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We will study the boundedness properties of multilinear Calderón-Zygmund operators and multilinear fractional integrals on
products of weighted Morrey spaces with multiple weights.

1. Introduction and Main Results

Multilinear Calderón-Zygmund theory is a natural gener-
alization of the linear case. The initial work on the class
of multilinear Calderón-Zygmund operators was done by
Coifman andMeyer in [1] andwas later systematically studied
by Grafakos and Torres in [2–4]. LetR𝑛 be the 𝑛-dimensional
Euclidean space, and let (R𝑛)𝑚 = R𝑛 × ⋅ ⋅ ⋅ ×R𝑛 be the𝑚-fold
product space (𝑚 ∈ N). We denote by S(R𝑛) the space of all
Schwartz functions on R𝑛 and by S󸀠(R𝑛) its dual space, the
set of all tempered distributions onR𝑛. Let𝑚 ≥ 2 and𝑇 be an
𝑚-linear operator initially defined on the 𝑚-fold product of
Schwartz spaces, and taking values into the space of tempered
distributions,

𝑇 : S (R
𝑛

) × ⋅ ⋅ ⋅ ×S (R
𝑛
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(R
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) . (1)
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, . . . , 𝑓
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1
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) is a kernel in the class𝑚-𝐶𝑍𝐾(𝐴, 𝜀) if it

satisfies the size condition
󵄨
󵄨
󵄨
󵄨
𝐾 (𝑥, 𝑦

1
, . . . , 𝑦

𝑚
)
󵄨
󵄨
󵄨
󵄨
≤

𝐴

(
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦
1

󵄨
󵄨
󵄨
󵄨
+ ⋅ ⋅ ⋅ +

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦
𝑚

󵄨
󵄨
󵄨
󵄨
)
𝑚𝑛
, (3)
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𝑖
|. In recent

years, many authors have been interested in studying the
boundedness of these operators on function spaces; see, for
example, [5–8]. In 2009, the weighted strong and weak type
estimates ofmultilinear Calderón-Zygmund singular integral
operators were established in [9] by Lerner et al. New more
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refined multilinear maximal function was defined and used
in [9] to characterize the class of multiple 𝐴

𝑃⃗
weights.

Theorem A (see [9]). Let 𝑚 ≥ 2 and 𝑇 be an 𝑚-linear
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Theorem B (see [9]). Let 𝑚 ≥ 2, and let 𝑇 be an 𝑚-
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For the boundedness properties of multilinear fractional
integrals on various function spaces, we refer the reader to
[10–16]. In 2009, Moen [17] considered the weighted norm
inequalities for multilinear fractional integral operators and
constructed the class of multiple 𝐴
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On the other hand, the classical Morrey spaces L𝑝,𝜆

were originally introduced by Morrey in [19] to study the
local behavior of solutions to second-order elliptic partial
differential equations. For the boundedness of the Hardy-
Littlewood maximal operator, the fractional integral opera-
tor, and the Calderón-Zygmund singular integral operator on
these spaces, we refer the reader to [20–22]. For the properties
and applications of classical Morrey spaces, one can see [23–
25] and the references therein.

In 2009, Komori and Shirai [26] first defined the weighted
Morrey spaces 𝐿𝑝,𝜅(𝑤)which could be viewed as an extension
of weighted Lebesgue spaces and studied the boundedness of
the above classical operators in Harmonic Analysis on these
weighted spaces. Recently, in [27–34], we have established
the continuity properties of some other operators and their
commutators on the weighted Morrey spaces 𝐿𝑝,𝜅(𝑤).

The main purpose of this paper is to establish the
boundedness properties of multilinear Calderón-Zygmund
operators and multilinear fractional integrals on products
of weighted Morrey spaces with multiple weights. We now
formulate our main results as follows.
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𝑤
𝑞
1

1
, . . . , 𝑤

𝑞
𝑚

𝑚
∈ 𝐴
∞
, then for any 0 < 𝜅 < 𝑝/𝑞, there exists a

constant 𝐶 > 0 independent of ⃗
𝑓 = (𝑓

1
, . . . , 𝑓

𝑚
) such that

󵄩
󵄩
󵄩
󵄩
󵄩
𝐼
𝛼
(
⃗

𝑓)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑞,𝜅𝑞/𝑝
((]
𝑤⃗
)
𝑞
)

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)
, (13)

where ]
𝑤⃗
= ∏
𝑚

𝑖=1
𝑤
𝑖
.

Theorem 4. Let 𝑚 ≥ 2, let 0 < 𝛼 < 𝑚𝑛, and let 𝐼
𝛼
be an

𝑚-linear fractional integral operator. If 𝑝
1
, . . . , 𝑝

𝑚
∈ [1,∞),

min{𝑝
1
, . . . , 𝑝

𝑚
} = 1, 1/𝑝 = ∑

𝑚

𝑘=1
1/𝑝
𝑘
, 1/𝑞
𝑘
= 1/𝑝

𝑘
− 𝛼/𝑚𝑛

and 1/𝑞 = ∑
𝑚

𝑘=1
1/𝑞
𝑘
= 1/𝑝 − 𝛼/𝑛, and 𝑤⃗ = (𝑤

1
, . . . , 𝑤

𝑚
) ∈

𝐴
𝑃⃗,𝑞

with𝑤𝑞1
1
, . . . , 𝑤

𝑞
𝑚

𝑚
∈ 𝐴
∞
, then, for any 0 < 𝜅 < 𝑝/𝑞, there

exists a constant 𝐶 > 0 independent of ⃗
𝑓 = (𝑓

1
, . . . , 𝑓

𝑚
) such

that

󵄩
󵄩
󵄩
󵄩
󵄩
𝐼
𝛼
(
⃗

𝑓)

󵄩
󵄩
󵄩
󵄩
󵄩𝑊𝐿
𝑞,𝜅𝑞/𝑝
((]
𝑤⃗
)
𝑞
)

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)
, (14)

where ]
𝑤⃗
= ∏
𝑚

𝑖=1
𝑤
𝑖
.

2. Notations and Definitions

The classical 𝐴
𝑝

weight theory was first introduced by
Muckenhoupt in the study of weighted 𝐿

𝑝 boundedness of
Hardy-Littlewood maximal functions in [35]. A weight𝑤 is a
nonnegative, locally integrable function onR𝑛; 𝐵 = 𝐵(𝑥

0
, 𝑟
𝐵
)

denotes the ball with the center 𝑥
0
and radius 𝑟

𝐵
. For 1 < 𝑝 <

∞, a weight function 𝑤 is said to belong to 𝐴
𝑝
if there is a

constant 𝐶 > 0 such that, for every ball 𝐵 ⊆ R𝑛,

(

1

|𝐵|

∫

𝐵

𝑤 (𝑥) 𝑑𝑥)(

1

|𝐵|

∫

𝐵

𝑤(𝑥)
−1/(𝑝−1)

𝑑𝑥)

𝑝−1

≤ 𝐶, (15)

where |𝐵| denotes the Lebesgue measure of 𝐵. For the case
𝑝 = 1, 𝑤 ∈ 𝐴

1
, if there is a constant 𝐶 > 0 such that for every

ball 𝐵 ⊆ R𝑛,

1

|𝐵|

∫

𝐵

𝑤 (𝑥) 𝑑𝑥 ≤ 𝐶 ⋅ ess inf
𝑥∈𝐵

𝑤 (𝑥) . (16)

A weight function 𝑤 ∈ 𝐴
∞
if it satisfies the 𝐴

𝑝
condition for

some 1 < 𝑝 < ∞. We also need another weight class 𝐴
𝑝,𝑞

introduced by Muckenhoupt andWheeden in [36]. A weight
function 𝑤 belongs to 𝐴

𝑝,𝑞
for 1 < 𝑝 < 𝑞 < ∞ if there is a

constant 𝐶 > 0 such that, for every ball 𝐵 ⊆ R𝑛,

(

1

|𝐵|

∫

𝐵

𝑤(𝑥)
𝑞

𝑑𝑥)

1/𝑞

(

1

|𝐵|

∫

𝐵

𝑤(𝑥)
−𝑝
󸀠

𝑑𝑥)

1/𝑝
󸀠

≤ 𝐶. (17)

When 𝑝 = 1, 𝑤 is in the class 𝐴
1,𝑞

with 1 < 𝑞 < ∞ if there is
a constant 𝐶 > 0 such that, for every ball 𝐵 ⊆ R𝑛,

(

1

|𝐵|

∫

𝐵

𝑤(𝑥)
𝑞

𝑑𝑥)

1/𝑞

(ess sup
𝑥∈𝐵

1

𝑤 (𝑥)

) ≤ 𝐶. (18)

Now let us recall the definitions of multiple weights.
For 𝑚 exponents 𝑝

1
, . . . , 𝑝

𝑚
, we will write 𝑃⃗ for the vector

𝑃⃗ = (𝑝
1
, . . . , 𝑝

𝑚
). Let 𝑝

1
, . . . , 𝑝

𝑚
∈ [1,∞), and let 𝑝 ∈

(0,∞) with 1/𝑝 = ∑
𝑚

𝑘=1
1/𝑝
𝑘
. Given 𝑤⃗ = (𝑤

1
, . . . , 𝑤

𝑚
), set

]
𝑤⃗
= ∏
𝑚

𝑖=1
𝑤
𝑝/𝑝
𝑖

𝑖
. We say that 𝑤⃗ satisfies the 𝐴

𝑃⃗
condition if it

satisfies

sup
𝐵

(

1

|𝐵|

∫

𝐵

]
𝑤⃗
(𝑥) 𝑑𝑥)

1/𝑝 𝑚

∏

𝑖=1

(

1

|𝐵|

∫

𝐵

𝑤
𝑖
(𝑥)
1−𝑝
󸀠

𝑖
𝑑𝑥)

1/𝑝
󸀠

𝑖

< ∞.

(19)

When 𝑝
𝑖
= 1, ((1/|𝐵|) ∫

𝐵

𝑤
𝑖
(𝑥)
1−𝑝
󸀠

𝑖
𝑑𝑥)
1/𝑝
󸀠

𝑖 is understood as
(inf
𝑥∈𝐵

𝑤
𝑖
(𝑥))
−1.

Let 𝑝
1
, . . . , 𝑝

𝑚
∈ [1,∞), let 1/𝑝 = ∑

𝑚

𝑘=1
1/𝑝
𝑘
, and let 𝑞 >

0. Given 𝑤⃗ = (𝑤
1
, . . . , 𝑤

𝑚
), set ]

𝑤⃗
= ∏
𝑚

𝑖=1
𝑤
𝑖
. We say that 𝑤⃗

satisfies the 𝐴
𝑃⃗,𝑞

condition if it satisfies

sup
𝐵

(

1

|𝐵|

∫

𝐵

]
𝑤⃗
(𝑥)
𝑞

𝑑𝑥)

1/𝑞

×

𝑚

∏

𝑖=1

(

1

|𝐵|

∫

𝐵

𝑤
𝑖
(𝑥)
−𝑝
󸀠

𝑖
𝑑𝑥)

1/𝑝
󸀠

𝑖

< ∞.

(20)

When 𝑝
𝑖
= 1, ((1/|𝐵|) ∫

𝐵

𝑤
𝑖
(𝑥)
−𝑝
󸀠

𝑖
𝑑𝑥)
1/𝑝
󸀠

𝑖 is understood as
(inf
𝑥∈𝐵

𝑤
𝑖
(𝑥))
−1.

Given a ball 𝐵 and 𝜆 > 0, 𝜆𝐵 denotes the ball with the
same center as 𝐵whose radius is 𝜆 times that of 𝐵. For a given
weight function𝑤 and a measurable set 𝐸, we also denote the
Lebesgue measure of 𝐸 by |𝐸| and the weighted measure of 𝐸
by 𝑤(𝐸), where 𝑤(𝐸) = ∫

𝐸

𝑤(𝑥)𝑑𝑥.

Lemma 5 (see [37]). Let 𝑤 ∈ 𝐴
𝑝
with 1 ≤ 𝑝 < ∞. Then, for

any ball 𝐵, there exists an absolute constant 𝐶 > 0 such that

𝑤 (2𝐵) ≤ 𝐶𝑤 (𝐵) . (21)

Lemma 6 (see [38]). Let 𝑤 ∈ 𝐴
∞
. Then for all balls 𝐵 ⊆ R𝑛,

the following reverse Jensen inequality holds:

∫

𝐵

𝑤 (𝑥) 𝑑𝑥 ≤ 𝐶 |𝐵| ⋅ exp( 1

|𝐵|

∫

𝐵

log 𝑤 (𝑥) 𝑑𝑥) . (22)

Lemma 7 (see [37]). Let𝑤 ∈ 𝐴
∞
. Then, for all balls 𝐵 and all

measurable subsets 𝐸 of 𝐵, there exists 𝛿 > 0 such that

𝑤 (𝐸)

𝑤 (𝐵)

≤ 𝐶(

|𝐸|

|𝐵|

)

𝛿

. (23)

Lemma 8 (see [9]). Let 𝑝
1
, . . . , 𝑝

𝑚
∈ [1,∞), and let 1/𝑝 =

∑
𝑚

𝑘=1
1/𝑝
𝑘
. Then 𝑤⃗ = (𝑤

1
, . . . , 𝑤

𝑚
) ∈ 𝐴
𝑃⃗
if and only if

]
𝑤⃗
∈ 𝐴
𝑚𝑝
,

𝑤
1−𝑝
󸀠

𝑖

𝑖
∈ 𝐴
𝑚𝑝
󸀠

𝑖

, 𝑖 = 1, . . . , 𝑚,

(24)

where ]
𝑤⃗
= ∏
𝑚

𝑖=1
𝑤
𝑝/𝑝
𝑖

𝑖
and the condition 𝑤1−𝑝

󸀠

𝑖

𝑖
∈ 𝐴
𝑚𝑝
󸀠

𝑖

in the
case 𝑝

𝑖
= 1 is understood as 𝑤1/𝑚

𝑖
∈ 𝐴
1
.
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Lemma 9 (see [17, 18]). Let 0 < 𝛼 < 𝑚𝑛, and 𝑝
1
, . . . , 𝑝

𝑚
∈

[1,∞), let 1/𝑝 = ∑
𝑚

𝑘=1
1/𝑝
𝑘
, and let 1/𝑞 = 1/𝑝 − 𝛼/𝑛. If 𝑤⃗ =

(𝑤
1
, . . . , 𝑤

𝑚
) ∈ 𝐴
𝑃⃗,𝑞

, then

(]
𝑤⃗
)
𝑞

∈ 𝐴
𝑚𝑞
,

𝑤
−𝑝
󸀠

𝑖

𝑖
∈ 𝐴
𝑚𝑝
󸀠

𝑖

, 𝑖 = 1, . . . , 𝑚,

(25)

where ]
𝑤⃗
= ∏
𝑚

𝑖=1
𝑤
𝑖
.

Given a weight function 𝑤 on R𝑛, for 0 < 𝑝 < ∞, the
weighted Lebesgue space 𝐿𝑝(𝑤) is defined as the set of all
functions 𝑓 such that

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐿
𝑝
(𝑤)

= (∫

R𝑛

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨

𝑝

𝑤 (𝑥) 𝑑𝑥)

1/𝑝

< ∞. (26)

We also denote by𝑊𝐿
𝑝

(𝑤) the weighted weak space consist-
ing of all measurable functions 𝑓 such that

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝑊𝐿
𝑝
(𝑤)

= sup
𝜆>0

𝜆 ⋅ 𝑤({𝑥 ∈ R
𝑛

:
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
> 𝜆})
1/𝑝

< ∞.

(27)

In 2009, Komori and Shirai [26] first defined the weighted
Morrey spaces 𝐿𝑝,𝜅(𝑤) for 1 ≤ 𝑝 < ∞. In order to deal with
the multilinear case 𝑚 ≥ 2, we will define 𝐿𝑝,𝜅(𝑤) for all 0 <
𝑝 < ∞.

Definition 10. Let 0 < 𝑝 < ∞, let 0 < 𝜅 < 1, and let 𝑤 be
a weight function on R𝑛. Then the weighted Morrey space is
defined by

𝐿
𝑝,𝜅

(𝑤) = {𝑓 ∈ 𝐿
𝑝

loc (𝑤) :
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐿
𝑝,𝜅
(𝑤)

< ∞} , (28)

where

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐿
𝑝,𝜅
(𝑤)

= sup
𝐵

(

1

𝑤(𝐵)
𝜅
∫

𝐵

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨

𝑝

𝑤 (𝑥) 𝑑𝑥)

1/𝑝

(29)

and the supremum is taken over all balls 𝐵 in R𝑛.

Definition 11. Let 0 < 𝑝 < ∞, let 0 < 𝜅 < 1, and let 𝑤 be a
weight function onR𝑛.Then theweightedweakMorrey space
is defined by

𝑊𝐿
𝑝,𝜅

(𝑤) = {𝑓 measurable : 󵄩󵄩󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝑊𝐿
𝑝,𝜅
(𝑤)

< ∞} , (30)

where

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝑊𝐿
𝑝,𝜅
(𝑤)

= sup
𝐵

sup
𝜆>0

1

𝑤(𝐵)
𝜅/𝑝

𝜆 ⋅ 𝑤({𝑥 ∈ 𝐵 :
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
> 𝜆})
1/𝑝

.

(31)

Furthermore, in order to deal with the fractional order
case, we need to consider the weighted Morrey spaces with
two weights.

Definition 12. Let 0 < 𝑝 < ∞ and 0 < 𝜅 < 1. Then for two
weights 𝑢 and V, the weighted Morrey space is defined by

𝐿
𝑝,𝜅

(𝑢, V) = {𝑓 ∈ 𝐿
𝑝

loc (𝑢) :
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐿
𝑝,𝜅
(𝑢,V)

< ∞} , (32)

where

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝐿
𝑝,𝜅
(𝑢,V)

= sup
𝐵

(

1

V(𝐵)𝜅
∫

𝐵

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨

𝑝

𝑢 (𝑥) 𝑑𝑥)

1/𝑝

. (33)

Throughout this paper, we will use 𝐶 to denote a positive
constant, which is independent of the main parameters and
not necessarily the same at each occurrence. Moreover, we
will denote the conjugate exponent of𝑝 > 1 by𝑝󸀠 = 𝑝/(𝑝−1).

3. Proofs of Theorems 1 and 2

Before proving the main theorems of this section, we need to
establish the following lemma.

Lemma 13. Let 𝑚 ≥ 2, let 𝑝
1
, . . . , 𝑝

𝑚
∈ [1,∞), and let 𝑝 ∈

(0,∞) with 1/𝑝 = ∑
𝑚

𝑘=1
1/𝑝
𝑘
. Assume that 𝑤

1
, . . . , 𝑤

𝑚
∈ 𝐴
∞

and ]
𝑤⃗
= ∏
𝑚

𝑖=1
𝑤
𝑝/𝑝
𝑖

𝑖
; then, for any ball𝐵, there exists a constant

𝐶 > 0 such that

𝑚

∏

𝑖=1

(∫

𝐵

𝑤
𝑖
(𝑥) 𝑑𝑥)

𝑝/𝑝
𝑖

≤ 𝐶∫

𝐵

]
𝑤⃗
(𝑥) 𝑑𝑥. (34)

Proof. Since 𝑤
1
, . . . , 𝑤

𝑚
∈ 𝐴
∞
, then, by using Lemma 6, we

have

𝑚

∏

𝑖=1

(∫

𝐵

𝑤
𝑖
(𝑥) 𝑑𝑥)

𝑝/𝑝
𝑖

≤ 𝐶

𝑚

∏

𝑖=1

(|𝐵| ⋅ exp( 1

|𝐵|

∫

𝐵

log𝑤
𝑖
(𝑥) 𝑑𝑥))

𝑝/𝑝
𝑖

= 𝐶

𝑚

∏

𝑖=1

(|𝐵|
𝑝/𝑝
𝑖
⋅ exp( 1

|𝐵|

∫

𝐵

log𝑤
𝑖
(𝑥)
𝑝/𝑝
𝑖
𝑑𝑥))

= 𝐶 ⋅ (|𝐵|)
∑
𝑚

𝑖=1
𝑝/𝑝
𝑖
⋅ exp(

𝑚

∑

𝑖=1

1

|𝐵|

∫

𝐵

log𝑤
𝑖
(𝑥)
𝑝/𝑝
𝑖
𝑑𝑥) .

(35)

Note that ∑𝑚
𝑖=1

𝑝/𝑝
𝑖
= 1 and ]

𝑤⃗
(𝑥) = ∏

𝑚

𝑖=1
𝑤
𝑖
(𝑥)
𝑝/𝑝
𝑖 . Then, by

Jensen inequality, we obtain

𝑚

∏

𝑖=1

(∫

𝐵

𝑤
𝑖
(𝑥) 𝑑𝑥)

𝑝/𝑝
𝑖

≤ 𝐶 ⋅ |𝐵| ⋅ exp( 1

|𝐵|

∫

𝐵

log ]
𝑤⃗
(𝑥) 𝑑𝑥)

≤ 𝐶∫

𝐵

]
𝑤⃗
(𝑥) 𝑑𝑥.

(36)

We are done.
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Proof of Theorem 1. For any ball 𝐵 = 𝐵(𝑥
0
, 𝑟
𝐵
) ⊆ R𝑛 and

letting 𝑓
𝑖
= 𝑓
0

𝑖
+ 𝑓
∞

𝑖
, where 𝑓0

𝑖
= 𝑓
𝑖
𝜒
2𝐵
, 𝑖 = 1, . . . , 𝑚, and

𝜒
2𝐵

denotes the characteristic function of 2𝐵, then we write

𝑚

∏

𝑖=1

𝑓
𝑖
(𝑦
𝑖
) =

𝑚

∏

𝑖=1

(𝑓
0

𝑖
(𝑦
𝑖
) + 𝑓
∞

𝑖
(𝑦
𝑖
))

= ∑

𝛼
1
,...,𝛼
𝑚
∈{0,∞}

𝑓
𝛼
1

1
(𝑦
1
) ⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚
(𝑦
𝑚
)

=

𝑚

∏

𝑖=1

𝑓
0

𝑖
(𝑦
𝑖
) +∑

󸀠

𝑓
𝛼
1

1
(𝑦
1
) ⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚
(𝑦
𝑚
) ,

(37)

where each term of ∑󸀠 contains at least one 𝛼
𝑖
̸= 0. Since 𝑇 is

an𝑚-linear operator, then we have

1

]
𝑤⃗
(𝐵)
𝜅/𝑝

(∫

𝐵

󵄨
󵄨
󵄨
󵄨
𝑇 (𝑓
1
, . . . , 𝑓

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨

𝑝

]
𝑤⃗
(𝑥) 𝑑𝑥)

1/𝑝

≤

1

]
𝑤⃗
(𝐵)
𝜅/𝑝

(∫

𝐵

󵄨
󵄨
󵄨
󵄨
󵄨
𝑇 (𝑓
0

1
, . . . , 𝑓

0

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

]
𝑤⃗
(𝑥)𝑑𝑥)

1/𝑝

+∑

󸀠 1

]
𝑤⃗
(𝐵)
𝜅/𝑝

(∫

𝐵

󵄨
󵄨
󵄨
󵄨
𝑇 (𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨

𝑝

]
𝑤⃗
(𝑥) 𝑑𝑥)

1/𝑝

= 𝐼
0

+∑

󸀠

𝐼
𝛼
1
,...,𝛼
𝑚
.

(38)

In view of Lemma 8, we have that ]
𝑤⃗

∈ 𝐴
𝑚𝑝
. Applying

Theorem A and Lemmas 13 and 5, we get

𝐼
0

≤ 𝐶 ⋅

1

]
𝑤⃗
(𝐵)
𝜅/𝑝

𝑚

∏

𝑖=1

(∫

2𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑥)

󵄨
󵄨
󵄨
󵄨

𝑝
𝑖

𝑤
𝑖
(𝑥) 𝑑𝑥)

1/𝑝
𝑖

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
⋅

∏
𝑚

𝑖=1
𝑤
𝑖
(2𝐵)
𝜅/𝑝
𝑖

]
𝑤⃗
(𝐵)
𝜅/𝑝

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
⋅

]
𝑤⃗
(2𝐵)
𝜅/𝑝

]
𝑤⃗
(𝐵)
𝜅/𝑝

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
.

(39)

For the other terms, let us first consider the case when 𝛼
1
=

⋅ ⋅ ⋅ = 𝛼
𝑚
= ∞. By the size condition, for any 𝑥 ∈ 𝐵, we obtain

󵄨
󵄨
󵄨
󵄨
𝑇 (𝑓
∞

1
, . . . , 𝑓

∞

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨

≤ 𝐶∫

(R𝑛)
𝑚
\(2𝐵)
𝑚

󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑦
1
) ⋅ ⋅ ⋅ 𝑓

𝑚
(𝑦
𝑚
)
󵄨
󵄨
󵄨
󵄨

(
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦
1

󵄨
󵄨
󵄨
󵄨
+ ⋅ ⋅ ⋅ +

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦
𝑚

󵄨
󵄨
󵄨
󵄨
)
𝑚𝑛
𝑑𝑦
1
⋅ ⋅ ⋅ 𝑑𝑦
𝑚

≤ 𝐶

∞

∑

𝑗=1

∫

(2
𝑗+1
𝐵)
𝑚
\(2
𝑗
𝐵)
𝑚

󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑦
1
) ⋅ ⋅ ⋅ 𝑓

𝑚
(𝑦
𝑚
)
󵄨
󵄨
󵄨
󵄨

(
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦
1

󵄨
󵄨
󵄨
󵄨
+ ⋅ ⋅ ⋅+

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦
𝑚

󵄨
󵄨
󵄨
󵄨
)
𝑚𝑛
𝑑𝑦
1
⋅ ⋅ ⋅𝑑𝑦
𝑚

≤ 𝐶

∞

∑

𝑗=1

𝑚

∏

𝑖=1

∫

2
𝑗+1
𝐵\2
𝑗
𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦
𝑖

󵄨
󵄨
󵄨
󵄨

𝑛
𝑑𝑦
𝑖

≤ 𝐶

∞

∑

𝑗=1

𝑚

∏

𝑖=1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

∫

2
𝑗+1
𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦
𝑖
,

(40)

where we have used the notation 𝐸
𝑚

= 𝐸 × ⋅ ⋅ ⋅ × 𝐸.
Furthermore, by using Hölder’s inequality, the multiple 𝐴

𝑃⃗

condition, and Lemma 13, we deduce that

󵄨
󵄨
󵄨
󵄨
𝑇 (𝑓
∞

1
, . . . , 𝑓

∞

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨

≤ 𝐶

∞

∑

𝑗=1

𝑚

∏

𝑖=1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

(∫

2
𝑗+1
𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨

𝑝
𝑖

𝑤
𝑖
(𝑦
𝑖
) 𝑑𝑦
𝑖
)

1/𝑝
𝑖

× (∫

2
𝑗+1
𝐵

𝑤
𝑖
(𝑦
𝑖
)
1−𝑝
󸀠

𝑖
𝑑𝑦
𝑖
)

1/𝑝
󸀠

𝑖

≤ 𝐶

∞

∑

𝑗=1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

𝑚
⋅

󵄨
󵄨
󵄨
󵄨
󵄨
2
𝑗+1

𝐵

󵄨
󵄨
󵄨
󵄨
󵄨

1/𝑝+∑
𝑚

𝑖=1
(1−1/𝑝

𝑖
)

]
𝑤⃗
(2
𝑗+1
𝐵)
1/𝑝

×

𝑚

∏

𝑖=1

(
󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
𝑤
𝑖
(2
𝑗+1

𝐵)

𝜅/𝑝
𝑖

)

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
⋅

∞

∑

𝑗=1

(

∏
𝑚

𝑖=1
𝑤
𝑖
(2
𝑗+1

𝐵)

𝜅/𝑝
𝑖

]
𝑤⃗
(2
𝑗+1
𝐵)
1/𝑝

)

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
⋅

∞

∑

𝑗=1

]
𝑤⃗
(2
𝑗+1

𝐵)

(𝜅−1)/𝑝

.

(41)

Since ]
𝑤⃗
∈ 𝐴
𝑚𝑝

⊂ 𝐴
∞
, then it follows directly fromLemma 7

that

]
𝑤⃗
(𝐵)

]
𝑤⃗
(2
𝑗+1
𝐵)

≤ 𝐶(

|𝐵|

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

)

𝛿

. (42)

Hence,

𝐼
∞,...,∞

≤ ]
𝑤⃗
(𝐵)
(1−𝜅)/𝑝 󵄨

󵄨
󵄨
󵄨
𝑇 (𝑓
∞

1
, . . . , 𝑓

∞

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
⋅

∞

∑

𝑗=1

]
𝑤⃗
(𝐵)
(1−𝜅)/𝑝

]
𝑤⃗
(2
𝑗+1
𝐵)
(1−𝜅)/𝑝

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
⋅

∞

∑

𝑗=1

(

|𝐵|

|2
𝑗+1
𝐵|

)

𝛿(1−𝜅)/𝑝

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
,

(43)

where the last inequality holds since 0 < 𝜅 < 1 and 𝛿 > 0.
We now consider the case where exactly ℓ of the 𝛼

𝑖
are ∞

for some 1 ≤ ℓ < 𝑚. We only give the arguments for one
of these cases. The rest are similar and can easily be obtained
from the arguments below by permuting the indices. Using
the size condition again, we deduce that, for any 𝑥 ∈ 𝐵,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑇 (𝑓
∞

1
, . . . , 𝑓

∞

ℓ
, 𝑓
0

ℓ+1
, . . . , 𝑓

0

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶∫

(R𝑛)
ℓ
\(2𝐵)
ℓ

∫

(2𝐵)
𝑚−ℓ

󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑦
1
) ⋅ ⋅ ⋅ 𝑓

𝑚
(𝑦
𝑚
)
󵄨
󵄨
󵄨
󵄨

(
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦
1

󵄨
󵄨
󵄨
󵄨
+ ⋅ ⋅ ⋅ +

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦
𝑚

󵄨
󵄨
󵄨
󵄨
)
𝑚𝑛

× 𝑑𝑦
1
⋅ ⋅ ⋅ 𝑑𝑦
𝑚
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≤ 𝐶

𝑚

∏

𝑖=ℓ+1

∫

2𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦
𝑖

×

∞

∑

𝑗=1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

𝑚

× ∫

(2
𝑗+1
𝐵)
ℓ
\(2
𝑗
𝐵)
ℓ

󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑦
1
) ⋅ ⋅ ⋅ 𝑓

ℓ
(𝑦
ℓ
)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦
1
⋅ ⋅ ⋅ 𝑑𝑦
ℓ

≤ 𝐶

𝑚

∏

𝑖=ℓ+1

∫

2𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦
𝑖

×

∞

∑

𝑗=1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

𝑚

ℓ

∏

𝑖=1

∫

2
𝑗+1
𝐵\2
𝑗
𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦
𝑖

≤ 𝐶

∞

∑

𝑗=1

𝑚

∏

𝑖=1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

∫

2
𝑗+1
𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦
𝑖
,

(44)

and we arrive at the expression considered in the previous
case. So for any 𝑥 ∈ 𝐵, we also have

󵄨
󵄨
󵄨
󵄨
󵄨
𝑇 (𝑓
∞

1
, . . . , 𝑓

∞

ℓ
, 𝑓
0

ℓ+1
, . . . , 𝑓

0

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
⋅

∞

∑

𝑗=1

]
𝑤⃗
(2
𝑗+1

𝐵)

(𝜅−1)/𝑝

.

(45)

Therefore, by the inequality (42) and the above pointwise
inequality, we have

𝐼
𝛼
1
,...,𝛼
𝑚

≤ ]
𝑤⃗
(𝐵)
(1−𝜅)/𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
𝑇 (𝑓
∞

1
, . . . , 𝑓

∞

ℓ
, 𝑓
0

ℓ+1
, . . . , 𝑓

0

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
⋅

∞

∑

𝑗=1

]
𝑤⃗
(𝐵)
(1−𝜅)/𝑝

]
𝑤⃗
(2
𝑗+1
𝐵)
(1−𝜅)/𝑝

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
⋅

∞

∑

𝑗=1

(

|𝐵|

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

)

𝛿(1−𝜅)/𝑝

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
.

(46)

Combining the above estimates and then taking the supre-
mum over all balls 𝐵 ⊆ R𝑛, we complete the proof of
Theorem 1.

Proof of Theorem 2. For any ball 𝐵 = 𝐵(𝑥
0
, 𝑟
𝐵
) ⊆ R𝑛 and

decomposing 𝑓
𝑖
= 𝑓
0

𝑖
+ 𝑓
∞

𝑖
, where 𝑓0

𝑖
= 𝑓
𝑖
𝜒
2𝐵
, 𝑖 = 1, . . . , 𝑚,

then, for any given 𝜆 > 0, we can write

]
𝑤⃗
({𝑥 ∈ 𝐵 :

󵄨
󵄨
󵄨
󵄨
𝑇 (𝑓
1
, . . . , 𝑓

𝑚
)
󵄨
󵄨
󵄨
󵄨
> 𝜆})
1/𝑝

≤ ]
𝑤⃗
({𝑥 ∈ 𝐵 :

󵄨
󵄨
󵄨
󵄨
󵄨
𝑇 (𝑓
0

1
, . . . , 𝑓

0

𝑚
)

󵄨
󵄨
󵄨
󵄨
󵄨
>

𝜆

2
𝑚
})

1/𝑝

+∑

󸀠

]
𝑤⃗
({𝑥 ∈ 𝐵 :

󵄨
󵄨
󵄨
󵄨
𝑇 (𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
)
󵄨
󵄨
󵄨
󵄨
>

𝜆

2
𝑚
})

1/𝑝

= 𝐼
0

∗
+∑

󸀠

𝐼
𝛼
1
,...,𝛼
𝑚

∗
,

(47)

where each termof∑󸀠contains at least one𝛼
𝑖
̸= 0. By Lemma 8

again, we know that ]
𝑤⃗
∈ 𝐴
𝑚𝑝

with 1 ≤ 𝑚𝑝 < ∞. Applying
Theorem B and Lemmas 13 and 5, we have

𝐼
0

∗
≤

𝐶

𝜆

𝑚

∏

𝑖=1

(∫

2𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑥)

󵄨
󵄨
󵄨
󵄨

𝑝
𝑖

𝑤
𝑖
(𝑥) 𝑑𝑥)

1/𝑝
𝑖

≤

𝐶 ⋅ ∏
𝑚

𝑖=1
𝑤
𝑖
(2𝐵)
𝜅/𝑝
𝑖

𝜆

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)

≤

𝐶 ⋅ ]
𝑤⃗
(2𝐵)
𝜅/𝑝

𝜆

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)

≤

𝐶 ⋅ ]
𝑤⃗
(𝐵)
𝜅/𝑝

𝜆

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
.

(48)

In the proof of Theorem 1, we have already showed the
following pointwise estimate (see (40) and (44)). Consider

󵄨
󵄨
󵄨
󵄨
𝑇 (𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨
≤ 𝐶

∞

∑

𝑗=1

𝑚

∏

𝑖=1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

∫

2
𝑗+1
𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦
𝑖
.

(49)

Without loss of generality, we may assume that 𝑝
1
= ⋅ ⋅ ⋅ =

𝑝
ℓ

= min{𝑝
1
, . . . , 𝑝

𝑚
} = 1 and 𝑝

ℓ+1
, . . . , 𝑝

𝑚
> 1.

Using Hölder’s inequality, the multiple 𝐴
𝑃⃗
condition, and

Lemma 13, we obtain

󵄨
󵄨
󵄨
󵄨
𝑇 (𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨

≤ 𝐶

∞

∑

𝑗=1

ℓ

∏

𝑖=1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

∫

2
𝑗+1
𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦
𝑖

×

𝑚

∏

𝑖=ℓ+1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

∫

2
𝑗+1
𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦
𝑖

≤ 𝐶

∞

∑

𝑗=1

ℓ

∏

𝑖=1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

∫

2
𝑗+1
𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨
𝑤
𝑖
(𝑦
𝑖
) 𝑑𝑦
𝑖

× ( inf
𝑦
𝑖
∈2
𝑗+1
𝐵

𝑤
𝑖
(𝑦
𝑖
))

−1

×

𝑚

∏

𝑖=ℓ+1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

(∫

2
𝑗+1
𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨

𝑝
𝑖

𝑤
𝑖
(𝑦
𝑖
) 𝑑𝑦
𝑖
)

1/𝑝
𝑖

× (∫

2
𝑗+1
𝐵

𝑤
𝑖
(𝑦
𝑖
)
1−𝑝
󸀠

𝑖
𝑑𝑦
𝑖
)

1/𝑝
󸀠

𝑖

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)

∞

∑

𝑗=1

]
𝑤⃗
(2
𝑗+1

𝐵)

(𝜅−1)/𝑝

.

(50)

Observe that ]
𝑤⃗
∈ 𝐴
𝑚𝑝

with 1 ≤ 𝑚𝑝 < ∞. Thus, it follows
from the inequality (42) that, for any 𝑥 ∈ 𝐵,

󵄨
󵄨
󵄨
󵄨
𝑇 (𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨

= 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
⋅

1

]
𝑤⃗
(𝐵)
(1−𝜅)/𝑝

∞

∑

𝑗=1

]
𝑤⃗
(𝐵)
(1−𝜅)/𝑝

]
𝑤⃗
(2
𝑗+1
𝐵)
(1−𝜅)/𝑝



Journal of Function Spaces and Applications 7

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
⋅

1

]
𝑤⃗
(𝐵)
(1−𝜅)/𝑝

∞

∑

𝑗=1

(

|𝐵|

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

)

𝛿(1−𝜅)/𝑝

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
⋅

1

]
𝑤⃗
(𝐵)
(1−𝜅)/𝑝

.

(51)

If {𝑥 ∈ 𝐵 : |𝑇(𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
)(𝑥)| > 𝜆/2

𝑚

} = Ø, then the
inequality

𝐼
𝛼
1
,...,𝛼
𝑚

∗
≤

𝐶 ⋅ ]
𝑤⃗
(𝐵)
𝜅/𝑝

𝜆

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)

(52)

holds trivially. Now, if instead we suppose that {𝑥 ∈ 𝐵 :

|𝑇(𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
)(𝑥)| > 𝜆/2

𝑚

} ̸=Ø, then, by the pointwise
inequality (51), we have

𝜆 < 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
⋅

1

]
𝑤⃗
(𝐵)
(1−𝜅)/𝑝

, (53)

which is equivalent to

]
𝑤⃗
(𝐵)
1/𝑝

≤

𝐶 ⋅ ]
𝑤⃗
(𝐵)
𝜅/𝑝

𝜆

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
. (54)

Therefore,

𝐼
𝛼
1
,...,𝛼
𝑚

∗
≤ ]
𝑤⃗
(𝐵)
1/𝑝

≤

𝐶 ⋅ ]
𝑤⃗
(𝐵)
𝜅/𝑝

𝜆

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
. (55)

Summing up all the above estimates and then taking the
supremum over all balls 𝐵 ⊆ R𝑛 and all 𝜆 > 0, we complete
the proof of Theorem 2.

By usingHölder’s inequality, it is easy to check that if each
𝑤
𝑖
is in 𝐴

𝑝
𝑖

, then

𝑚

∏

𝑖=1

𝐴
𝑝
𝑖

⊂ 𝐴
𝑃⃗
, (56)

and this inclusion is strict (see [9]). Thus, as direct conse-
quences of Theorems 1 and 2, we immediately obtain the
following.

Corollary 14. Let 𝑚 ≥ 2, and let 𝑇 be an 𝑚-linear Calderón-
Zygmund operator. If𝑝

1
, . . . , 𝑝

𝑚
∈ (1,∞) and𝑝 ∈ (0,∞)with

1/𝑝 = ∑
𝑚

𝑘=1
1/𝑝
𝑘
and 𝑤⃗ = (𝑤

1
, . . . , 𝑤

𝑚
) ∈ ∏

𝑚

𝑖=1
𝐴
𝑝
𝑖

, then, for
any 0 < 𝜅 < 1, there exists a constant 𝐶 > 0 independent of
⃗

𝑓 = (𝑓
1
, . . . , 𝑓

𝑚
) such that

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇 (

⃗
𝑓)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑝,𝜅
(]
𝑤⃗
)

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
, (57)

where ]
𝑤⃗
= ∏
𝑚

𝑖=1
𝑤
𝑝/𝑝
𝑖

𝑖
.

Corollary 15. Let 𝑚 ≥ 2 and let 𝑇 be an 𝑚-linear Calderón-
Zygmund operator. If 𝑝

1
, . . . , 𝑝

𝑚
∈ [1,∞),min{𝑝

1
, . . . , 𝑝

𝑚
} =

1 and 𝑝 ∈ (0,∞) with 1/𝑝 = ∑
𝑚

𝑘=1
1/𝑝
𝑘
, and 𝑤⃗ =

(𝑤
1
, . . . , 𝑤

𝑚
) ∈ ∏

𝑚

𝑖=1
𝐴
𝑝
𝑖

, then, for any 0 < 𝜅 < 1, there exists
a constant 𝐶 > 0 independent of ⃗

𝑓 = (𝑓
1
, . . . , 𝑓

𝑚
) such that

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇 (

⃗
𝑓)

󵄩
󵄩
󵄩
󵄩
󵄩𝑊𝐿
𝑝,𝜅
(]
𝑤⃗
)

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅(𝑤

𝑖
)
, (58)

where ]
𝑤⃗
= ∏
𝑚

𝑖=1
𝑤
𝑝/𝑝
𝑖

𝑖
.

4. Proofs of Theorems 3 and 4

Following along the same lines as those of Lemma 13, we can
also show the following result, which plays an important role
in our proofs of Theorems 3 and 4.

Lemma 16. Let 𝑚 ≥ 2, 𝑞
1
, . . . , 𝑞

𝑚
∈ [1,∞) and 𝑞 ∈ (0,∞)

with 1/𝑞 = ∑
𝑚

𝑘=1
1/𝑞
𝑘
. Assume that 𝑤𝑞1

1
, . . . , 𝑤

𝑞
𝑚

𝑚
∈ 𝐴
∞

and
]
𝑤⃗
= ∏
𝑚

𝑖=1
𝑤
𝑖
; then, for any ball 𝐵, there exists a constant𝐶 > 0

such that
𝑚

∏

𝑖=1

(∫

𝐵

𝑤
𝑞
𝑖

𝑖
(𝑥) 𝑑𝑥)

𝑞/𝑞
𝑖

≤ 𝐶∫

𝐵

]
𝑤⃗
(𝑥)
𝑞

𝑑𝑥. (59)

Proof of Theorem 3. Arguing as in the proof ofTheorem 1, fix
a ball𝐵 = 𝐵(𝑥

0
, 𝑟
𝐵
) ⊆ R𝑛 and decompose𝑓

𝑖
= 𝑓
0

𝑖
+𝑓
∞

𝑖
, where

𝑓
0

𝑖
= 𝑓
𝑖
𝜒
2𝐵
, 𝑖 = 1, . . . , 𝑚. Since 𝐼

𝛼
is an𝑚-linear operator, then

we have
1

]
𝑞

𝑤⃗
(𝐵)
𝜅/𝑝

(∫

𝐵

󵄨
󵄨
󵄨
󵄨
𝐼
𝛼
(𝑓
1
, . . . , 𝑓

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨

𝑞

]
𝑤⃗
(𝑥)
𝑞

𝑑𝑥)

1/𝑞

≤

1

]
𝑞

𝑤⃗
(𝐵)
𝜅/𝑝

(∫

𝐵

󵄨
󵄨
󵄨
󵄨
󵄨
𝐼
𝛼
(𝑓
0

1
, . . . , 𝑓

0

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑞

]
𝑤⃗
(𝑥)
𝑞

𝑑𝑥)

1/𝑞

+∑

󸀠 1

]
𝑞

𝑤⃗
(𝐵)
𝜅/𝑝

(∫

𝐵

󵄨
󵄨
󵄨
󵄨
𝐼
𝛼
(𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨

𝑞

]
𝑤⃗
(𝑥)
𝑞

𝑑𝑥)

1/𝑞

= 𝐽
0

+∑

󸀠

𝐽
𝛼
1
,...,𝛼
𝑚
,

(60)

where each term of ∑󸀠 contains at least one 𝛼
𝑖
̸= 0. In view of

Lemma 9, we can see that (]
𝑤⃗
)
𝑞

∈ 𝐴
𝑚𝑞
. UsingTheoremC and

Lemmas 16 and 5, we get

𝐽
0

≤ 𝐶 ⋅

1

]
𝑞

𝑤⃗
(𝐵)
𝜅/𝑝

𝑚

∏

𝑖=1

(∫

2𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑥)

󵄨
󵄨
󵄨
󵄨

𝑝
𝑖

𝑤
𝑖
(𝑥)
𝑝
𝑖
𝑑𝑥)

1/𝑝
𝑖

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)
⋅

∏
𝑚

𝑖=1
𝑤
𝑞
𝑖

𝑖
(2𝐵)
𝜅𝑞/𝑝𝑞

𝑖

]
𝑞

𝑤⃗
(𝐵)
𝜅/𝑝

= 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)
⋅

(∏
𝑚

𝑖=1
𝑤
𝑞
𝑖

𝑖
(2𝐵)
𝑞/𝑞
𝑖
)

𝜅/𝑝

]
𝑞

𝑤⃗
(𝐵)
𝜅/𝑝

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)
⋅

]
𝑞

𝑤⃗
(2𝐵)
𝜅/𝑝

]
𝑞

𝑤⃗
(𝐵)
𝜅/𝑝

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)
.

(61)



8 Journal of Function Spaces and Applications

For the other terms, let us first deal with the case when 𝛼
1
=

⋅ ⋅ ⋅ = 𝛼
𝑚
= ∞. By the definition of 𝐼

𝛼
, for any 𝑥 ∈ 𝐵, we

obtain

󵄨
󵄨
󵄨
󵄨
𝐼
𝛼
(𝑓
∞

1
, . . . , 𝑓

∞

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨

= ∫

(R𝑛)
𝑚
\(2𝐵)
𝑚

󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑦
1
) ⋅ ⋅ ⋅ 𝑓

𝑚
(𝑦
𝑚
)
󵄨
󵄨
󵄨
󵄨

(
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦
1

󵄨
󵄨
󵄨
󵄨
+ ⋅ ⋅ ⋅ +

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦
𝑚

󵄨
󵄨
󵄨
󵄨
)
𝑚𝑛−𝛼

𝑑𝑦
1
⋅ ⋅ ⋅𝑑𝑦
𝑚

=

∞

∑

𝑗=1

∫

(2
𝑗+1
𝐵)
𝑚
\(2
𝑗
𝐵)
𝑚

󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑦
1
) ⋅ ⋅ ⋅ 𝑓

𝑚
(𝑦
𝑚
)
󵄨
󵄨
󵄨
󵄨

(
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦
1

󵄨
󵄨
󵄨
󵄨
+ ⋅ ⋅ ⋅ +

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦
𝑚

󵄨
󵄨
󵄨
󵄨
)
𝑚𝑛−𝛼

× 𝑑𝑦
1
⋅ ⋅ ⋅ 𝑑𝑦
𝑚

≤ 𝐶

∞

∑

𝑗=1

𝑚

∏

𝑖=1

∫

2
𝑗+1
𝐵\2
𝑗
𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦
𝑖

󵄨
󵄨
󵄨
󵄨

𝑛−𝛼/𝑚

𝑑𝑦
𝑖

≤ 𝐶

∞

∑

𝑗=1

𝑚

∏

𝑖=1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

1−𝛼/𝑚𝑛

∫

2
𝑗+1
𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦
𝑖
.

(62)

Moreover, by using Hölder’s inequality, the multiple 𝐴
𝑃⃗,𝑞

condition, and Lemma 16, we deduce that

󵄨
󵄨
󵄨
󵄨
𝐼
𝛼
(𝑓
∞

1
, . . . , 𝑓

∞

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨

≤ 𝐶

∞

∑

𝑗=1

𝑚

∏

𝑖=1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

1−𝛼/𝑚𝑛

× (∫

2
𝑗+1
𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨

𝑝
𝑖

𝑤
𝑖
(𝑦
𝑖
)
𝑝
𝑖

𝑑𝑦
𝑖
)

1/𝑝
𝑖

× (∫

2
𝑗+1
𝐵

𝑤
𝑖
(𝑦
𝑖
)
−𝑝
󸀠

𝑖
𝑑𝑦
𝑖
)

1/𝑝
󸀠

𝑖

≤ 𝐶

∞

∑

𝑗=1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

𝑚−𝛼/𝑛

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
2
𝑗+1

𝐵

󵄨
󵄨
󵄨
󵄨
󵄨

1/𝑞+∑
𝑚

𝑖=1
(1−1/𝑝

𝑖
)

]
𝑞

𝑤⃗
(2
𝑗+1
𝐵)
1/𝑞

×

𝑚

∏

𝑖=1

(
󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)
𝑤
𝑞
𝑖

𝑖
(2
𝑗+1

𝐵)

𝜅𝑞/𝑝𝑞
𝑖

)

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)

⋅

∞

∑

𝑗=1

[

[

[

[

(∏
𝑚

𝑖=1
𝑤
𝑞
𝑖

𝑖
(2
𝑗+1

𝐵)

𝑞/𝑞
𝑖

)

𝜅/𝑝

]
𝑞

𝑤⃗
(2
𝑗+1
𝐵)
1/𝑞

]

]

]

]

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)
⋅

∞

∑

𝑗=1

]
𝑞

𝑤⃗
(2
𝑗+1

𝐵)

𝜅/𝑝−1/𝑞

.

(63)

Since (]
𝑤⃗
)
𝑞

∈ 𝐴
𝑚𝑞

⊂ 𝐴
∞
, then it follows immediately from

Lemma 7 that

]
𝑞

𝑤⃗
(𝐵)

]
𝑞

𝑤⃗
(2
𝑗+1
𝐵)

≤ 𝐶(

|𝐵|

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

)

𝛿
󸀠

. (64)

Hence,

𝐽
∞,...,∞

≤ ]
𝑞

𝑤⃗
(𝐵)
1/𝑞−𝜅/𝑝 󵄨

󵄨
󵄨
󵄨
𝐼
𝛼
(𝑓
∞

1
, . . . , 𝑓

∞

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)
⋅

∞

∑

𝑗=1

]
𝑞

𝑤⃗
(𝐵)
1/𝑞−𝜅/𝑝

]
𝑞

𝑤⃗
(2
𝑗+1
𝐵)
1/𝑞−𝜅/𝑝

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)
⋅

∞

∑

𝑗=1

(

|𝐵|

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

)

𝛿
󸀠
(1/𝑞−𝜅/𝑝)

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)
,

(65)

where in the last inequality we have used the fact that 0 < 𝜅 <
𝑝/𝑞 and 𝛿󸀠 > 0. We now consider the case where exactly ℓ of
the 𝛼
𝑖
are∞ for some 1 ≤ ℓ < 𝑚. We only give the arguments

for one of these cases. The rest are similar and can easily be
obtained from the arguments belowby permuting the indices.
Using the definition of 𝐼

𝛼
again, we can see that, for any 𝑥 ∈ 𝐵,

󵄨
󵄨
󵄨
󵄨
󵄨
𝐼
𝛼
(𝑓
∞

1
, . . . , 𝑓

∞

ℓ
, 𝑓
0

ℓ+1
, . . . , 𝑓

0

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

= ∫

(R𝑛)
ℓ
\(2𝐵)
ℓ

∫

(2𝐵)
𝑚−ℓ

󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑦
1
) ⋅ ⋅ ⋅ 𝑓

𝑚
(𝑦
𝑚
)
󵄨
󵄨
󵄨
󵄨

(
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦
1

󵄨
󵄨
󵄨
󵄨
+ ⋅ ⋅ ⋅ +

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦
𝑚

󵄨
󵄨
󵄨
󵄨
)
𝑚𝑛−𝛼

× 𝑑𝑦
1
⋅ ⋅ ⋅ 𝑑𝑦
𝑚

≤ 𝐶

𝑚

∏

𝑖=ℓ+1

∫

2𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦
𝑖

×

∞

∑

𝑗=1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

𝑚−𝛼/𝑛

× ∫

(2
𝑗+1
𝐵)
ℓ
\(2
𝑗
𝐵)
ℓ

󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑦
1
) ⋅ ⋅ ⋅ 𝑓

ℓ
(𝑦
ℓ
)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦
1
⋅ ⋅ ⋅ 𝑑𝑦
ℓ

≤ 𝐶

𝑚

∏

𝑖=ℓ+1

∫

2𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦
𝑖

×

∞

∑

𝑗=1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

𝑚−𝛼/𝑛

ℓ

∏

𝑖=1

∫

2
𝑗+1
𝐵\2
𝑗
𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦
𝑖

≤ 𝐶

∞

∑

𝑗=1

𝑚

∏

𝑖=1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

1−𝛼/𝑚𝑛

∫

2
𝑗+1
𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦
𝑖
,

(66)

and we arrive at the expression considered in the previous
case. Thus, for any 𝑥 ∈ 𝐵, we also have

󵄨
󵄨
󵄨
󵄨
󵄨
𝐼
𝛼
(𝑓
∞

1
, . . . , 𝑓

∞

ℓ
, 𝑓
0

ℓ+1
, . . . , 𝑓

0

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)

⋅

∞

∑

𝑗=1

]
𝑞

𝑤⃗
(2
𝑗+1

𝐵)

𝜅/𝑝−1/𝑞

.

(67)
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Therefore, by the inequality (64) and the above pointwise
inequality, we obtain

𝐽
𝛼
1
,...,𝛼
𝑚

≤ ]
𝑞

𝑤⃗
(𝐵)
1/𝑞−𝜅/𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
𝐼
𝛼
(𝑓
∞

1
, . . . , 𝑓

∞

ℓ
, 𝑓
0

ℓ+1
, . . . , 𝑓

0

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)
⋅

∞

∑

𝑗=1

]
𝑞

𝑤⃗
(𝐵)
1/𝑞−𝜅/𝑝

]
𝑞

𝑤⃗
(2
𝑗+1
𝐵)
1/𝑞−𝜅/𝑝

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)

⋅

∞

∑

𝑗=1

(

|𝐵|

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

)

𝛿
󸀠
(1/𝑞−𝜅/𝑝)

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)
.

(68)

Summarizing the estimates derived above and then taking
the supremum over all balls 𝐵 ⊆ R𝑛, we finish the proof of
Theorem 3.

Proof of Theorem 4. As before, fix a ball 𝐵 = 𝐵(𝑥
0
, 𝑟
𝐵
) ⊆ R𝑛

and split𝑓
𝑖
into𝑓

𝑖
= 𝑓
0

𝑖
+𝑓
∞

𝑖
, where𝑓0

𝑖
= 𝑓
𝑖
𝜒
2𝐵
, 𝑖 = 1, . . . , 𝑚.

Then for each fixed 𝜆 > 0, we can write

]
𝑞

𝑤⃗
({𝑥 ∈ 𝐵 :

󵄨
󵄨
󵄨
󵄨
𝐼
𝛼
(𝑓
1
, . . . , 𝑓

𝑚
)
󵄨
󵄨
󵄨
󵄨
> 𝜆})
1/𝑞

≤ ]
𝑞

𝑤⃗
({𝑥 ∈ 𝐵 :

󵄨
󵄨
󵄨
󵄨
󵄨
𝐼
𝛼
(𝑓
0

1
, . . . , 𝑓

0

𝑚
)

󵄨
󵄨
󵄨
󵄨
󵄨
>

𝜆

2
𝑚
})

1/𝑞

+∑

󸀠

]
𝑞

𝑤⃗
({𝑥 ∈ 𝐵 :

󵄨
󵄨
󵄨
󵄨
𝐼
𝛼
(𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
)
󵄨
󵄨
󵄨
󵄨
>

𝜆

2
𝑚
})

1/𝑞

= 𝐽
0

∗
+∑

󸀠

𝐽
𝛼
1
,...,𝛼
𝑚

∗
,

(69)

where each termof∑󸀠contains at least one𝛼
𝑖
̸= 0. By Lemma 9

again, we know that (]
𝑤⃗
)
𝑞

∈ 𝐴
𝑚𝑞

with 1 < 𝑚𝑞 < ∞. Using
Theorem D and Lemmas 16 and 5, we have

𝐽
0

∗
≤

𝐶

𝜆

𝑚

∏

𝑖=1

(∫

2𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑥)

󵄨
󵄨
󵄨
󵄨

𝑝
𝑖

𝑤
𝑖
(𝑥)
𝑝
𝑖
𝑑𝑥)

1/𝑝
𝑖

≤

𝐶 ⋅ ∏
𝑚

𝑖=1
𝑤
𝑞
𝑖

𝑖
(2𝐵)
𝜅𝑞/𝑝𝑞

𝑖

𝜆

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)

≤

𝐶 ⋅ ]
𝑞

𝑤⃗
(2𝐵)
𝜅/𝑝

𝜆

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)

≤

𝐶 ⋅ ]
𝑞

𝑤⃗
(𝐵)
𝜅/𝑝

𝜆

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)
.

(70)

In the proof of Theorem 3, we have already proved the
following pointwise estimate (see (62) and (66)). Consider

󵄨
󵄨
󵄨
󵄨
𝐼
𝛼
(𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨

≤ 𝐶

∞

∑

𝑗=1

𝑚

∏

𝑖=1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

1−𝛼/𝑚𝑛

∫

2
𝑗+1
𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦
𝑖
.

(71)

Without loss of generality, we may assume that 𝑝
1
= ⋅ ⋅ ⋅ =

𝑝
ℓ

= min{𝑝
1
, . . . , 𝑝

𝑚
} = 1 and 𝑝

ℓ+1
, . . . , 𝑝

𝑚
> 1. By

using Hölder’s inequality, the multiple 𝐴
𝑃⃗,𝑞

condition, and
Lemma 16, we obtain
󵄨
󵄨
󵄨
󵄨
𝐼
𝛼
(𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨

≤ 𝐶

∞

∑

𝑗=1

ℓ

∏

𝑖=1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

1−𝛼/𝑚𝑛

∫

2
𝑗+1
𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦
𝑖

×

𝑚

∏

𝑖=ℓ+1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

1−𝛼/𝑚𝑛

∫

2
𝑗+1
𝐵

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦
𝑖

≤ 𝐶

∞

∑

𝑗=1

ℓ

∏

𝑖=1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

1−𝛼/𝑚𝑛

× ∫

2
𝑗+1
𝐵

󵄨
󵄨
󵄨
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𝑓
𝑖
(𝑦
𝑖
)
󵄨
󵄨
󵄨
󵄨
𝑤
𝑖
(𝑦
𝑖
) 𝑑𝑦
𝑖
( inf
𝑦
𝑖
∈2
𝑗+1
𝐵

𝑤
𝑖
(𝑦
𝑖
))

−1

×

𝑚

∏

𝑖=ℓ+1

1

󵄨
󵄨
󵄨
󵄨
2
𝑗+1
𝐵
󵄨
󵄨
󵄨
󵄨

1−𝛼/𝑚𝑛

(∫

2
𝑗+1
𝐵

󵄨
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𝑓
𝑖
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𝑖
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󵄨

𝑝
𝑖

𝑤
𝑖
(𝑦
𝑖
)
𝑝
𝑖

𝑑𝑦
𝑖
)

1/𝑝
𝑖

× (∫

2
𝑗+1
𝐵

𝑤
𝑖
(𝑦
𝑖
)
−𝑝
󸀠

𝑖
𝑑𝑦
𝑖
)

1/𝑝
󸀠

𝑖

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)
⋅

∞

∑

𝑗=1

]
𝑞

𝑤⃗
(2
𝑗+1

𝐵)

𝜅/𝑝−1/𝑞

.

(72)

Note that (]
𝑤⃗
)
𝑞

∈ 𝐴
𝑚𝑞

with 1 < 𝑚𝑞 < ∞. Hence, it follows
from the inequality (64) that, for any 𝑥 ∈ 𝐵,

󵄨
󵄨
󵄨
󵄨
𝐼
𝛼
(𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑥)

󵄨
󵄨
󵄨
󵄨

= 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖
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𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)

⋅

1

]
𝑞

𝑤⃗
(𝐵)
1/𝑞−𝜅/𝑝

∞

∑

𝑗=1

]
𝑞

𝑤⃗
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1/𝑞−𝜅/𝑝

]
𝑞

𝑤⃗
(2
𝑗+1
𝐵)
1/𝑞−𝜅/𝑝

≤ 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)

⋅

1

]
𝑞

𝑤⃗
(𝐵)
1/𝑞−𝜅/𝑝

∞

∑

𝑗=1

(
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󵄨
󵄨
󵄨
󵄨
2
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)

𝛿
󸀠
(1/𝑞−𝜅/𝑝)
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𝑚

∏
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󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
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𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
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𝑞𝑖

𝑖
)
⋅

1

]
𝑞

𝑤⃗
(𝐵)
1/𝑞−𝜅/𝑝

.

(73)

If {𝑥 ∈ 𝐵 : |𝐼
𝛼
(𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
)(𝑥)| > 𝜆/2

𝑚

} = Ø, then the
inequality

𝐽
𝛼
1
,...,𝛼
𝑚

∗
≤

𝐶 ⋅ ]
𝑞

𝑤⃗
(𝐵)
𝜅/𝑝

𝜆

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)

(74)

holds trivially. Now, if instead we assume that {𝑥 ∈ 𝐵 :

|𝐼
𝛼
(𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
)(𝑥)| > 𝜆/2

𝑚

} ̸=Ø, then, by the pointwise
inequality (73), we get

𝜆 < 𝐶

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)
⋅

1

]
𝑞

𝑤⃗
(𝐵)
1/𝑞−𝜅/𝑝

, (75)
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which in turn gives that

]
𝑞

𝑤⃗
(𝐵)
1/𝑞

≤

𝐶 ⋅ ]
𝑞

𝑤⃗
(𝐵)
𝜅/𝑝

𝜆

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)
. (76)

Therefore,

𝐽
𝛼
1
,...,𝛼
𝑚

∗
≤ ]
𝑞

𝑤⃗
(𝐵)
1/𝑞

≤

𝐶 ⋅ ]
𝑞

𝑤⃗
(𝐵)
𝜅/𝑝

𝜆

𝑚

∏

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
𝑝𝑖,𝜅𝑝𝑖𝑞/𝑝𝑞𝑖 (𝑤

𝑝𝑖

𝑖
,𝑤
𝑞𝑖

𝑖
)
.

(77)

Collecting all the above estimates and then taking the
supremum over all balls 𝐵 ⊆ R𝑛 and all 𝜆 > 0, we conclude
the proof of Theorem 4.

By using Hölder’s inequality, it is easy to verify that if 1 ≤
𝑝
𝑖
< 𝑞
𝑖
, 1/𝑞 = ∑𝑚

𝑘=1
1/𝑞
𝑘
, and each𝑤

𝑖
is in𝐴

𝑝
𝑖
,𝑞
𝑖

, thenwe have

𝑚

∏

𝑖=1

𝐴
𝑝
𝑖
,𝑞
𝑖

⊂ 𝐴
𝑃⃗,𝑞
, (78)

and this inclusion is strict (see [17]). Also, recall that𝑤 ∈ 𝐴
𝑝,𝑞

if and only if 𝑤𝑞 ∈ 𝐴
1+𝑞/𝑝

󸀠 ⊂ 𝐴
∞

(see [36]). Thus, as
straightforward consequences ofTheorems 3 and 4, we finally
obtain the following.

Corollary 17. Let 𝑚 ≥ 2, let 0 < 𝛼 < 𝑚𝑛, and let 𝐼
𝛼
be an

𝑚-linear fractional integral operator. If 𝑝
1
, . . . , 𝑝

𝑚
∈ (1,∞),

1/𝑝 = ∑
𝑚

𝑘=1
1/𝑝
𝑘
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𝑘
= 1/𝑝

𝑘
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𝑘=1
1/𝑞
𝑘
=

1/𝑝 − 𝛼/𝑛, and 𝑤⃗ = (𝑤
1
, . . . , 𝑤

𝑚
) ∈ ∏

𝑚

𝑖=1
𝐴
𝑝
𝑖
,𝑞
𝑖

, then, for any
0 < 𝜅 < 𝑝/𝑞, there exists a constant 𝐶 > 0 independent of
⃗

𝑓 = (𝑓
1
, . . . , 𝑓

𝑚
) such that

󵄩
󵄩
󵄩
󵄩
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𝐼
𝛼
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⃗
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󵄩
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𝑖
)
, (79)

where ]
𝑤⃗
= ∏
𝑚

𝑖=1
𝑤
𝑖
.

Corollary 18. Let 𝑚 ≥ 2, let 0 < 𝛼 < 𝑚𝑛, and let 𝐼
𝛼
be an

𝑚-linear fractional integral operator. If 𝑝
1
, . . . , 𝑝

𝑚
∈ [1,∞),

min{𝑝
1
, . . . , 𝑝

𝑚
} = 1, 1/𝑝 = ∑

𝑚

𝑘=1
1/𝑝
𝑘
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𝑘
= 1/𝑝

𝑘
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𝑚
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𝑘
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1
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𝑚
) ∈

∏
𝑚
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𝐴
𝑝
𝑖
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𝑖

, then, for any 0 < 𝜅 < 𝑝/𝑞, there exists a constant
𝐶 > 0 independent of ⃗

𝑓 = (𝑓
1
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𝑚
) such that

󵄩
󵄩
󵄩
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𝐼
𝛼
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󵄩
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where ]
𝑤⃗
= ∏
𝑚

𝑖=1
𝑤
𝑖
.
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