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When different perceptual signals of the same physical property are integrated, for example, an objects’ size, which can be
seen and felt, they form a more reliable sensory estimate (e.g., M. O. Ernst & M. S. Banks, 2002). This, however, implies
that the sensory system already knows which signals belong together and how they relate. In other words, the system has
to know the mapping between the signals. In a Bayesian model of cue integration, this prior knowledge can be made
explicit. Here, we ask whether such a mapping between two arbitrary sensory signals from vision and touch can be learned
from their statistical co-occurrence such that they become integrated. In the Bayesian framework, this means changing the
belief about the distribution of the stimuli. To this end, we trained subjects with stimuli that are usually unrelated in the
worldVthe luminance of an object (visual signal) and its stiffness (haptic signal). In the training phase, we then presented
subjects with combinations of these two signals, which were artificially correlated, and thus, we introduced a new mapping
between them. For example, the stiffer the object, the brighter it was. We measured the influence of learning by comparing
discrimination performance before and after training. The prediction is that integration makes discrimination worse for
stimuli, which are incongruent with the newly learned mapping, because integration would cause this incongruency to
disappear perceptually. The more certain subjects are about the new mapping, the stronger should the influence be on
discrimination performance. Thus, learning in this context is about acquiring beliefs. We found a significant change in
discrimination performance before and after training when comparing trials with congruent and incongruent stimuli. After
training, discrimination thresholds for the incongruent stimuli are increased relative to thresholds for congruent stimuli,
suggesting that subjects learned effectively to integrate the two formerly unrelated signals.
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Introduction

Our brain constantly receives sensory information from
many different sources and modalities. If corresponding
sensory signals are derived from the same object or event,
these should be integrated; otherwise, they should be kept
separate. For example, when moving your head, visual,
vestibular, and proprioceptive signals all give rise to an
estimate of the heads’ position and orientation. Hence, it
would make sense for the sensory system to integrate
these signals into a coherent representation of head
position and orientation. Another example is depth
perception: The distance to an object can be estimated
from the disparity signal between the two eyes’ images,
from perspective distortions in the image, from motion
parallax, and from many other signals. Integration of such
depth signals has been demonstrated repeatedly (e.g.,
Bülthoff & Mallot, 1988; Hillis, Watt, Landy, & Banks,
2004; Howard & Rogers, 2002; Knill & Saunders, 2003;
Landy, Maloney, Johnston, & Young, 1995).
Each sensory signal is inherently noisy and so is the

estimate of the physical property that the sensory signal
represents. The advantage of integrating redundant sour-
ces of sensory information is that the variance in the
integrated estimate can be reduced relative to the

estimates derived individually (e.g., Clark & Yuille,
1990; Ernst & Banks, 2002; Ernst & Bülthoff, 2004;
Ghahramani, Wolpert, & Jordan, 1997; Jacobs, 2002;
Landy et al., 1995). For example, when manipulating
objects, an object’s size can be judged simultaneously by
vision and touch (Ernst & Banks, 2002) and should
therefore be integrated by our nervous system to benefit
from the redundancy in the sensory information. Com-
pared with the noisy estimate from each modality alone,
integrating the information from the two modalities yields
a more certain estimate of the objects’ size. Such a benefit
may reveal itself in a size discrimination task when the
reduced variance in the size estimate is reflected in an
improved discrimination performance compared to size
discrimination based on only one modality. The reliability
of a sensory estimate can be defined as its inverse variance
r = Aj2. An optimal method for combining sensory
information would maximize the reliability of the final
(unbiased) estimate. Recently, several studies indicated
that the human brain integrates sensory information in
such an optimal way (Alais & Burr, 2004; Ernst & Banks,
2002; Helbig & Ernst, 2007; Hillis et al., 2004; Knill &
Saunders, 2003; Landy & Kojima, 2001).
However, integration also comes at a cost (e.g., Hillis,

Ernst, Banks, & Landy, 2002). When signals are inte-
grated (or associated), access to the single cue information
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may get lost so that a small discrepancy between the two
signals cannot be detected anymore. Depending on the
task, either the benefit or the cost of integration shows
itself. To perform a quantitative analysis of learning, we
here used a discrimination task exploiting the cost of
sensory integration.
But how does the brain know which sensory signals to

integrate? It would make sense to integrate sensory signals
only if they come from the same object property or event,
and they should have some unique relationship so that
when one signal is known, the other one can be inferred.
This is a form of “correspondence problem”: Our brain
has to know which sensory signals correspond to one
another in order for the appropriate signals to be
combined. Knowing the correspondence means to know
the mapping between the sensory signals. For example,
without knowing the mapping between the retinal activa-
tion that makes up the visual size estimate and the forces
on the finger tip that give rise to the haptic size estimate, it
would be impossible to integrate the visual and haptic size
signals. Consequently, if the system did not know the
mapping between the sensory signals, they could not be
integrated and, thus, they had to be treated as independent.
But how can the system know the mapping between the

sensory signals? The felt and seen size of an object are
two totally different sensory signals: One is derived from
photons on the retina, and the other one is derived from
sensors detecting the fingers’ position given some force
when in contact with the object. However, when simulta-
neously seeing and feeling an object, there is a natural
statistical relationship between these neural signals giving
rise to the felt and seen size of an object. This statistical
relationship between these totally different sensory signals
potentially could have been exploited by the developing
brain to form its own concept of the objects’ property,
which we now uniquely call “the object’s size.”
There are several studies on within- and cross-modal

statistical learning (e.g., Conway & Christiansen, 2005,
2006). However, the question we address here is whether
such a new mapping (i.e., a unique correspondence
between different signals) can be learned. That is, is it
possible to learn to integrate two arbitrary signals, which
usually do not correspond in the natural environment and,
therefore, are usually not integrated? Phrased differently,
we ask whether the integration of sensory signals is
predetermined and hardwired in the nervous system or
whether it is adaptive.
We decided to test this using visual and haptic

perception. We chose the luminance of an object as the
visual dimension and its stiffness as the haptic dimension.
This choice was made because we believed that there
should be no statistical relationship between these two
properties in a “natural” environment. By correlating these
properties (and hence the visual and haptic signals derived
from them) in an artificial environment, we can introduce
a new statistical relationship between these two signals. A
comparison of discrimination performance before and

after extensive training with such correlated stimuli will
reveal whether cue integration can be learned from the
statistical co-occurrence of the stimuli in the environment.

Bayesian integration model

Bayesian estimation theory provides a principled
approach to handle such questions (e.g., Mamassian,
Landy, & Maloney, 2002; Yuille & Bülthoff, 1996).
There is a recently published Bayesian integration model
that we use and extend here to describe learning to
integrate two previously unrelated signals (Bresciani,
Dammeier, & Ernst, 2006; Ernst, 2005; Jäkel & Ernst,
2003; Roach, Heron, & McGraw, 2006; Shams, Ma, &
Beierholm, 2005). In our experiment, we manipulated the
correlation between haptic and visual properties of an
object. A perceptual system can potentially learn to
exploit this correlation between the stimulus properties.
Beliefs or knowledge about the joint stimulus statistics is
implemented in the form of priors in the Bayesian
framework. That is, the prior distribution describes what
stimulus combinations the subject expects to encounter.
Learning in this view is then reflected in a change of the
prior beliefs about the joint distribution of the stimuli (as
represented by the sensory measurements; cf. Adams,
Graf, & Ernst, 2004).
In the experiment, subjects were presented with phys-

ical stimuli having a visual and haptic property (lumi-
nance and stiffness): s = (sV, sH). Assuming that the
sensory measurement ŝ¼ ðŝV; ŝHÞ derived from the
physical property is unbiased but noisy with some
Gaussian noise Ai added independently to each property
i (ŝi = si + Ai)Vfor example, due to noise in the neural
transmission of the signalVthen the joint likelihood
distribution p(ŝªs) for vision and touch is a 2D Gaussian
with mean s and standard deviations Ai. These Ai are
given as elements of the diagonal 2 � 2 variance–
covariance matrix @:

pðŝjsÞ ¼ Nŝðs;@Þ with @ ¼
AV
2 0

0 AH
2

0
@

1
A: ð1Þ

A schematic illustration of a joint likelihood distribution is
shown in the top row of Figure 1.
If a subject has no prior knowledge about the joint

distribution of the stimuli in the world, the best estimate
for the underlying bimodal stimulus will be given directly
by choosing the maximum of the joint likelihood
distribution (ŝ in Equation 1; left column in Figure 1).
On the other hand, if the subject had some belief about

the joint stimulus statistics, that is, which stimuli are
probable to occur together, his or her estimate should then
be influenced by this belief. For example, if a subject was
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completely certain that there is a perfect relationship
between the two propertiesVfor example, light objects are
always soft and dark objects are always stiffVit would be
enough for the system to measure only one property and
to infer the other one. In such a case, the strong belief
about the relationship would be represented in a very
sharply defined prior p(s), which follows this relationship.
Such a sharply defined prior is indicated in the right
column of Figure 1. In this example, every pair of sensory
signals that does not conform to the known perfect
relationship between the two properties would be over-
ruled by the strong prior belief. Hence, an estimate of the
underlying stimulus properties should only allow values
that are in accordance with the prior distribution.
If the prior belief is not so strong to completely rule out

certain estimates (thus, there is some uncertainty in the
belief about the relationship), then both the sensory
signals and the given prior beliefs should show some
influence on the final estimate (middle column in
Figure 1). The interplay between the noisy sensory signals
and “strength” of the belief about the joint stimulus
distribution can be nicely formulated using Bayes’ rule,
which states that the posterior is the product of the likelihood
distributionVthe sensory signalsVand the distribution

defining the prior belief, divided by a normalization
constant C:

p sjŝ� � ¼ pðŝjsÞ I pðsÞ
C

: ð2Þ

If we assume the prior to be normally distributed p(s) =
Ns(p, 9) with a mean p = (0, 0) and covariance matrix

9 ¼ RT
A2
1 0

0 A2
2

0
@

1
AR; ð3Þ

in which A1
2 and A2

2 are the variances of the prior along its
principal axis and R is an orthogonal matrix that, in this
example, rotates the coordinate system by 45-, then the
posterior is also a 2D Gaussian p(sªŝ) = Ns(sMAP, D) with
mean sMAP and covariance matrix D.
The maximum of the posterior distribution sMAP is

taken to be the estimator for the presented stimulus s. This
estimate is called the maximum a posteriori (MAP)
estimator. The MAP estimator can be thought of as the
optimal way to integrate noisy sensory signals, which are
represented by the likelihood function, with extrasensory
prior beliefs about the joint stimulus distribution, such as
knowledge about the relationship between the physical
stimuli. Actually, because such a prior belief is learned
from the sensory signals, it can only represent the
statistics of the transduced sensory signals and not directly
the statistics of the physical stimuli.
The MAP estimator corresponds to a weighted average

of the mean of the likelihood and the mean of the prior
(given the assumption of all Gaussian distributions):

sMAP ¼ W@ŝþW9p

¼ D @j1ŝþ9j1p
� �

with ð4Þ

D ¼ 1

ð@j1 þ9j1Þ :

The smaller the variance of the prior in a given
direction is, the stronger is the influence of the prior in
this direction. The smaller the variance of the likelihood
function in a certain direction is, the more weight it
receives in this direction. This is schematically illustrated
in Figure 1: In the left column, we assume that the
observer has no knowledge about the mapping between
the signals (the uncertainty of knowing the mapping is
very big, going to infinity, A1

2 Y V and A2
2 Y V), so that

the prior distribution is completely flat. This is indicated
here by the uniformly dark square. The corresponding
weights for the prior go to zero in this case. Therefore, the
prior should have no influence on the estimates of the
physical properties. In other words, the MAP estimate
becomes an unbiased maximum likelihood estimate.

Figure 1. Three schematic examples for combining visual and
haptic signals with different priors (columns). Top row: Likelihood
distributions with standard deviation AV double AH; x denotes
physical stimulus. Middle row: Prior distributions; left: flat prior
A1
2 = V, A2

2 = V; middle: A1
2 = V, V 9 A2

2 9 0; right: A1
2 = V, A2

2 = 0.
Bottom row: Posterior distributions, which are the product of the
likelihood and prior distributions. The MAP estimate is indicated
by &. The arrows indicate the bias in the MAP estimate relative to
the physical stimulus (x).
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In the right column of Figure 1, the prior is very large
(close to infinity) along the direction of the correlation
between the two properties and close to zero in the
perpendicular direction. Zero variance, however, means
that the weight for this direction is 1. The estimate,
therefore, has to lie on the diagonal that is determined by
the perfect correlation between the sensory signals derived
from the physical properties. The relative variance of the
joint likelihood determines where on the diagonal the
MAP will be (Bresciani et al., 2006; Ernst, 2005; see also
Roach et al., 2006; Shams et al., 2005). If the system
knows with 100% certainty that two properties are
perfectly correlated, that is, it knows the mapping between
the signals, then only estimates that respect this fact and
follow this mapping are allowed. As an example, consider
the perception of size. If the system knows that the
visually measured size and the haptically measured size of
an object are perfectly correlated and it knows the
mapping between the measurements, then it can infer that
they have to be “identical”; hence, it makes no sense to
allow for two separate “percepts of size”Vone visual and
one haptic. The two measurements of size should be fused
to one percept of object size.
In the middle column, there is an intermediate prior

between the two extreme conditionsVno knowledge
about the joint stimulus statistics and perfect knowledge
of a linear relationship between measurements. This prior
still has a very large (close to infinity) variance along the
direction given by the mapping between the properties.
However, it has a nonzero variance orthogonal to this
direction, indicating that the correlation between the
measurements is nonperfect (or it is not known perfectly).
As a consequence of such an intermediate prior, which
represents some uncertainty in the mapping between the
measurements, the MAP estimate is also in between the
two extreme cases: It is not completely projected onto
the main diagonal; it is only more biased toward the main
diagonal as compared to the unbiased estimator in the left
panel. Thus, in this case, there is no complete fusion
between the signals but only a mutual bias indicating a
weaker form of integration between the signals. This
weaker form of integration may be called “coupling.”
Therefore, Ernst (2005) termed this prior, which results in
more or less coupling between the sensory signals,
“Coupling Prior.”

Learning to integrate signals

Learning to integrate signals in the Bayesian integration
model as presented here is represented as a change of the
subject’s belief about the distribution of the stimuli, which
is reflected in a modification of the priors. In our
experiment, we are manipulating the joint distribution of
the stimuli. Before learning, visual and haptic properties

were uncorrelated, and during learning, they have been
correlated. Hence, if we observe some effect of learning, it
can be attributed to a change in the stimulus statistics.
This can be illustrated with two stimuli, which we

assume to be unrelated and, thus, independentVfor
example, the luminance of an object and its stiffness.
Whether an object reflects much light or not most
probably does not tell anything about how hard or soft it
feels. Therefore, in a “natural” environment, it does not
make sense to integrate the sensory signals elicited by
these two stimuli. However, if we lived in a world where
bright objects always feel hard and dark objects soft, it
would suddenly make sense for our sensory system to
integrate the visual and the haptic signals. In other words,
if the value of one variable was informative about the
value of the other (i.e., there is redundancy), it would be
useful to integrate these signals. The system can do so
given the fact that it knows the relationship between the
signals.
Being born in a world where luminance and stiffness are

independent and then being put into a situation where
these two properties are highly correlated, what is
changing? Learning that two properties (or measurements)
are highly correlated should change the subject’s belief
about the joint distribution of the two sensory signals
related to luminance and stiffness. In the Bayesian frame-
work, this is equal to a change in the prior distribution.
That is, acquiring more information about the correlation
is increasing the certainty in the mapping estimate. As a
consequence, the signals should be integrated.

Predictions for discrimination

To test the hypothesis that introducing a correlation
between cues should change the prior distribution, we
measured subjects’ discrimination performance for objects
that can vary in luminance and stiffness before and after
extensive training with stimuli for which these two
properties were highly correlated. Given the Bayesian
model, we can make some predictions of how the
discrimination performance should change.
Let us assume that the variance in both cues is equal

(we can always rescale the axes such that this holds) and
that their noise distributions are independent. Then, the
likelihood function is symmetrical with circular cross
section in the (sV, sH) cue space. If subjects have no prior
knowledge about the correlation between the cues, which
would imply that the prior is flat, there is no particular
direction in this cue space that is different from any other
direction. Therefore, the discrimination performance also
has to be the same in all directions of this space. This
situation is illustrated in the left panel of Figure 2.
On the other hand, if subjects were 100% sure about the

mapping between the signals, this is expressed in a prior
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that is aligned along the direction of correlation (here, the
positive diagonal in the cue space) and has a zero variance
in all other directions. That is, the prior is a delta function
aligned along the positive diagonal. Given such a prior, a
stimulus off this diagonal would be fused and is
consequently perceived as a stimulus from this diagonal.
This can be illustrated with an example: Imagine the Cue
1/Cue 2 stimulus is +1/j1 (arbitrary units) and it is fused
to be perceived as 0. Then, another stimulus such as, for
example, +2/j2 may also be fused to be 0. As a
consequence of fusion, these two stimuli cannot be
discriminated anymore because they both give rise to the
same percept. This is the cost of integration. Such stimuli,
which are physically different but perceptually equal, are
called metamers (Hillis et al., 2002). Given a joint
likelihood distribution with equal variance of the two
cues, all metamers lie on the negative diagonal in this cue
space as is indicated in the right panel of Figure 2 (if the
two cues’ variance were not the same such as in the
example given in Figure 1, the metamer direction would
be different and analog to the direction of the arrow in
Figure 1; see Bresciani et al., 2006; Ernst, 2005). Thus,
given a delta function prior, discrimination thresholds
approach infinity in the direction that is defined by the
metamers in this space (here, the negative diagonal).
The middle panel of Figure 2 illustrates an intermediate

case. Here, the prior is also aligned along the positive
diagonal but now has a variance that is different from zero
and is less then infinity. Therefore, discrimination per-
formance is impaired in all directions except for the
direction defined by the relationship between the signals.
Maximal impairment is in the direction of metamers.
Discrimination performance does not change in the
direction of correlation (positive diagonal) because the

variance of the prior is always approximately infinite in
this direction.
That discrimination performance becomes worse when

subjects learn to integrate (or associate) signals may seem
counterintuitive at first. This is because it is often implied
that there should always be a benefit from integration. As
can be seen here, however, this intuition is wrong because
there is also a cost involved in integrating signals. This
cost, as a signature of integration, can be revealed using a
discrimination task for which detecting the discrepancy
between the signals becomes important.
In summary, if the subjects believe that the properties

are uncorrelated, they will effectively carry out the
discrimination independently for the two cues (Figure 2,
left panel). If they believe that the properties are
correlated, they will integrate them (Equation 4), resulting
in a cost for discrimination of the stimuli along all
directions except for the axis of stimulus correlation
(Figure 2, middle and right panels). Learning in this
experiment would therefore be manifested in a change in
discrimination performance when comparing the perfor-
mance along the negative and positive diagonals of the cue
space. Such a change in relative discrimination perfor-
mance between these two axes would indicate learning of a
Coupling Prior and, thus, learning to integrate arbitrary
signals. Thus, we predict to find an interaction between the
factors pre-/posttest and congruent/incongruent (negative/
positive diagonal) if subjects can learn to integrate
arbitrary signals.

Methods

Participants

Twelve trained observers (seven men and five women;
26.1 T 3.1 years) participated in the experiment for
payment. All had normal or corrected-to-normal vision
and no history of somatosenory disorders. All were naive
to the purpose of the experiment except for the three
observers C.R., M.E., and F.J. Subjects were randomly
assigned to the different experimental conditions. Partic-
ipants gave their informed consent before taking part in
the experiment.

Setup

To generate the visual and haptic stimuli, we used a mirror
setup as depicted in Figure 3. Participants looked onto a
mirror and saw a visual scene that is generated on a
computer screen. Below the mirror, a subject’s index finger
was attached to a robot arm with 6 df and force feedback
along the three translatory directions (PHANToM 1.5,
SensAble Technologies, Inc.). Subjects have a convincing

Figure 2. Hypothetical discrimination performance using the MAP
estimator. Black corresponds to discrimination performance
according to chance level. White corresponds to perfect discrim-
inability. Three examples for discrimination performance of MAP
estimates as a result of different priors are shown. Left panel: flat
prior corresponding to left row in Figure 1 resulting in equal
discrimination performance in all directions; middle panel: inter-
mediate prior resulting in an asymmetric decrease in discrim-
ination performance; right panel: delta function prior resulting in
indiscriminability of the fused stimuli (direction of metameric
performance).
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impression that they are haptically exploring the same
scene they are seeing. For details about the setup, see Ernst
and Banks (2002).

Stimuli and basic task

Stimuli are flat squares (25 � 25 mm) viewed at a
distance of approximately 50 cm that can have a haptic
and a visual property, namely, a certain stiffness and
luminance. All other properties are kept constant through-
out the experiment.

& The stiffness of the square is modeled using a linear
spring model with spring constant k (GHoST,
SensAble Technologies, Inc.). The maximum stiffness
that can be reliably generated with this device is
k = 0.65 N/mm. That is, we used a stiffness ranging
from 0 to 0.65 N/mm. The range is normalized from
0 to 1; hence, the maximum k = 0.65 corresponds to 1.

& For the luminance, we only used the green electron
beam (Sony Trinitron F500R). The exponent of the
gamma correction was predetermined with a photo-
meter (Minolta). We were able to present 1,024
different shades of green. We normalized the range
from 0 to 1; hence, the maximum luminance 58 cd/m2

corresponds to 1.

There were three presentation conditions: haptic alone,
vision alone, and visual–haptic. To measure discrimination
performance in all three presentation conditions, we used a
three-interval forced-choice (3-IFC) oddity task.We chose an
oddity task because it allows to quantitatively model the
discrimination results and because it is not susceptible to
criterion biases such as, for example, a 2-IFC same/different
task would be. Subjects sequentially saw and/or felt three
objects (little squares) from the two-dimensional visual–
haptic stimulus space. Each square was presented for 500 ms.
Two of the stimuli were identical and one was different in
some aspect (luminance, stiffness, or both). Their task was to
identify the interval containing the odd stimulus (Figure 4).
The presentation procedure was as follows: Awhite outline

of the first square appears randomly on 1 of 16 possible
locations. The subject reaches out for the square with one
finger. In the haptic-alone condition, once the subject reaches
the square, he or she receives a sensation of stiffness for
500 ms. In the visual–haptic condition, the square lights up
with a certain luminance simultaneously with the haptic
stimulus for 500 ms. In the visual-alone condition, only the
square lights up, but the subject reaches through the square
without haptic feedback. There was a 250-ms interstimulus
interval before the outline of the next square at a different
location indicated the start of the next stimulus presenta-
tion. After the presentation of the third stimulus, the
subjects made their choice by pressing their finger on one
of the three stimulus locations (the locations were indicated
by outline squares with the respective number of the
interval written on them so that they were easy to identify).
Tomeasure the just-noticeable differences (JNDs) using the

oddity task, we adopted a constant stimuli procedure with a
fixed standard that was the same for all subjects and
conditions (all sessions except training). The standard
luminance value and standard stiffness value were chosen to
be in the middle of the logarithmic stimulus range that we
could present (0.15 N/mm, 13 cd/m2). Each trial consisted of

Figure 3. The setup used can display visual scenes on a cathode
ray tube (CRT), which are mirrored to be aligned with the haptic
scene. Both scenes can be controlled independently. Haptically,
the scene can be explored using a PHANToM device to provide
the appropriate force feedback. The subject’s head is fixed on a
head and chin rest. We used an SGI, Octane 2 to drive the visual
and haptic simulation. GHoST was used to generate the haptic
scene; OpenGL with GLUT was used for visual rendering.

Figure 4. Schematic illustration of the vision-alone oddity task.
The procedure during the haptic-alone task or the visual–haptic
task was the same but with haptic stimulation either alone or
simultaneously with the visual stimulation.
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the fixed standard and a comparison stimulus differing in
luminance and/or stiffness from the standard. The odd
stimulus, which was the stimulus that was only presented
once during a trial, could be either the standard or the
comparison stimulus chosen randomly with equal probabil-
ity. To avoid participants learning the standard stimulus, we
have included trials (which make up 10% of the total
number of trials) where the standard stimulus was not
shown; these trials were discarded for the analysis.

Analysis

Plotting error rate against the difference between stand-
ard and comparison (in log units), to a very good
approximation, the discrimination data have a Gaussian
shape. It is not immediately clear what shape of
psychometric function to expect from the oddity task if
subjects used the MAP estimator that we described in the
Introduction section for making the discrimination. Hence,
we have simulated the task with Gaussian noise added to
the stimuli and using the triangular rule for the oddity task
as decision rule (Versfeld, Dai, & Green, 1996). Using the
triangular rule, the estimate that is furthest away (in the
Euclidian sense) from the center of the other two is guessed to
be the odd stimulus. The simulation revealed that the resulting
psychometric function is well described by a Gaussian.
Because we used a three-interval oddity task, the chance level
for the error rate is at 66%. In none of the conditions tested did
subjects’ discrimination performance deviate significantly
from the Gaussian prediction.
By fitting a Gaussian to the log of the discrimination

data using a maximum likelihood fitting procedure, we
defined the threshold E to be 1 SD of this Gaussian.
Besides the standard deviation, we also had a nuisance
parameter 1 to account for non-task-related observer
lapses (Wichmann & Hill, 2001).

Conditions

The experiment had a two-factor within-subject design.
Each subject performed a pre- and posttest with a training
phase in between. Thus, one factor was performance
before and after training. During training, subjects were
exposed to correlated stimuli only. In pre- and posttest,
stimuli came either from a correlated or from an
anticorrelated distribution (two directions in visual–haptic
space; blue diagonal for correlated and red diagonal for
anticorrelated in Figure 6). That is, the second factor was
the congruent (blue) or incongruent (red) direction relative
to the correlation during training. The dependent variable
is the discrimination performance (JND) in the four
conditions (pre/post; congruent/incongruent).
The experiment was divided into five sessions con-

ducted on four separate days. Each session lasted between
1.5 and 2.5 hr.

First day: Session 1—Normalization

In a first session, we individually determined a subject’s
single-cue JNDs in a purely visual and a purely haptic
discrimination task. In the purely visual task, we varied
the luminance of the squares, but the squares did not give
any force feedback. In the purely haptic task, the squares
had some stiffness when touched, but visually, there was
only the white outline visible. To measure a psychometric
function for both tasks, 12 comparison stimuli were
chosen logarithmically over the whole stimulus range that
we could present. One of the comparison stimuli was
randomly chosen each trial. Each stimulus pair of standard
and comparison was measured 25 times. Thus, a psycho-
metric function in the unimodal tasks contained 300
decisions per observer. The order of the visual and haptic
task was balanced over participants. An example of a
maximum likelihood fit to the discrimination data of one
subject (D.C.) in the purely haptic task is shown in Figure 5.
The standard deviation of the fitted Gaussian is taken as
the individual visual and haptic JND.

Second day: Session 2—Pretest

With the knowledge about individual visual and haptic
JNDs for each subject, we could normalize the stimulus
space individually for each subject in units of JND. We
measured discrimination performance for the two-cue
stimuli along two directions in this (individually)

Figure 5. Discrimination data from one subject (D.C.) in the oddity
task with only haptic information available. Plotted is the error rate
for identifying the odd stimulus versus the difference in stiffness
between standard and comparison stimulus in log units with the
fixed standard shifted to zero. We measured 25 repetitions per
data point.
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normalized visual–haptic space. One direction is the
positive diagonal, that is, the (+1;+1) axis shown in blue
in Figure 6, and the other direction is the negative
diagonal, that is, the (+1;j1) axis shown in red.
To measure discrimination performance along these two

directions, we again used the oddity task as described
above. For both directions, we used the same fixed
standard as before, indicated as (0, 0) in this normalized
cue space. The comparison stimulus came either from the
blue (+1;+1) axis or the red (+1;j1) axis. There were 10
comparison stimuli chosen individually for each subject.
These were randomly chosen for each trial to cover a
range of T2.5 (unimodal) JND units in steps of 0.5. Again,
each stimulus pair of standard and comparison was
measured 25 times. Thus, each of the two psychometric
functions along the positive and negative diagonal con-
tained 250 decisions per observer. Trials from both
directions were randomly intermixed. As in the previous
case, the odd stimulus could be either the standard or the
comparison stimulus.
To get a measure for the discrimination performance,

we fit Gaussian psychometric functions to the discrim-
ination data of both directions individually. Thus, we have
1 SD parameter for the threshold in the congruent
direction Ec and one for the threshold in the incongruent
direction Ei. However, we used common lapse rate
parameter for the two directions because data for both
directions came from the same session.
Figure 7 (upper panel) shows data for one subject (D.C.)

split into congruent (blue) and incongruent (red) trials
together with a maximum likelihood fit. The best fitting

Gaussians are exactly on top of each other, indicating
that discrimination performance in both directions was
identical, as would be expected from two unrelated
stimulus properties (see also prediction in Figure 6V
Panel 2).

Third day: Session 3—Training

During training, we presented stimuli from either only
the (+1;+1) axis or the (+1;j1) axis depending on the
group that the subject was randomly assigned to. For each
group, we will call the direction that the subject was
trained on “the congruent direction” and the other one
“the incongruent direction.” For each of the two groups,
the stimuli were equally distributed along the respective
direction spanning the entire possible range. That is, the
intensity ranges from close to zero up to approximately
the maximum we can present physically. Thus, we choose
the widest possible range for the distribution of the stimuli
to facilitate learning of the correlation. For each trial, two
composite stimuli were chosen randomly from this
distribution, and one of them was assigned to be the odd
stimulus. During training, subjects received feedback on
each trial in the form of a beep that indicated incorrect
answers. Each subject performed 500 trials during this
training session. It usually took subjects about an hour to
complete the training session.
The hypothesis is that subjects learn during training that

the variance A2
2 along the incongruent axis is reduced

compared to stimuli without correlation (before training).
At the extreme end, the subject could learn that there is no

Figure 6. Procedure: (1) Determine JNDs for stiffness and luminance individually using the oddity discrimination task (Day 1). (2) Pretest
at Day 2, determining bimodal discrimination performance along the congruent and incongruent directions. (3) Training with correlated
bimodal stimuli from the congruent direction (Day 3). (4) Posttest same as pretest directly following training at Day 3. (5) Again, determine
individual JNDs for stiffness and luminance at Day 4 (same as Step 1). The light blue box indicates the bimodal conditions from the main
experiment.
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variance along the incongruent axis, which would mean
that the subject believes that the two signals are
completely correlated. After which, subjects had a brief
break of a couple of minutes before they immediately
continued with the posttest on the same day.

Session 4—Posttest

The procedure of the posttest was identical to that of the
pretest with one exception. As it is expected that, during
the posttest, where also half the stimuli came from the
incongruent distribution, subjects will slowly unlearn what
they supposedly had learned during training, we included a
number of training trials (one third of all trials), which all
came from the congruent direction (here, during posttest,
there was no feedback given for the intermixed training
trials). Thus, there were 500 regular trials (250 congruent
and 250 incongruent) plus 250 training trials, which all
came from the congruent direction. Figure 7 shows the
psychometric functions for subject D.C. determined as
before. Here, a difference between the congruent and
incongruent directions is visible, indicating some learning
in this one subject.

Fourth day: Session 5—Control

Because subjects now had a lot of experience with the
task and the stimuli, it may be that there is perceptual
learning; thus, subjects generally get better in performing
this task. The last day was made identical to the first day

(normalization) to control for this general learning. We
again measured performance in the task with only visual
or only haptic information available.

Results

First, we checked whether there was a significant
change of the unimodal thresholds over the time course
of the experiment (between Session 1 from Day 1 and
Session 5 from Day 4). It could be that subjects become
much better in discriminating stimuli simply because they
have done more than 2,500 trials (perceptual learning).
We can compare the discrimination performance in the
purely visual task and the purely haptic task on the first
day with the performance on the last day. A repeated
measures ANOVA shows no significant effect for the
purely visual task or the purely haptic task, F(1, 8) = 0.34,
p = .56 and F(1, 8) = 3.13, p = .12, respectively. This
indicates that subjects did not generally get better at
discriminating during the course of the experiment. Given
this baseline performance, we can now turn to the main
data of the experiment.
The results for one typical subject (D.C.) were already

shown in Figure 7. For all subjects, we performed the
same procedure of fitting a Gaussian to the data in both
the congruent and incongruent directions in the pre- and

Figure 7. Discrimination performance for subject D.C. for congruent and incongruent trials before and after training (upper panel, pretest;
lower panel, posttest). Error rate is plotted against the difference (D) between comparison and fixed standard stimulus (given in JND
units). Discrimination data plus Gaussian fit for the congruent trials are depicted in blue. Data and fit from incongruent trials are depicted in
red (chance level performance at 66%).
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posttest. Thus, we had thresholds for all four conditions
with the two factors: pretest/posttest and congruent/
incongruent.
There was no significant difference between the con-

gruent and incongruent direction during pretest in 9 of the
12 subjects. This result was expected from subjects where
the two cues are independent and where there is no
mapping between these signals. The results of these nine
subjects are shown in Figure 8. The top panel shows the
mean thresholds for these nine subjects for the congruent
and incongruent directions in the pre- and posttest.
An ANOVA (two factors, within subjects) on the data

of these nine subjects was conducted and revealed that
there was no significant main effect, neither for pretest
versus posttest, F(1, 8) = 0.705, p = .426, nor for
congruent versus incongruent, F(1, 8) = 4.128, p = .077.
However, it is important to note that we found a
significant interaction between the two factors, pre/post
vs. congruent/incongruent: F(1, 8) = 14.58, p G .005,
which indicates that the thresholds for the congruent and
incongruent directions, which were the same in the
pretest, are now different in the posttest. This shows that
these subjects learned to use the newly introduced
redundancy between the luminance of an object in
combination with its stiffness. That is, subjects learned
to integrate arbitrary signals.
In the lower panel of Figure 8, we illustrate the

interaction by plotting how the difference between the
congruent and incongruent directions change from pre- to
posttest. With the exception of one subject, all of the nine
subjects show a change in the predicted direction, and the
one who did not show the effect has only a minor change
in the opposite direction. Thus, this illustrates the
significance of the interaction.
Interestingly, 3 of the 12 subjects who were tested (C.R.,

0.165; S.L.S., 0.169; V.E., 0.177) already showed a
significant difference between the congruent and incon-
gruent directions during pretest before the training. This
indicates that they already had a predefined axis for
discrimination. (By chance, all three had a higher threshold
for the congruent direction compared with the incongruent
directionVbecause the assignment to the group according
to which direction a subject was trained was random, this
has to be chance.) According to the Bayesian integration
model, this could be due to correlated noise in the two
channels, which is unlikely because luminance and stiff-
ness are sensed by two entirely separate sensory systems
(vision and touch) in these subjects (see the Discussion
section for details). More likely, it is that these three
subjects lived in a world where there was a slight
correlation between brighter objects feeling stiffer or vice
versa. If some correlation like this exists somewhere in the
environment, these three subjects may have picked that up
during their lifetime before the experiment. This is
interesting but not so important for our experiment. What

is important is that these three subjects also produced a
similar learning effect as the other subjects (Dpretest j
Dposttest: C.R. = 0.165, S.L.S. = 0.169, and V.E. =
0.177). The difference between congruent and incongruent
trials also changed in the predicted way after learning:
The difference became less or disappeared. That is, the
learning effect is in the same direction as the eight of the
nine subjects shown in the lower panel of Figure 8. Thus,
11 of the 12 subjects showed the predicted effect that one
would expect if subjects learned to use the correlation
(mapping) introduced during the training phase. Thus, in
conclusion, this experiment showed that subjects learned a
new Coupling Prior, which enabled them to integrate
arbitrary signals from vision and touch.

Figure 8. Upper panel: Mean data of discrimination thresholds
across the nine subjects in all four conditions plus standard
deviation (pre/post, congruent/incongruent) are shown. The upper
dashed line at 1.0 represents 1 unimodal JND. The lower dashed
line at 1/

ffiffiffi
2

p
(circle with radius 1 JND measured along diagonals)

represents the best discrimination performance that can be
theoretically achieved along the diagonals. Lower panel: This
shows the difference between pre- and posttest of the discrep-
ancy between discrimination thresholds derived from the con-
gruent and incongruent directions.
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At the end of the experiment, we informally queried
subjects and there was no naive subject who reported to
have noticed the correlation during training.

Discussion

Here, we tested whether subjects can learn to integrate
arbitrary signals from vision and touchVnamely, the
luminance and stiffness of an object. We measured
discrimination performance for these two signals presented
simultaneously and explored whether there is a change in
discrimination performance before and after extensive
exposure to a world in which these two signals are highly
correlated. We assumed that the thresholds should be
symmetric before training; hence, there is “no fusion”
between these two signals. We then predicted that subjects’
thresholds should become asymmetric after training if they
were sensitive to the correlations in the stimuli during
training. That is, the signals should become “somewhat
fused,” which we here call integration. In case subjects’
priors were fully adapted, one could say that the amount
of correlation in the sensory measurements derived from
the physical stimuli determines the “degree of fusion.”
Thus, the prior, which we termed Coupling Prior, repre-
sents the mapping uncertainty (Bresciani et al., 2006;
Ernst, 2005).
Our main finding is that subjects actually showed the

predicted learning effect. For most of the subjects (9 of
12), there was indeed no difference between the discrim-
ination thresholds in the congruent and incongruent
direction before training, indicating independence of the
signals. All except one subject (n = 11) were sensitive to
the training and showed the predicted learning effect. That
is, after training, there is a larger difference in thresholds
in the incongruent direction than in the congruent
direction. This suggests that subjects indeed learned to
integrate the two arbitrarily chosen signalsVluminance
and stiffness. The asymmetry between congruent and
incongruent thresholds cannot be explained by improve-
ment of performance due to more practice because this
would have affected the congruent and incongruent
direction equally. Furthermore, we controlled for such
unspecific learning by measuring the unimodal discrim-
ination performance before and after the pre- and posttest
and found no significant difference.
As long as we assume that the noise distributions of

the luminance and stiffness measurements are independ-
ent, there is no way that changing the likelihood
distribution (either by introducing a bias to its mean or
by changing its variance AV

2 or AH
2) would have produced

an asymmetry in the discrimination performance between
the congruent and the incongruent direction. This inde-
pendence assumption of the noise distributions of the two
sensory measurements seems safe because the measure-
ments are derived from two separate sensory modalities.

Furthermore, there is no reason to believe that introducing
a correlation between the signals during training would
affect this independence assumption of the noise distribu-
tions of the signals. Thus, the asymmetry in the learning
effect between congruent and incongruent direction can be
best explained by a change in the variance of the Coupling
Prior and not by a change in the likelihood distribution.
Recalibration is another form of learning involving a

conjunction of two sensory signals, which can be modeled
using a similar model as the one described here (Burge,
Ernst, & Banks, 2007). Recalibration occurs when the
system is exposed for some time to a constant conflict
between the two sensory signals. The classical example
for recalibration is visuomotor adaptation, which has been
extensively studied since the first prism experiments
conducted by von Helmholtz (1867). Similar recalibration
effects have been found within the sensory modalities (e.g.,
Adams, Banks, & van Ee, 2001). In essence, recalibration
affects the mapping between the signals and not the
certainty of the mapping or the variance of the sensory
measurements (likelihood). Thus, recalibration cannot
explain the asymmetry effects in discrimination perform-
ance found here.
In the pretest, all subjects showed a (bimodal) threshold

below 1 JND (unimodal). If a subject only used the visual
or only the haptic signal for discrimination, the threshold
should lie at exactly 1 JND. Thus, we can conclude that
subjects used both signals for the bimodal discrimination
task. However, they did not use the available information
in the best possible way. If they used all the information
available, then their threshold should lie at 1/

ffiffiffi
2

p
. This is

expected when there are two signals instead of only one
signal available for the discrimination. To be more
precise, if the noise in the sensory measurements is
radially symmetric everywhere in the normalized visual–
haptic space (i.e., the joint likelihood distribution would
have a circular cross section), then discrimination per-
formance should be independent of the direction in the
cue space in case the sources of information are not
integrated (i.e., the prior is flat). Thus, discrimination
thresholds should all lie on a circle in this space (with
radius 1 unimodal JND). Because the visual–haptic
thresholds are measured along the diagonal direction, then
1/

ffiffiffi
2

p
of the visual and haptic JNDs are needed before

hitting the threshold. Because the visual–haptic thresholds
in the pretest are slightly above this theoretical optimum,
it seems that subjects do not optimally use both sources of
information for performing in the bimodal discrimination
task during pretest.
Because subjects’ performance was not optimal in the

pretest, there is still the possibility for subjects to
improve the discrimination performance in the congruent
direction during posttest. This was not predicted by the
Bayesian integration model. However, subjects appa-
rently learned to better use the two sources of informa-
tion simultaneously during the training task in which we
provided feedback. After training in the posttest, subjects
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are very close to optimal in the congruent direction. In
the incongruent direction, however, there is a cost for
discrimination, which is the result of integrating the
sensory signals. This was the prediction of the Bayesian
model when a nonignorant Coupling Prior is used
together with the sensory information for making the
discriminations.
The observed effect is small. However, we did not

expect the effect to be large, considering only 1 hr of
training compared to a whole lifetime of experience with
objects, for which luminance and stiffness are not
correlated. If the system would adapt more quickly,
serious problems could arise. For example, if, by accident,
stimuli get fused, this may result in difficulty in discrim-
inating one stimulus from another (this is the cost of
fusion and the reason why the discrimination ellipse
becomes wider along the negative diagonal).
Along the same line, one interesting fact is that the

Bayesian model actually predicts that subjects’ discrim-
ination performance should mostly get worse in this
particular task, when they learn to use the correlation
between the stimuli. Thus, there seems to be only a cost
but no benefit when integrating the signals. This can be
best seen for the case of complete fusion. There, it is not
possible at all to discriminate along the negative diagonal
axis. Hence, it seems that for this task, the cost exceeds
the benefits when subjects learn to use the correlation.
However, whether or not there is a benefit of integration
depends on the particular task. For a different task such as
magnitude estimation, for example, combining signals has
more benefits, as mentioned in the Introduction section.
This makes sense; if the system is certain about the
mapping, then it does not need to have access to both
signals because they are redundant. Thus, in return, the
system can afford to lose the discriminability between
these signals. This is what we see in our task. In return, it
is able to obtain a more precise estimate of the environ-
mental property that both signals provide information
about. Hence, the benefit is that the precision of the
estimation increases, which should be a general goal of
the perceptual system. Costs and benefits are balanced
based on the certainty that the two signals carry redundant
information, which is represented in the Coupling Prior.
The Coupling Prior, learned from the sensory signals

mediating the statistics of the environment, represents the
mapping uncertainty between the sensory measurements.
If the mapping between signals varies often and unpre-
dictably (e.g., when the system has to recalibrate during
visuomotor adaptation), this should be reflected in a larger
variance of the prior distribution. If the mapping is
relatively constant, the mapping uncertainty will be less
and, thus, the prior distribution has a smaller variance.
Hence, this framework can explain why some signals are
fused whereas others are not. Objects that look big also
feel big, and objects that feel small also look small. We all
grew up with this form of statistical relationship. How-
ever, in some properties, mapping is more constant than in

others. For example, when there is a conflict between
disparity and perspective cues within the visual system,
the adaptation rate is very slow (Adams et al., 2001),
indicating a relatively fixed mapping. For visual–haptic
conflicts, adaptation is much faster, indicating that the
mapping is less fixed. It would be suboptimal for our
perceptual system not to use the information about
mapping certainty.
Robust estimation refers to the effect that integration

should break once there is a large (spatial, temporal, or
other) conflict between sources of information. This is
because it would not make sense to integrate discrepant
signals, which, more probably, have come from two
different objects, rather than reflecting signals from the
same object. This concern was already discussed in Landy
et al. (1995) and was also recently addressed by Knill
(2003, in press) and Roach et al. (2006). Landy et al.
treated discrepant signals as statistical outliers, whereas
Knill proposed a mixture model of different Gaussians to
deal with the problem of robust estimation. Roach et al.
proposed a similar idea as Knill but in the context of a
Coupling Prior. Both approaches may work. However,
when implementing robust estimation as statistical out-
liers, more than two redundant signals are needed to
identify the outlier. Often, there are not more than two
corresponding signals available at a given time. The use of
a mixture of Gaussians to implement robust estimation
was studied using stereo and texture perception of slant.
However, the specific shape of the mixture of Gaussian
distribution needed for the approach to work seemed very
specific to these two cues. Thus, the question of how
generally applicable these approaches will be remains.
In the framework presented here, robust estimation is

incorporated quite naturally. It seems safe to assume that
the more discrepant the signals are (in time, in space, or in
any other dimension), the less is the correlation between
these signals. Thus, the Coupling Prior conditioned on the
discrepancy between the signals has more variance the
more discrepant the signals are. If they become really
discrepant, the correlation disappears and the signals are
treated as independent. If the signals are congruent in all
dimensions, it is only the uncertainty in the mapping that
determines the variance of the prior and, hence, the
“degree of fusion.” An example for robust estimation
including a Coupling Prior, which shows that as uncer-
tainty increases, the larger the temporal discrepancy
between the signals becomes, is illustrated in Figure 9.
The idea presented here is not in contrast with the mixture
model idea proposed by Knill (2003, in press) and Roach
et al. (2006). Both models could easily be combined into a
more complete framework for robustness in sensory
combination.
Haijiang, Saunders, Stone, and Backus (2006) recently

studied “cue recruitment.” In their study, participants
learned to use a secondary, naturally uninformative cue
for disambiguation to interpret an ambiguous figure (the
Necker Cube). In a learning phase, a statistical correlation
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between the new cue and one or the other interpretation of
the ambiguous figure was introduced. The question was
whether, after learning, the normally uninformative cue
could be used for disambiguation of the ambiguous stimulus.
This is a form of association learning that is similar to
learning to integrate two sensory signals. However, in the
present study, we did not investigate the combination of
signals for disambiguation; rather, we examined whether
knowledge about the correlation between signals can be used
in the combination of the signals.
We will conclude with a citation from Bishop George

Berkeley who stated in 1732 in his famous work Essay
Towards a New Theory of Vision:

“Sitting in my Study I hear a Coach drive along
the street; I look through the Casement and see it; I
walk out and enter into it; thus, common Speech
would incline one to think, I heard, saw, and touch’d
the same thing, to wit, the Coach. It is nevertheless
certain, the Ideas intromitted by each Sense are
widely different, and distinct from each other; but
having been observed constantly to go together, they
are spoken of as one and the same thing.”

Thus, he already said what we now have experimental
evidence of: It is the signals derived from the different
sensory modalities that are widely different and distinct
from each other, but when there is a statistical correlation
between these signals, they are integrated into one thing.
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