i+2) the double mod-
ulus approach since we alternately use the relatively prime moduli
N , sn, N and sn−i+2|sn in steps 2, 3, 4 and 5, respectively.

Next we give two examples of the double modulus approach.
Example 4.4, using Awell from (1.1), explains how the double mod-
ulus approach leads to a good complexity, at least in the case of a
well conditioned input matrix. Example 4.8, using Aill from (1.2),
explains the sensitivity of the computational cost on the condition
number of the input matrix.

Example 4.4. Consider the matrix Awell ∈ Z4×4 from (1.1). From
Example 3.4 we know that s4 = 6, s5 = 486192114, and we
can take T3 = v4u4 + (81032019)v3u3 where v4, v3 ∈ Z4×1 and
u4, u3 ∈ Z1×4 are as in (3.5) and (3.6), respectively. Let Y :=[
−1 1 −1 −2

]T
, with entries reduced modulo s3 = 6. Con-

sider the computation of Rem(B3Y, s4) using the approach sum-
marized above. For now, we will omit the Rem(·, N) operations in
steps 2 and 4 to better illustrate the utility of the double modulus
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technique. First compute the nonsingular rational system solution

(4.5) A−1
wellY =


150002

81032019

− 366661
54021346

2388827
486192114

− 896440
243096057

 .

Step three computes

(4.6) W2 := Rem(T3Y, s4) =


−161164026

158764089

−159675211

−1792880

 .

Next compute the target vector

T := s3A
−1
wellY − (s3/s4)W2

=


300004

27010673

− 1099983
27010673

2388827
81032019

− 1792880
81032019

−

−53721342

27010673

52921363
27010673

−159675211
81032019

− 1792880
81032019



=


2

−2

2

0

 .(4.7)

For this example, the target vector T in (4.7) is already reduced
modulo s3 = 6, so step 5 is not required. Note that integers in
the target vector T in (4.7) have small bitlength compared to the
intermediate results in (4.5) and (4.6).

To avoid the computation of A−1
wellY at full precision we can
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work modulo N = 97 and in step 2 compute

W1 := Rem(A−1
wellY, 97) =


−15

43

48

20

 .

And then in step 4 we have

W := Rem(s3W1 − (s4/s3)W2, 97) =


2

−2

2

0

 .

Note that N = 97 is large enough to capture exactly in the sym-
metric range modulo N the entries in T in (4.7). ♦

In general, we expect entries in the rational system solution A−1Y
to be ratios of integers with bitlength O(n(log n + log ||A||)). For
comparison, entries in the target matrix T in (4.3) will have bitlength
only O(max(log sn−i+2, log sn−i+2 + log n + log ||A−1||)). The next
example shows how the log ||A−1|| term in this bound can dominate
for an ill conditioned matrix.

Example 4.8. Consider the matrix Aill ∈ Z4×4 from (1.2). From
Example 3.7 we know that s3 = 3, s4 = 2394, and we can take
T3 = v4u4 + (798)v3u3 where v4, v3 ∈ Z4×1 and u4, u3 ∈ Z1×r are

as in (3.8) and (3.9), respectively. Let Y :=
[
−1 −1 1 −1

]T
,

with entries reduced modulo s3 = 3. As in the previous example,
we will omit the Rem(·, N) operations in steps 2 and 4. First
compute the nonsingular rational system solution

A−1
ill Y =


−268775

1197

−182198
1197

−246052
1197

−718
3


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Step three computes

W2 := Rem(T3Y, s4) =


−496

1088

1060

−798


Next compute the target vector

T := s3A
−1
ill Y − (s4/s3)W2

=


−268775

399

−182198
399

−246052
399

−718

−

−248

399

544
399

530
399

−1



=


−673

−458

−618

−717

 .(4.9)

Finally, step 5 reduces the result modulo s3.

Rem(T, 3) =


−1

1

0

0


Our final result is reduced modulo 3, but to apply the double mod-
ulus approach for this example, which is ill conditioned, we need
to choose an N that is large enough to capture in the symmetric
range modulo N the entries in the target vector T in (4.9). ♦

The rest of this section is divided into two subsection. In Sec-
tion 4.1 we give an algorithm to compute Rem(TiY, sn). In Sec-
tion 4.2 a lower bound for the size of N is established to ensure
that Rem(TY,N) = T .
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4.1. Application of scaled outer products. Given a Y ∈
R(R, sn)n×m, the product Rem(TiY, sn) can be computed efficiently
by using nested multiplication.

TiY ≡

(
i−1∑
j=1

sn
sn−j+1

vn−j+1un−j+1

)
Y (mod sn)

≡
i−1∑
j=1

sn
sn−j+1

Rem(vn−j+1(un−j+1

Yn−j+1︷ ︸︸ ︷
Rem(Y, sn−j+1)), sn−j+1)︸ ︷︷ ︸
Xn−j+1

≡ sn
sn

(
· · · sn−i+4

sn−i+3

(
Xn−i+3 +

sn−i+3

sn−i+2

Xn−i+2

)
· · ·
)

Algorithm 4.10 implements the above scheme. In the first loop,
iteration j does O(nm) arithmetic operations modulo sn−j+1 with
operands from R(R, sn−j+2) and R(R, sn−j+1). Iteration j of the
second loop does O(nm) operations modulo sn−j+1 with operands
from R(R, sn−j+1).

Algorithm 4.10. OPM(s, (sn−j+1, vn−j+1, un−j+1)1≤j≤i−1, Y ).

Input: ◦ nonzero s ∈ A(R)
◦ sn−i+2|sn−i+3| · · · |sn = s and sn−i+2 a nonunit if i > 1
◦ vn−j+1 ∈ R(R, sn−j+1)

n×1, 1 ≤ j ≤ i− 1
◦ un−j+1 ∈ R(R, sn−j+1)

1×n, 1 ≤ j ≤ i− 1
◦ Y ∈ R(R, s)n×m

Output: Rem((
∑i−1

j=1(s/sn−j+1)vn−j+1un−j+1)Y, s).

1. If i ≤ 1 then
2. Return the n×m zero matrix.
3. Yn+1 ← Y .
4. sn+1 ← sn.
5. For j = 1, . . . , i− 1 do 6–7
6. Yn−j+1 ← Rem(Yn−j+2, sn−j+1).
7. Xn−j+1 ← Rem(vn−j+1(un−j+1Yn−j+1), sn−j+1).
8. V ← Xn−i+2.
9. For j = i− 2, i− 3, . . . , 1 do

10. V ← Rem(Xn−j+1 + (sn−j+1/sn−j)V, sn−j+1).
11. Return V .
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Lemma 4.11. Algorithm 4.10 is correct. The running time is

R = Z : O(nmM(log
∏i−1

j=1 sn−j+1)) bit operations.

R = K[z] : O(nmM(
∑i−1

j=1 deg sn−j+1)) field operations from K.

Proof. The claimed running time bounds follow from the su-
perlinearity of the cost function M. �

4.2. The double modulus approach. Our goal is to compute
Rem(BiY, sn−i+2). From the definition of Bi in (4.2) we have that

Rem(BiY, sn−i+2) = Rem(T, sn−i+2)

where T is as in (4.3). Let N ∈ R be relatively prime to sn. If
Rem(T,N) = T then also

Rem(Rem(T,N), sn−i+2) = Rem(T, sn−i+2)

and we can apply Recipe 4.12 to compute Rem(BiY, sn−i+2).

Recipe 4.12. Application of Bi.

Input: Y ∈ R(R, sn−i+2)
n×m.

1. W1 := Rem(A−1Y,N).
2. W2 := OPM(sn, (sn−j+1, vn−j+1, un−j+1)1≤j≤i−1, Y ).
3. W := Rem((sn−i+2W1 − (sn−i+2/sn)W2, N).
4. return Rem(W, sn−i+2)

Theorem 4.13. If Y ∈ R(R, sn−i+2)
n×m then Recipe 4.12 returns

Rem(BiY, sn−i+2) if

R = Z : N ≥ sn−i+2(nsn−i+2||A−1||+ 1) + 2.

R = K[z] : degN ≥ max(deg sn−i+2,
deg snA

−1 + 2 deg sn−i+2 − deg sn).

Proof. The matrices snA
−1Y and Rem(TiY, sn) are over R and

their difference is divisible by sn/sn−i+2. The result will follow if we
show that N satisfies the bounds of Lemma 2.1, with BiY playing
the role of a.
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Over K[z] we have

deg snA
−1Y ≤ deg snA

−1 + deg Y

≤ deg snA
−1 + deg sn−i+2 − 1

and deg Rem(TiY, sn) ≤ deg sn − 1. The bound for degN given in
theorem is obtained by adding one to the maximum of these two
bounds and subtracting deg sn/sn−i+2.

Over Z we have

||snA−1Y || ≤ nsn||A−1|| ||Y ||
≤ nsn||A−1||sn−i+2/2

and ||Rem(TiY, sn)|| ≤ sn/2, hence the difference of these matri-
ces multiplied by sn−i+2/sn has entries bounded in magnitude by
ns2n−i+2||A−1||/2 + sn−i+2/2; the bound for N in the theorem is
obtained by multiplying this bound two and adding two. �

Corollary 4.14. Consider the case R = K[z]. If Y ∈ Kn×m and
deg snA

−1−deg sn ≤ 0, then Recipe 4.12 returns Rem(BiY, sn−i+2)
if degN ≥ 2 deg sn−i+2.

5. Integer matrix inversion

Our Las Vegas algorithm for integer matrix inversion consists of
three phases. To begin, we give a high level overview of each phase.

Phase 1 uses randomization to probabilistically compute the
the following quantities.

◦ A modulus p ∈ Z>0 such p ⊥ detA and log p ∈ Θ(log n +
log ||A||), together with the inverse C = Rem(A−1, p).

◦ An upper bound α for ||A−1||.

◦ The largest invariant factor s of A.

Phase 2 adapts Recipe 3.16 for computing an outer product
adjoint to the integer case. Recipe 3.16 did not specify how to find
vectors v ∈ Zn×1 and u ∈ Z1×n such that ei := Rem(uBiv, sn−i+2)
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is the first invariant factor of Bi. Here, we use randomization to
compute ei probabilistically as the gcd of all entries in BiV and
sn−i+2 for a randomly chosen V . Also, because some numbers
(e.g., s and α from phase 1) are only computed probabilistically,
some checks need to be added to ensure the algorithm stops and
returns Fail in case the upper bound on the running time would
be exceeded.

Phase 3 computes the explicit inverse of A, if necessary com-
puting the extra component R in the decomposition snA

−1 =
Rem(snA

−1, sn) + snR. The inverse is assayed for correctness and
either Fail or the correct inverse is returned.

In Section 5.1 we recall some known results from the literature
and specialize them to our needs here. Probabilities of correctness,
complexity bounds, and implementation details for phases 1, 2
and 3 are given in Sections 5.2, 5.3 and 5.4, respectively.

Algorithm 5.1. IntInverse(A).

Input: Nonsingular A ∈ Zn×n.
Output: A−1.
Comment: Fail may be returned with probability < 1/2.

[Phase 1: Initialization]
1. Choose p̄ uniformly and randomly from among the first

12blog2(n
n/2||A||n)c primes.

2. p ← the smallest positive integer power of p̄ such that
log2 p ≥ log2

√
n+ log2 ||A||.

3. If p̄ 6⊥ detA Return Fail Else C ← Rem(A−1, p).
4. α ← ||A−1X||, where X ∈ {−1, 1}n×4 is chosen uniformly

and randomly.
5. M ← 6 + d2n(log2 n+ log2 ||A||)e.
6. L← {0, . . . ,M − 1}.
7. s← the denominator of A−1X, where X ∈ Ln×12 is chosen

uniformly and randomly.
8. m← 2d(2 + log2 n)/ log2 3e.

[Phase 2: Compute Outer Product Adjoint]
9. Let B1 denote sA−1 and sn+1 = s.

10. For i = 1, . . . , n do 11–24
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11. Choose Y ∈ Ln×m uniformly and randomly.
12. Y ← Rem(Y, sn−i+2).
13. N ← pk, where k ∈ Z>0 is minimal such that pk ≥

sn−i+2(nαsn−i+2 + 1) + 2.
14. Compute V ← Rem(BiY, sn−i+2) using Recipe 4.12.
15. Use Lemma 5.5 to compute x ∈ R(Z, sn−i+2)

1×n and
y ∈ R(Z, sn−i+2)

m×1 such that Rem(xV y, sn−i+2) =
Rem(gcd(V, sn−i+2), sn−i+2).

16. v ← Rem(V y, sn−i+2).
17. Compute u← Rem(BT

i x
T , sn−i+2)

T using Recipe 4.12.
18. ei ← Rem(xv, sn−i+2).
19. If ei = 0 then break Else sn−i+1 ← sn−i+2/ei.
20. If (i = 1 and sn 6= s) then Return Fail.
21. If

∏i
j=1 sn−j+1 > nn/2||A||n or ei 6 |u then Return Fail.

22. un−i+1 ← u/ei.
23. vn−i+1 ← v/ei.
24. Let Bi+1 denote 1

ei
(Bi − eivn−i+1un−i+1) ∈ Zn×n.

[Phase 3: Compute Inverse and Assay Correctness]
25. If OPM(s, (sn−j+1, vn−j+1, un−j+1)1≤j≤i−1, A) 6= 0n×n then
26. Return Fail.
27. C0 ← OPM(s, (sn−j+1, vn−j+1, un−j+1)1≤j≤i−1, In).
28. N1 ← pk, where k ∈ Z≥0 is minimal such that pks ≥ 2αs+2.
29. C1 ← Rem(sRem(A−1, N1), N1), computed using p-adic

lifting.
30. C ← Rem(N1 Rem(1/N1, s)C0 + sRem(1/s,N1)C1, N1s).
31. N2 ← pk, where k ∈ Z>0 is minimal such that pk ≥

(2n/s)||A||||C||+ 2.
32. If Rem(ARem((1/s)C,N2), N2) 6= In then Return Fail.
33. Return (1/s)C, with fractions reduced.

5.1. Computational tools. By the denominator of a rational
matrix or vector we mean the smallest positive integer multiple
that will clear the denominators, assuming the fractions are re-
duced.
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Lemma 5.2 (Eberly et al. 2000, Theorem 2.1). Let A ∈ Zn×n be
nonsingular. If X ∈ Ln×2 is chosen uniformly and randomly, where
L := {0, 1, . . . ,M−1} with M := 6+d2n(log2 n+log2 ||A||)e, then
the denominator of A−1X is the largest invariant factor of A with
probability at least 1/3.

An inspection of (Eberly et al. 2000, Proof of Theorem 2.1) re-
veals that the definition of M in Lemma 5.2 is driven by the
size of sn, the largest invariant factor of A, and is otherwise in-
dependent of ||A|| and n. Since sn is a factor of detA, we have
sn ≤ detA ≤ nn/2||A||n, the second inequality being implied by
Hadamard’s bound. The next result follows as a corollary of the
proof of (Eberly et al. 2000, Theorem 2.1).

Corollary 5.3. Let s ∈ Z>0 satisfy the bound s ≤ nn/2||A||n.
For any B ∈ Zn×n, if X ∈ Ln×2 is chosen uniformly and randomly,
then gcd(BX, s) = gcd(B, s) with probability at least 1/3.

The main computational tool in our algorithm is linear p-adic
lifting (Dixon 1982), used to compute Rem(A−1X, pk) for a given
X ∈ Zn×m and k. The presentation and analysis in Dixon (1982)
assumes standard integer arithmetic, but if the bitlength of p is
well chosen then fast integer arithmetic can be incorporated with-
out much difficulty by appealing to fast algorithms for arithmetic
operations such as radix conversion. For a detailed derivation of
parts (i) and (ii) of the following lemma we refer to Mulders &
Storjohann (2004, Section 5).

Lemma 5.4. Let A ∈ Zn×n be nonsingular. Suppose we are given

◦ a p ∈ Z>0 with p ⊥ detA and log p ∈ Θ(log n+ log ||A||),

◦ C := Rem(A−1, p),

◦ N := pk for an integer k > 0.

(i) Suppose Y ∈ Zn×m satisfies log ||Y || ∈ O(logN). Then
Rem(A−1Y,N) can be computed using linear p-adic lifting
in

O(n2kmB(log n+ log ||A||) + nmB(k(log n+ log ||A||)))
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bit operations.

(ii) Suppose Y ∈ Zn×m satisfies log ||Y || ∈ O(n(log n+log ||A||)).
Then A−1Y can be computed with O(n3mB(log n+log ||A||))
bit operations.

(iii) Cost of Recipe 4.12. If
∏i−1

j=1 sn−i+1 ≤ nn/2||A||n and logN ∈
O(max(log p, log(sn−i+2(nsn−i+2||A||−1 + 1) + 2))), then the
recipe can be applied with

O(n2kn−i+2mB(log n+ log ||A||) +nmB(n(log n+ log ||A||)))

bit operations, where

kn−i+2 := max

(
1,

log sn−i+2

log n+ log ||A||
,

log ||A−1||
log n+ log ||A||

)
.

Proof. To understand the cost bound for part (iii) it is helpful
to recall the cost analysis for part (i). Each step of p-adic lifting
involves two matrix × matrix products: A× ∗ and C × ∗ where ∗
is an n×m matrix with entries bounded in bitlength by O(log p).
This gives rise to the O(n2kmB(log n+log ||A||)) term. The second
term bounds the cost of all the additional work, especially, at the
end of the lifting, the radix conversion from p-adic to standard
representation of nm numbers bounded in bitlength by logN .

Now consider part (iii). The computation of W2 in Recipe 4.12
costs O(nmM(n(log n + log ||A||))) bit operations (Lemma 4.11).
This also bounds the cost of the arithmetic operations performed
in the return statement of Recipe 4.12. The cost of computing
W1 := Rem(A−1Y,N) is as stated in part (i) with k = logpN .
The definition of kn−i+2 is such that kn−i+2 ∈ Θ(logpN). The cost
estimate stated in part (iii) simplifies the second term of the cost
estimate from part (i) by using kn−i+2 ∈ O(n). �

The usual extended euclidean problem takes as input a column
vector v ∈ Zn×1 and asks for a row vector x ∈ Z1×n such that
xv = gcd(v). The next lemma recalls a method for solving deter-
ministically a variation of the problem when the input is a matrix.
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Lemma 5.5. Given V ∈ R(Z, s)n×m, we can compute vectors
x ∈ R(Z, s)1×n and y ∈ R(Z, s)m×1 such that Rem(xV y, s) =
Rem(gcd(V, s), s) in O(nmB(log s)) bit operations.

Proof. Storjohann (1997, Section 4.1) derives a method to com-
pute a y such that gcd(V y, s) = gcd(V, s). The cost of the method
is O(nmB(log s)) bit operations, plus m calls to a subroutine that
takes as input integers a and b, and computes a c such that gcd(a+
bc, s) = gcd(a, b, c): each such c can be computed in O(B(log s))
bit operations using operation Stab from Storjohann & Mulders
(1998). Once y has been computed, compute x to be a solution to
the standard extended euclidean problem with input V y. �

5.2. Phase 1: Initialization. Phase one uses randomization
to compute three numbers probabilistically: a small prime power
p that is relatively prime to detA; an α that satisfies ||A−1|| ≤
α ≤ n||A−1||; the largest invariant factor s = sn of the input ma-
trix. Part (i) of the following lemma gives some properties that are
guaranteed to hold by construction, while part (ii) gives properties
that only hold probabilistically. This distinction between proper-
ties that are guaranteed to hold versus properties that only hold
probabilistically is important for our cost analysis of phases 2 and 3
of the algorithm.

Lemma 5.6. Phase 1 of Algorithm 5.1 makes use of O(n(log n +
loglog ||A||)) random bits and completes inO(n3 B(log n+log ||A||))
bit operations. Fail will be returned with probability at most 1/12.
If Fail is not returned, then (i) will hold, and (ii) will hold with
overall probability at least 1− 1/6.

(i) p ⊥ detA, log p ≥ log
√
n + log ||A|| and log p ∈ Θ(log n +

log ||A||), α ≤ n||A−1||, and s is a divisor of the largest in-
variant factor of A.

(ii) α ≥ ||A−1||, and s is the largest invariant factor of A.

Proof. By Hadamard’s bound | detA| ≤ nn/2||A||n, so detA is
divisible by at most the log of this many distinct prime divisors.
This shows that the randomly chosen prime p̄ will be a divisor of
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detA with probability at most 1/12. Assume henceforth that Fail
has not been returned.

First consider part (i). From the prime number theorem we
know that log p̄ ∈ Θ(log n + loglog ||A||); the upper bound and
lower bounds for log p follow by construction. The upper bound
for α uses ||X|| = 1: ||A−1X|| ≤ n||A−1|| ||X|| = n||A−1||. Abbott
et al. (1999) show that s is a factor of sn.

Now consider part (ii). We will separately bound the probabil-
ity that that α < ||A−1|| by 1/16, and that s is a proper divisor of
the largest invariant factor of A by 64/729. Since the sum of these
two probabilities is less than 1/6, the claim in the lemma that part
(ii) will hold with probability at least 1− 1/6 will follow.

To see that α < ||A−1|| with probability at most 1/16, let

x =
[
x1 x̄

]T ∈ {−1, 1}n×1 be chosen uniformly and randomly,
and let a =

[
a1 ā

]
∈ Q1×n be a row of A−1 which has a maximal

magnitude entry, which without loss of generality we will assume
is the principal entry a1. Consider the dot product ax = a1x1+ āx̄.
A sufficient condition for |ax| ≥ ||A−1|| to hold is that sign(a1x1) =
sign(āx̄); since x1 is chosen uniformly and randomly from {−1, 1},
the probability that |ax| < ||A−1|| is less than 1/2. Choosing
X ∈ {−1, 1}n×4 to have four columns as in the algorithm gives
four independent trials of this idea, so α < ||A−1|| with probability
less than 1/24.

Now consider s. Since X is chosen from Ln×(2×6), the proba-
bility that s is a proper divisor of the largest invariant factor of A
is bounded by the probability that 6 independent trials of the ap-
proach of Lemma 5.2 all fail: this is bounded by (2/3)6 = 64/729.

Now consider the running time. The first 12blog2(n
n/2||A||n)c

primes can be constructed in the allotted time using the sieve of
Eratosthenes (Knuth 1981, Section 4.5.4). The modular inverse C
can be computed in the allotted time using Gaussian elimination.
By (ii), the rational system solutions A−1X can be computed in
the allotted time using p-adic lifting. �

5.3. Phase 2: Compute Outer Product Adjoint Formula.
Phase 2 of Algorithm 5.1 adapts the algorithm for outer product
adjoint shown in Recipe 3.16 to the integer case. The main change
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is that at iteration i we recover the gcd ei of all entries in Bi prob-
abilistically by computing gcd(BiY, sn−i+2) for a randomly chosen
Y . Not only might some of the ei be computed incorrectly, phase 2
also depends on the numbers s and α that are computed prob-
abilistically in phase 1 (cf. Lemma 5.6(ii)). For this reason, we
need to bound the running time of phase 2 independently of the
correctness of s, α, and the ei computed at each loop iteration.

Lemma 5.7. Phase 2 of Algorithm 5.1 uses O(n2(log n)(log n +
loglog ||A||)) random bits and completes in

(5.8) O(n2(log n)B(n(log n+ log ||A||)))

plus

(5.9) O(n3 max(log n, log ||A−1||)B(log n+ log ||A||))

bit operations.

Proof. Since the algorithm will stop and return Fail if the
bound

∏i
j=1 sn−j+1 ≤ nn/2||A||n is not satisfied, the sum of the

bitlengths of the moduli sn−i+2 over all loop iterations is bounded
by O(n(log n + log ||A||)). Excluding the calls to Recipe 4.12, the
running time bound in (5.8) for the entire phase follows from the
superlinearity of B:

∑i−1
j=1 B(log sn−j+1) ∈ O(B(

∑i−1
j=1 log si)).

The cost of the two calls to Recipe 4.12 for single loop iteration
is given by Lemma 5.4(iii). Let kn−i+2 be defined as in Lemma 5.4.
Then

i−1∑
j=1

kn−i+2 ∈ O
(

max

(
n,

n log ||A−1||
log n+ log ||A||

))
.

The part of the cost bound related to the lifting, shown in (5.9),
incorporates the simplification log n+ log ||A|| ≥ log n. �

Lemma 5.10. If s is the largest invariant factor of A and α ≥
||A−1||, then phase 2 of Algorithm 5.1 will not return Fail and
computes a correct outer product adjoint for A with probability at
least 1− 1/4.
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Proof. Phase 2 is identical to algorithm for outer product ad-
joint shown in Recipe 3.16 except that ei is computed probabilis-
tically. By Theorem 4.13, Recipe 4.12 will correctly compute V .
Corollary 5.3 gives that ei 6= gcd(Bi, s) with probability at most
(2/3)m/2. Since m is chosen so that (2/3)m/2 ≤ 1/(4n), the proba-
bility that ei 6= gcd(Bi, sn−i+2) for one or more i is at most 1/4. �

5.4. Phase 3: Compute Inverse and Assay Correctness.

Lemma 5.11. If s is the largest invariant factor of A, α ≥ ||A−1||,
and the (sn−j+1, vn−j+1, un−j+1)1≤j≤i−1 computed in phase 2 com-
prise an outer product adjoint for A, then phase 3 of Algorithm 5.1
will not return Fail.

Proof. Assume the conditions of the lemma are satisfied. Then
the first call to Algorithm 4.10 (OPM) computes Rem(sA−1A, s)
which will be the zero matrix and the second call computes C0 =
Rem(sA−1, s). The matrix C1 is equal to Rem(sA−1, N1). The
matrix C is obtained by Chinese remaindering together C0 and
C1 to get C = Rem(sA−1, N1s). Since ||sA−1|| ≤ sα, and N1s ≥
2αs + 2, by Lemma 2.1 we have sA−1 = Rem(sA−1, N1s) and we
conclude that C = sA−1. It follows that the second last line will
not return Fail since (1/s)AC is indeed the identity matrix. �

Lemma 5.12. If phase 3 of Algorithm 5.1 does not return Fail,
then the correct inverse of A is returned.

Proof. If the first call to OPM yields the zero matrix then C0 as
computed in the next line has the property that Rem(AC0, s) is the
zero matrix. By construction of C, Rem(C, s) = C0, so Rem(AC, s)
is also the zero matrix: we conclude that AC is divisible by s. An
a priori bound for ||(1/s)AC|| is (n/s)||A||C||. By Lemma 2.1,
the choice of N2 guarantees that (1/s)AC = Rem((1/s)AC,N2).
If (1/s)AC = In then (1/s)C must be the inverse of A. �

Lemma 5.13. Phase 3 of Algorithm 5.1 completes in

(5.14) O(n2 B(n(log n+ log ||A||)))
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plus

(5.15) O(n3(log ||A||−1)/(log n+ log ||A||)B(log n+ log ||A||))

bit operations.

Proof. Algorithm 4.10 bounds the cost of the two calls to OPM

by (5.14) bit operations. Since α ≤ n||A−1|| and s ≤ nn/2||A||n,
all of N1, N1s and N2 will have bitlength bounded by O(n(log n+
log ||A||)). Thus, the cost of computing C, Rem((1/s)C,N2), and
reducing the fractions in (1/s)C is bounded by (5.14) bit operations
as well.

The costs of computing Rem(A−1, N1) via lifting and com-
puting the matrix product ARem((1/s)C,N2) are sensitive to α.
In particular, both logN1 and logN2 are O(log n + log ||A−1||).
By Lemma 5.4, C1 can be computed in (5.15) bit operations.
Now consider the computation of the product ARem((1/s)C,N2).
To begin, convert Rem((1/s)C,N2) to a p-adic expansion with
O((log ||A−1||)/(log n + log ||A||)) terms. Multiplying each term
by A has cost bounded by (5.15). Convert back to standard rep-
resentation. The cost of the radix conversion is bounded by (5.14)
bit operations. �

Theorem 5.16. Let A ∈ Zn×n be nonsingular. Algorithm 5.1
uses O(n2(log n)(log n + loglog ||A||)) random bits and completes
in

O(n2(log n)B(n(log n+ log ||A||)))
plus

O(n3 max(log n, log ||A−1||)B(log n+ log ||A||))
bit operations. The algorithm either returns Fail or A−1. Fail is
returned with probability less than 1/2.

Proof. Lemma 5.12 guarantees that an incorrect result will not
be returned. By Lemma 5.11, the algorithm will not return Fail
provided that phase 1 does not return fail and computes s and
α correctly, and that phase 2 computes a correct outer product
adjoint. Summing the probabilities from Lemma 5.6 and 5.10 gives
1/12 + 1/6 + 1/4 ≤ 1/2. Phase 2 dominates (Lemma 5.7). �
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Recall that κ(A) = n||A|| ||A||−1 where || · || denote the max-
norm. The following corollary of Theorem 5.16 follows from the
fact that κ(A) ≥ 1.

Corollary 5.17. There exists a Las Vegas algorithm that com-
putes the exact inverse of a nonsingular A ∈ Zn×n using an ex-

pected number of (n3(log ||A||+ log κ(A)))
1+o(1)

bit operations.

6. Polynomial matrix inversion

Let A ∈ K[z]n×n be nonsingular with degree d > 0, K a field.
Recall that the degree of the determinant of A is bounded by nd,
while entries in the adjoint matrix Aadj := (detA)A−1 are minors
of dimension n − 1 and thus are bounded in degree by (n − 1)d.
Similar to the integer case, the cost of computing an outer product
adjoint for A will be sensitive to the difference between degAadj and
deg detA. Generically, degAadj − deg detA = (n − 1)d − nd < 0,
but we may have degAadj−deg detA ≤ (n− 1)d, the upper bound
being achieved for certain unimodular matrices.

Fortunately, we can apply some simple algebraic precondition-
ing techniques to transform the original A into another matrix of
degree d that has determinant of degree nd. Consider the following
input matrix over K[z] where K = Z/〈97〉.

A1 =


72 z2 + 37 z + 74 87 z2 + 44 z + 29 7 z + 56

89 z2 + 68 z + 95 11 z2 + 48 z + 50 64 z + 75

87 z2 + 31 z + 46 77 z2 + 95 z + 1 63 z + 8

 .
The determinant of A1 is 17. But consider the matrix obtained
from A1 by reverting the polynomials via a change of variables.

A2 = z2(A1 |z=1/z)

=


74 z2 + 37 z + 72 29 z2 + 44 z + 87 56 z2 + 7 z

95 z2 + 68 z + 89 50 z2 + 48 z + 11 75 z2 + 64 z

46 z2 + 31 z + 87 z2 + 95 z + 77 8 z2 + 63 z

 .
The leading coefficient matrix of A2 (the coefficient of z2) is equal
to the constant coefficient matrix of A1: since this is nonsingular
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the degree of the determinant of A2 will be equal to nd. Indeed,
detA2 = 17z6. If we start with an A that does not have a non-
singular constant coefficient matrix we apply a shift to produce
A1 := A |z=z+α for a randomly chosen α ∈ K. These ideas are sum-
marized in the following lemma, the proof of which is elementary.

Lemma 6.1. Let A ∈ K[z]n×n with degree bounded by d and let
α ∈ K. If A1 := A |z=z+α and A2 := zd(A1 |z=1/z) then A−1

1 =
(zd(A−1

2 )) |z=1/z and A−1 = (A−1
1 ) |z=z−α. We also have detA2 =

znd((detA1) |z=1/z), so if det Rem(A1, z) 6= 0 then deg detA2 = nd.

In Section 6.1 we recall some know results from the literature
and specialize them to our needs here. Probability of correctness,
complexity bound, and implementation details for phases 1, 2 and 3
are given in Sections 6.2, 6.3, and 6.4, respectively.

Algorithm 6.2. PolyInverse(A,Λ).

Input: ◦ nonsingular A ∈ K[z]n×n of degree d > 0, K a field
◦ a set Λ of elements of K

Output: A−1.
Comment: Fail may be returned with probability ≤ 4nd/#Λ.

[Phase 1: Initialization]

1. If det Rem(A, z) 6= 0 then
2. α← 0.
3. A1 ← A.
4. Else
5. Choose α uniformly and randomly from Λ.
6. A1 ← A |z=z+α.
7. If det Rem(A1, z) = 0 then Return Fail.
8. A2 ← zd

(
A1 |z=1/z

)
.

9. Choose β uniformly and randomly from Λ.
10. If det Rem(A2, z − β) = 0 then Return Fail.
11. p← (z − β)d.
12. C ← Rem(A−1

2 , p).
13. Choose y ∈ Λn×1 uniformly and randomly.
14. s← the denominator of A−1

2 y.
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[Phase 2: Compute Outer Product Adjoint]
15. Let B1 denote sA−1

2 and sn+1 = s.
16. For i = 1, . . . , n do 17–28
17. If i > 1 then choose y ∈ Λn×1 uniformly and randomly.
18. Set N ← pk, where k ∈ Z>0 is minimal such that

deg pk ≥ 2 deg sn−i+2.
19. Compute v ← Rem(Biy, sn−i+2) using Recipe 4.12.
20. Compute x ∈ R(K[z], sn−i+2)

1×n such that
Rem(xv, sn−i+2) = Rem(gcd(v, sn−i+2), sn−i+1).

21. Compute u← Rem(BT
i x

T , sn−i+2)
T using Recipe 4.12.

22. ei ← Rem(xv, sn−i+2).
23. If ei = 0 then break Else sn−i+1 ← sn−i+2/ei.
24. If (i = 1 and sn 6= s) then Return Fail.
25. If

∑i
j=1 sn−j+1 > nd or ei 6 |u then Return Fail.

26. un−i+1 ← u/ei.
27. vn−i+1 ← v/ei.
28. Let Bi+1 = 1

ei
(Bi − eivn−i+1un−i+1) ∈ K[z]n×n.

29. If
∑i−1

j=1 6= nd then Return Fail.

[Phase 3: Compute Inverse and Assay Correctness]
30. If OPM(s, (sn−j+1, vn−j+1, un−j+1)1≤j≤i−1, v2) 6= 0n×n then
31. Return Fail.
32. C ← OPM(s, (sn−j+1, vn−j+1, un−j+1)1≤j≤i−1, In).
33. If Rem(A2 Rem((1/s)C, p), p) 6= In then Return Fail.
34. Return

(
(zd/s)C

)
|z=1/(z−α), with fractions reduced.

6.1. Computational tools. In addition to a nonsingular input
A ∈ K[z]n×n, our algorithm for computing the inverse will take
as input a subset Λ of elements of K. Probability estimates will
depend on #Λ. The following result is the polynomial analogue of
Corollary 5.3.

Lemma 6.3. Let s ∈ K[z] be nonzero. For any B ∈ K[z]n×n, if
y ∈ Λn×1 is chosen uniformly and randomly, then gcd(By, s) =
gcd(B, s) with probability at least 1− (deg s)/#Λ.

Proof. Let g = gcd(B, s). Then gcd(By, s) = gcd(B, s) if and
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only if gcd((B/g)y, s) = 1. Let p be an irreducible divisor of s.
Then the residue class ring K[z]/〈p〉 is a field and it is easy to see
that gcd((B/g)y, p) = 1 with probability at least 1 − 1/#Λ. The
result follows by noting that s, and hence also s/g, has at most
deg s distinct irreducible divisors. �

The next result follows from Lemma 6.3 since the largest invariant
factor sn of A has degree bounded by nd. In particular, A−1y has
denominator sn if and only if gcd((snA

−1)y, sn) = 1.

Corollary 6.4. Let A ∈ K[z]n×n be nonsingular of degree d. If
y ∈ Λn×1 is chosen uniformly and randomly, then the denominator
of A−1y is equal to the largest invariant factor of A with probability
at least 1− nd/#Λ.

We refer to Mulders & Storjohann (2004, Section 5) for a deriva-
tion of Lemma 6.5(i). The derivation of part (ii) is similar to
Lemma 5.4(iii). The nB(nd) term comes from the application of
algorithm OPM. The n2kn−i+2 B(d) term captures the cost of per-
forming O(kn−i+2) lifting steps to obtain Rem(A−1y,N).

Lemma 6.5. Let A ∈ K[z]n×n be nonsingular of degree d. Suppose
we have p ∈ K[z]>0 with p ⊥ detA and deg p = d, together with
C := Rem(A−1, p).

(i) If y ∈ K[z]n×1 satisfies deg y ∈ O(nd), then A−1y can be
computed with O(n3 B(d)) field operations from K.

(ii) Cost of Recipe 4.12. If
∑i−1

j=1 deg sn−i+1 ≤ nd and degN ∈
O(deg sn−i+2), then the recipe can be applied with

O(n2kn−i+2 B(d) + nB(nd))

field operations from K, where kn−i+2 := 1 + (deg sn−i+2)/d.

6.2. Phase 1: Initialization.

Lemma 6.6. Phase 1 of Algorithm 6.2 completes in O(n3 B(nd))
field operations. Fail is returned with probability at most 2nd/#Λ.
If Fail is not returned, then deg detA2 = nd and s is the largest
invariant factor of A with probability at least 1− nd/#Λ.
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Proof. Since deg detA ≤ nd, the randomly chosen shift α is a
root of detA with probability at most nd/#Λ. The same upper
bound holds for the probability that det Rem(A2, t− β) = 0.

Now assume that Fail is not returned. That deg detA2 = nd
follows from Lemma 6.1. Corollary 6.4 gives the probability esti-
mate for the correctness of s. By Lemma 6.5, the computation of
A−1y, which dominates the cost of the phase, can be accomplished
in the allotted time. �

Note that the second probability estimate in Lemma 6.6 is con-
ditional: the probability that phase 1 does not return Fail and s is
computed correctly is at least 1− 2nd/#Λ− nd/#Λ.

6.3. Phase 2: Compute Outer Product Adjoint Formula.

Lemma 6.7. Phase 2 of Algorithm 6.2 completes in O(n2 B(nd))
field operations.

Proof. Each iteration check that
∑i

j=1 deg sn−j+1 ≤ nd, so the
sum of the degrees of the moduli sn−i+2 over all the loop iterations
is bounded by O(nd). Excluding the calls to Recipe 4.12, a to-
tal cost bound of O(nB(nd)) field operations for the entire phase
follows from the superlinearity of B.

The cost of the two calls to Recipe 4.12 for a single loop it-
erations is given by Lemma 6.5(ii). Let kn−i+2 be as defined in
Lemma 6.5(ii). Then

∑i−1
j=1 kn−i+2 ∈ O(n). The overall cost of all

calls to Recipe 4.12 is thus O(n2 B(nd)) field operations. �

Lemma 6.8. If s is the largest invariant factor of A2, then phase 2
of Algorithm 6.2 computes an outer product adjoint for A with
probability at least 1− nd/#Λ.

Proof. Phase 2 is identical to the algorithm for outer product
adjoint shown in Recipe 3.16 except that ei is computed probabilis-
tically for i > 1. By assumption s = sn, so during the first iteration
the modulus sn+1 and B1 = sA−1

2 are correct. The first iteration
will correctly compute e1 = 1 since the vector y is reused from
phase 1. Suppose sn+1, sn, . . . , sn−i+2 and hence B1, B2, . . . , Bi are
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computed correctly up to some i. By Corollary 4.14, Recipe 4.12
will correctly compute v. By Lemma 6.3, the probability that
ei is computed incorrectly is bounded by (deg sn−i+2)/#Λ. Since∑i

j=2 deg sn−i+2 ≤
∑n

j=2 deg si ≤ nd, the sum of the failure prob-
ability over all loop iterations is bounded by nd/#Λ. �

6.4. Phase 3: Compute Inverse and Assay Correctness.

Lemma 6.9. If s is the largest invariant factor of A, and phase 2
computes a correct outer product adjoint for A, then phase 3 of
Algorithm 6.2 will not return Fail.

Proof. Assume that s = sn and (sn−j+1, vn−j+1, un−j+1)1≤j≤i−1

is an outer product adjoint for A2, as specified in the lemma. The
first call to OPM computes Rem(sA−1, s) which will be the zero
matrix. The second call computes C = Rem(sA−1

2 , s). Since
deg detA2 = nd, we have deg sA−1

2 < deg s and by Lemma 2.1
we conclude that C = sA−1

2 . It follows that the second last line
will not return Fail since A2(1/s)C = In. �

Lemma 6.10. If phase 3 of Algorithm 6.2 does not return Fail,
then the correct inverse of A is returned.

Proof. If the first call to OPM does not return fail, then C as
computed in the next line has the property that Rem(A2C, s) is
the zero matrix. Thus A2C is divisible by s. An a priori upper
bound for the degree of (1/s)A2C is (degA2)− 1, so if the second
last line does not return Fail, then (1/s)C is the inverse of A2. �

Theorem 6.11. Let A ∈ K[z]n×n be nonsingular with degree d.
Algorithm 6.2 completes in O(n2 B(nd)) field operations. The algo-
rithm either returns Fail or A−1. Fail is returned with probability
4nd/#Λ.

To ensure a positive probability of success we require that #K is
large enough. If K is too small we can work over an algebraic exten-
sion of degree O(log nd) over K. The cost bound of Theorem 6.11
increases by some factors of log nd.
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Corollary 6.12. Let K be a field and z be an indeterminate.
There exists a Las Vegas algorithm that computes the exact in-
verse of a nonsingular A ∈ K[z]n×n using an expected number of

(n3 degA)
1+o(1)

field operations from K.

7. Conclusions

We have demonstrated a Las Vegas randomized algorithm to com-

pute A−1 where A ∈ Zn×n in (n3(log ||A||+ log κ(A)))
1+o(1)

bit
operations. The main outstanding problem is to remove the de-
pendence of the running time on the condition number κ(A) :=
n||A|| ||A−1||. A promising approach may be to use additive pre-
conditioning as described by Pan et al. (2008). For example, even
if A ∈ Zn×n is ill conditioned, the rank one perturbation A + vu
for a randomly chosen column vector v and row vector u may be
well conditioned.

The inversion algorithm in this paper is based on computing an
outer product adjoint, a representation of Rem((detA)A−1, detA)
as the sum of scaled outer products. Since the size of the outer
product adjoint is about the same as that required to represent
the input matrix, a natural question is if fast matrix multiplica-
tion can be incorporated for its computation. We can partially
answer this question. Let k be the number of nontrivial invari-
ant factors of an input matrix A ∈ Zn×n. If high-order lifting
(Storjohann 2005) is used to compute the required rational system
solutions, then running phases 1 and 2 of Algorithm 5.1 can be
used to probabilistically compute an outer product adjoint of A
in k × (nω log ||A||)1+o(1) bit operations, independent of κ(A). For
a “random” integer matrix we can expect k to be small. In par-
ticular, let Λ = {a, a + 1, a + 2, . . . , a + λ − 1}, where a ∈ Z and
λ ∈ Z≥2, and suppose A ∈ Λn×n is chosen uniformly and randomly.
Then Eberly, Giesbrecht & Villard (2000, Corollary 6.3) show that
the expected number k of nontrivial invariant of A is bounded by
O(logλ n).

We have shown how to adapt our algorithms for integer ma-
trix inversion to obtain an algorithm for polynomial matrix inver-
sion. The Las Vegas randomized algorithm we obtain has cost
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(n3 degA)
1+o(1)

field operations from K for any nonsingular input
matrix A ∈ K[z]n×n. Recently, Zhou et al. (2014) give a variant of
the inversion algorithm of Jeannerod & Villard (2005) that has no
genericity requirements: the algorithm can deterministically com-

pute the inverse of any input in (n3 degA)
1+o(1)

field operations.

For an exposition of applications of the (n3 degA)
1+o(1)

inversion
algorithms, including the fast computation of a sequence of scalar
matrix powers, we refer to Zhou et al. (2014, Section 5).

For an input A ∈ K[z]n×n that is row reduced and whose deter-
minant does not vanish modulo z, Gupta (2011) gives a Las Vegas

algorithm to compute an outer product adjoint in (nω degA)1+o(1)

field operations.
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