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ABSTRACT 

The notion of a pat tern of evolutionarily stable strategies was introduced by 
Cannings and Vickers in 1988 (J. Theor. Biol. 132:387-420). In this paper a specific 
class of patterns is considered. Suppose that there is an evolutionarily stable strategy 
(ESS) on some set of n strategies {1,2 . . . . .  n} and that new strategies { n + l , n +  
2 . . . . .  n + k} are added. Supposing that  for this new enlarged conflict there is still an 
ESS on {1,2 . . . .  ,n} and also that there are ESSs on {n+i, j}  for l<~i<~k and 
j ~ S i c{1 ,2  . . . . .  n}, the authors investigate the restrictions on the S v These restric- 
tions are related to certain properties of strong tournaments  introduced by Reid and 
Beineke. We also specify, given the S i, what ESSs of the form {n + i, n + j} can be 
added. 

1. INTRODUCTION 

The notion of an evolutionary stable strategy (ESS) has become of 
major importance in studying the strategies adopted by organisms. An 
ESS corresponds to a strategy which if adopted by a population in some 
conflict cannot be invaded by any alternative introduced at low fre- 
quency. Such a strategy is therefore stable; it will persist if current 
payoffs and costs remain the same and if no new pure strategies become 
available. 

We now formally define an ESS, restricting ourselves to a finite set 
of strategies for ease, as that is the focus of this paper. Suppose that 
pairwise contests are taking place within a species, each player choosing 
from a set U of pure strategies. The concept of an ESS corresponding to 
a noninvadable population strategy was introduced by Maynard Smith 
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and Price [1]. Let  A be an n × n matrix with entries aij. The expected 
payoff to an i player when it meets a j player is E[i , j ]  = aq. Let the 
proportion of the individuals in the population that play i be Pi (some 
of these may be zero). The payoff to each member of a group of 
individuals of which a proportion Pi play i against a group of which a 
proportion qi play i is 

E [p ,q ]  = E q p i q j E [ i , j ] .  

p is said to be ES (evolutionarily stable) against q with respect to A if 

(i) E[p, p] > E[q, p] or 
(ii) E[p, p] = E[q, p] and E[p, q] > E[q, q]. 

p is said to be an ESS of A if, for all q ~ p, p is ES against q with respect 
to A. 

The support of an ESS p is S(p) = {i; i ~ U, Pi > 0}, that is, it is the set 
of strategies that have a nonzero probability of being played by an 
individual who plays the ESS p. 

An interesting feature of conflicts with a finite number of available 
pure strategies, where the payoffs can most naturally be specified by a 
(payoff) matrix, is the possible existence of multiple ESSs. The ESSs 
that exist will have supports that are restricted in various ways, and the 
discussion of these restrictions is the subject of a series of papers by the 
second and third of the current authors and various collaborators (see, 
e.g., [2, 3]). Biological relevance lies in the possibility that for a particu- 
lar conflict with a specific payoff matrix one may observe, in separated 
niches, different strategy combinations depending on which ESSs have 
evolved in those niches. Conversely, observation of a particular pattern 
of supports may imply that the niches do not all have the same payoff 
matrix. Additionally it is of interest to know how many different ESSs 
might exist for a given number of pure strategies and how large these 
ESSs might be. 

The current paper discusses one particular type of pattern, the one 
with one ESS with support of size n, and all other ESSs with supports of 
size 2, although Lemma 3 is more general. We shall specify the 
necessary and sufficient conditions for that pattern of ESSs. We con- 
sider patterns specified by (U, S 1, S 2 . . . . .  S~ ~, where U = {1, 2, 3 . . . . .  n} 
and S i c U, i = 1 . . . . .  k, and the set of ESSs has supports U and (n  + i , j ) ,  
1 ~< i ~< k and j ~ S~, so one has a support of size n to which has been 
added pairs. 

Our approach will be the following: 

(1) We discuss the possible sign patterns for the entries in a payoff 
matrix A =(ai i ) ,  i , j  = 1 . . . . .  n, that supports an internal ESS. 
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(2) We consider the requirements if we are to add a set of pairs 
(n + i , j ) ,  j ~ S i for some i ~< k, and these will be shown to be simple 
restrictions on the signs of certain entries in A. 

(3) The considerations of the restrictions demonstrated in item 2 
jointly for the set of Si's together with the requirements of item 1 lead 
to a fairly simple specification of the possible sets of S i (as described in 
Theorem 4), part of which is in terms of cycles in tournaments. 

(4) We also specify, given the S i, what ESSs of the form {n + i, n + j} 
can be added. This then solves completely the problem of patterns 
where all ESS supports, except one, have two elements (Theorem 5). 

2. RESTRICTIONS ON A 

We shall use three restrictions on the signs of the entries of a payoff 
matrix A. Note that from now on matrix A will be assumed, without 
further comment, to be n x n and to have aii = 0 ,  1 ~< i ~< n. This 
involves no loss of generality, as the ESSs of any payoff matrix B are 
precisely those of the matrix B*, where b* = bij - bjj, which, of course, 
has zeros on the diagonal [4]. 

CONDITION 1 

A matrix A is said to satisfy Condition 1 if  aij + aji > 0 all i , j  with 
l<<.i<j<~n.  

Note. For any i and j, at least one of aij and aii must be positive. The 
usefulness of this condition is well known and has been exploited by 
Haigh [5], among others. 

CONDITION 2 

A matrix A is said to satisfy Condition 2 i f  V nonempty V c U 3 (i, j )  
with j ~ V and i ~ U - V  with aij > O. Equivalently (and in the form 
needed later), it is not possible for A to have aij < 0 all j ~ V and all 
i ~ U - V .  

This condition is related to reducibility, for if  we define B = (bij) by 
bij = a i ]  i f  ai j  > 0 and bij = 0 otherwise, then A satisfies Condition 2 i f  
and only if  B is irreducible. 

A matrix A satisfies Condition 2 if  there exists a permutation 
(i~, i 2 . . . . .  i n) o f  (1, 2 . . . . .  n) such that ai/i+ ' > O, 1 ~< j ~< n - 1, and ainil > 0 
[61. 

CONDITION 3 

A matrix A satisfies Condition 3 i f  there exists a permutation (i I . . . . .  i n) 
of  (1 . . . . .  n)  such that air + ,iy < O, i ~ j <~ n - 1 and ai,i. < O. 

I f  a matrix satisfies Conditions 1 and 3, then clearly it also satisfies 
Condition 2. 
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2.1. SIGN-PATTERN MATRICES AND SETS W AND Z 

We define the set W = {A; A satisfies Conditions 1 and 2}. 
Corresponding to any matrix A is a matrix S(A) whose entries 

s(A)/j = sgn(agj). S(A) is said to be derived from A. Such an S(A) is 
referred to as the sign-pattern matrix of A. 

We define the set Z as the set of sign-pattern matrices derived from 
elements of W. Similarly, we define the sets W* ={A; A satisfies 
Conditions 1 and 3} and Z* as the set of sign-pattern matrices derived 
from elements of W*. Clearly, Z* __c_ Z. 

The next lemma and theorem draw on the specification of the 
conditions under which a specific strategy p is an ESS of a given payoff 
matrix A, Haigh's theorem [7]. 

LEMMA 1 

I f  A is a payof f  matrix, then an E S S  p (other than a pure E S S )  o f  A ( i f  
one exists) has prAp > 0. 

Proof. By Haigh's theorem, if a matrix A has an ESS, then agj + aji 
> 0 for all i, j in the support. Thus, 

prAp = Y'.aijPiPj = ~_, (aij  + aji)pipy > O. 
i,j i<j 

Stronger results hold (1) for a payoff matrix D (with no restriction on 
its diagonal entries) if a nonpure ESS p of D (if one exists) has 
p rD p  > Y'.i~S(p)diiPi and (2) for an ESS (prA)/> 0 all j in the support of 
p. This follows because for all q ~ p we have prAq > qrAq, and so 
choosing q to correspond to the pure strategy j we have (prA)j > ajj = 0. 

THEOREM 1 

I ra  matrix A has an internal E S S  (i.e., with support U), then A satisfies 
both Conditions 1 and 2 (i.e., i f  A has an internal ESS,  then A ~ W). 

Proof. (1) Haigh's theorem requires that if there is an internal ESS, 
then Condition 1 is satisfied. 

(2) The matrix A has C matrix (Cg/ = aij - ag t - atj + a u for some l) 
negative definite and hence by [8] possesses a unique ESS. Every V _ U 
specifies a submatrix formed from the appropriate rows and columns of 
A whose C matrix is negative definite. Therefore  there must be an ESS 
in V, but if all the agj were negative for j ~ V and i ~ U - V ,  then this 
ESS, suitably augmented by zeros, would also be an ESS in U, because 
the payoff for any ESS for a matrix with diagonal elements 0 will be 
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nonnegat ive (by L e m m a  1) and hence could not  be invaded by any o ther  
strategy. However ,  there  is only one such ESS. • 

L E M M A  2 

A p a y o f f  matrix A that has constant  row s u m s  T a nd  aij + aji  = C > 0 
all i and  j with i ~ j has an internal E S S .  

Proof. Since the row sums are constant,  there is an internal equilib- 
r ium at the unit vector  (suitably scaled), that  is, A1 = TI. 

We  need  to demons t ra te  that zrAz ~ 0 V z, with ZT1 = 0 and equality 
only if z = 0 [7]. We  have 

z r A z =  E ( a i j + a j i ) z i z j =  ~_, c z i z / = - c  ~_, z 2 ~ O  (1) 
l ~ i < j < ~ n  l<~i<j<~n l<~i<~n 

with equality only if z = 0. • 

T H E O R E M  2 

For  any Y ~ Z* there exists an A ~ W* that has an internal E S S  a nd  
such that S(A) = Y. 

Proof. We are given Y and construct  an appropr ia te  A with S(A) --- Y. 
Define A as follows, in terms of  ot > 0 and bi, 1 <~ i <<. n. 

If  j = ( i  + 1) m o d ( n ) ,  then set aij = b i and aji = 2 a  - bi; 

otherwise 

If  y~j = Yji = + ,  then set aiy = a j  i = or, 

and 

if y~j = + while yj~ = - ,  then set a~j = 1 + 2 ct and aji = - 1. 

We now demonst ra te  that  one  can choose  the b i and a such that 
each row of  A adds to the same value, T = (n  - 1)a .  

E a i j  = b i +2o~ - b(i_l)mod(n) q- ri, 
J 

where  r i is the sum of  the elements  o f  the row other  than those f rom 
the permutat ion,  that  is, n - 2  entries. 
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Each  of  these sums is equal  to T, so we can easily express each b~, 
f o r 2 ~ < i ~ < n ,  i n t e r m s o f b  l as 

j = i  

b i = b l  + ~_, ( T - r i - 2 a ) ,  
j = 2  

where  T = (n - 1)a .  
H e n c e  A satisfies the requ i rements  of  L e m m a  2 and so has an 

internal ESS. 
W e  now choose b 1 = M ( M  very large) so that  b 1 ~-0 and thus all 

bg ~- 0, and so 2 a - b~ is negat ive for  all i. This means  that  A satisfies 
Condi t ion 3 with pe rmuta t ion  the identity and that  (a~j + aj~)= 2 a  for  
all i :~ j, so A ~ W* and S(A) = Y. • 

A st ronger  result  holds. For  any e lement  of  Y ~ Z* and probabil i ty  
vector  p > 0, there  exists an A ~ W* that  has an internal  ESS p and 
such that  S(A) = Y. This requires  that  S, jazjpj  = T all i, and the bi ' s  can  

easily be  suitably def ined to achieve this. 

3. R E S T R I C T I O N S  O N  T H E  S i 

We  now turn our  a t tent ion to adding pairs, that  is, defining the sets 
of  S / t h a t  can coexist. 

T H E O R E M  3 

Suppose A is a payo f f  matrix defined on U, A + is a payof f  matrix 
defined on U U { n + l }  with a ~ = a i j  V i , j<~n,  a+n+l ,+~=0,  and 0 <  

+ for  some fixed k ~ n, and there are ESSs  on a~n+ l < a~n+ l < "'" < ak~+l 
(i, n + 1) for  1 <~ i <~ k. Then aij < 0 whenever 1 <~ j < i <~ k. 

Proof. We require  there  to be  an ESS on (j ,  n + 1) for  j ~< k that  
requires  aTn +1> 0, which we have already specified, and a~++lj > 0. W e  

+ = 0, aT, + > 0, so if i ~ U is not  to invade when  a+, + 1 > thus have a j j  1 
+ 

afn+l, we require  a i j<O.  Thus  since a~, ,+l<a~n+l< " "  <akn+l  , we 
require  aij < 0 for  all 1 ~< j < i ~< k. • 

If, as is our  objective, we wish to add addit ional  strategies n + i, each 
of  which is associated with a set Si, then  each of  these addit ion will 
require  cor responding  negat ive a~j in specific posit ions in A. It  is thus 
necessary that  these  condit ions be  consistent  with any restrictions 
imposed  on A due to it having an internal  ESS. 

Suppose  that  (U, S l , S z , . . . , S k ) ,  where  U ={1 ,2 ,3 , . . . , n}  and S i c U, 
1 ~< i ~< k, specifies the set of  suppor ts  U and (n + i , j ) ,  1 <~ i <~ k and V 

j ~ S i (so one  has a suppor t  o f  size n to which have been  added  pairs). 
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We refer  to (U,  S 1, S 2 . . . . .  S k ) as a t ta inable  if the cor responding  pa t t e rn  
is a t ta inable.  

T h e  following theorems ,  which specify the condit ions imposed  on A 
for  (U,  S1,S 2 . . . . .  S k) to be  at tainable,  are  best  expressed in te rms  of  
tournaments ,  so we digress briefly to define some  impor tan t  t e rms  [9]. 

A tournament T(V, E) is a d i rected simple graph G(V, E), where  V is a 
set of  vert ices and E a set o f  edges (i.e., o rde red  pairs of  vert ices that  
are said to join those vertices),  and every pair  of  vert ices is jo ined 
precisely once. It  the re fore  can be used to represen t  the results in a 
round  robin compet i t ion .  

A ver tex u dominates a ver tex v if their  c o m m o n  edge is d i rected 
f rom u to v. 

A t o u r n a m e n t  (or  sub tou rnamen t )  is transitive if the binary relat ion 
dominates is transit ive (i.e., u dominates v, v dominates w ~ u dominates 
w). 

A t o u r n a m e n t  is reducible if its set of  vert ices can be  par t i t ioned into 
n o n e m p t y  sets V 0 and V 1 in such a way that  every u ~ V 0 domina tes  
every v ~ V 1. 

A t o u r n a m e n t  that  is not  reducible is called irreducible or  strong. 
A fundamen ta l  result  we shall need  is that  a t o u r n a m e n t  is s t rong if 

and only if there  exists a spanning circuit, that  is, there  is a pe rmuta t ion  
(il ,  i 2 . . . . .  i n) of  (1, 2, 3 . . . . .  n)  such that  ij domina tes  ij+ 1 for  all j ,  and i ,  
domina tes  i x [9]. 

LEMMA 3 

I f  an n × n matrix A has negative entries in positions aij, 1 < j < i < k 
< n, and nopure ESSs, then one canfind an (n + 1 ) × ( n  + 1) matrix A + 
whose ESSs are precisely those of A together with ESSs that have the 
supports (i, n + 1), i = 1 , . . . ,  k. 

Proof Def ine  A + by 

l aij 

a Z = ~ ( 1 - c Z ) ( ( l - c )  

if l <~i; j < n ,  

i f j = n + l ;  l <~i < k ,  

if i = n + l ;  1 <~j<~k, 
otherwise,  

where  c and r are def ined to satisfy 0 < 2c < r < m / 2 w  < 1, where  w is 
the largest  e l emen t  of  A, m = m i n i . i l a i i l ,  and M is a large posit ive 
constant .  

T h e  ESSs of  A (Note  no ESS of  A can have suppor t  within {1, 2 . . . . .  k} 
because  aii< O, 1 <~ j < i ~ k)  are also ESSs of  A +, since for  each ESS 



28 M. BROOM ET AL. 

of A there is an i in its support  with an+li = +  - M,  so the payoff to n + 1 
against the ESS must be less than for the ESS against itself. 

For  each i, 1 ~< i ~< k, the pair (i, n + 1) has a+n + 1 ~ 0, a++ li ~* 0, 
+ =  0, and a++ln+l = 0, so it is an ESS in its own space. We need to aii 

prove that it cannot be invaded by any j. 
For j > k, the entry aj + + 1 = -- M, SO j cannot invade. 
F o r j w h e r e  l ~ < j < i ~ < k ,  

wa~-n + 1/(a~-n+ 1 -  aTn+ 1) ~< w ( l  - c i ) / ( 1  - c ) c  i-1 ~ 2 W / C  i-I  , 

< I W / C  i + = a n + l i  
+ + + + 

=~ Wa+n+ l ÷ a j n +  l a n +  l i  < a i n +  l a n +  l i  

+ + a + a + + + 
~ a j i a i n + l +  j n + l  n + l i < a i n + l a n + l i  (2 )  

and the final inequality is precisely the noninvadability (by j )  condition 
for the putative ESS on (i, n + 1). 

For  j where 1 ~< i < j ~< k, 

a/+n+l(l+ m / a + + l i )  = ( ( 1 - - c i ) l ( 1 - - c ) ) [ l + ( m c i l w r ) ]  

t> [(1 -- c i ) / ( 1 -  C)] (1 + 2c i) 

= (1 + c i - 2c2~) / (1  - c) 

> l / ( 1 - c )  

> a;n+l 
+ + 

=* a i n +  l a n +  l i  

+ + - m a + n + l  > a j n + l a n + l i  
+ + + + 

>t aj,+ la,  + l i  t aji ain + 1 (3) 

which is again the condition for noninvasion. 
We have thus proved that the original ESSs of A and the extra pairs 

of  the statement are indeed ESSs of A +. It  remains to prove that there 
are no other ESSs. There are clearly no ESSs with supports in (1, 2 . . . . .  n), 
as those would have been ESSs of A. There  are no ESSs involving n + i 
and elements of  (1,2 . . . . .  n) other than those specified. For  k < j < n, 
both ÷ + an+lj and aj~+l are negative, so no ESS can contain both n + 1  
and such a j by Haigh's  theorem. For 1 ~< i ~< k, (i, n + 1) is an ESS, so 
no other support  of an ESS can contain both (n + 1) and i. 

THEOREM 4 

(U, S 1, S 2 . . . .  , S k ) is attainable i f  and only i f  there exists an F such that 
T(U,F) is a strong tournament and each subtournament T(Si,F), 1 ~< i ~< k, 
is transitive. 
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Proof. (1) Suppose there exists a strong tournament T(U,F) such 
that each subtournament T(Si,F) is transitive. Then define Y to have 
Yij = - i f ( / , j ) ~  F and positive values elsewhere. Thus the sign pattern 
of Y satisfies Theorem 2, so there exists a payoff matrix A with S(A) = Y 
with an internal ESS. Further, this A satisfies the conditions of Lemma 
3 with respect to S 1 [we can relabel the elements of S 1 as 1, 2 . . . . .  [S~I < n; 
IS~l < n since T(U,F) is strong and T(Sl,F) is transitive], and hence the 
matrix A ÷ of Lemma 3 has as ESSs the pairs (i, n + 1), i ~ S 1 and U. 
This new matrix A ÷ itself satisfies the condition of Lemma 3 with 
respect to S:, and we can apply an inductive argument to add the pairs 
required. 

(2) Suppose that (U,S~,S z . . . . .  Sk) is attainable. Then there exists a 
payoff matrix A ÷ with this pattern of ESSs. A ÷ has an ESS on U, so this 
submatrix, A say, satisfies Condition 2. Consider the set of negative 
entries of A. If this set is of size n ( n -  1)/2,  then the tournament 
T(U,F) where F = ( i , j ) ;  a~j < 0 is strong, since it is the complement of 
T(U,G), where G = ( i , j ) ;  a i j>  0, which is strong by Theorem 1. The 
existence of the pairwise ESSs defined in terms of the S~ requires that 
the subtournaments T(SI,F) are transitive by Theorem 3. 

If the number of negative entries is of size less than n(n - 1)/2,  then 
we may identify a spanning cycle within the positive elements of A and 
add elements to F so that if ( i , j )  belongs to the spanning cycle then 
( j , i ) ~  F. T(U,F) is now strong and, as above, all T(Si,F), 1 ~< i ~< k, are 
transitive. 

In fact, stronger results than those of Theorem 4 are possible. When 
adding new pure strategies and pairs to an existing setup we can also 
add pairwise ESSs with supports (n + i ,n  + j).  We demonstrate this 
possibility only in the case corresponding to Theorem 4. We can add 
any pairs from the {n + 1, n + 2 . . . . .  n + k} provided that by so doing we 
do not create any "triangles," that is, all pairs from a triple {u, v,w}. It 
was shown in [2] that one could not have a set {u, v,w} with ESSs on 
(u,v) ,  (v,w),  and (u,w); this is the "triangle exclusion rule." Thus 
Theorem 5 proves that this is the only restriction in this context. 

THEOREM 5 

Suppose that (U, S1, S 2 . . . . .  S k) is attainable. Then (U, $1, 
S 2 . . . . .  Sk, T1, T 2 . . . .  , T m ) [where this notation indicates that the original set 
of  ESSs have been augmented by a new set of  pairs with supports Ti, i = 
1 . . . . .  m, each T i be ingof theform (n + u ,n  + v) , l  <<. u < v <<. m] is attain- 
able if  and only if  

(1) Ti =( n  + u ,n  + v)=~ Su NS~, =O , a n d  
(2) T i = ( n  + u,n  + v) and Tj = ( n  + v,n + w) implies that there is no 1 

with T t = ( n + u , n + w ) .  
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Proof (a) Suppose that (U,  SI ,S  2 . . . . .  Sk ,T1 ,T  2 . . . . .  Tin)  is attainable. 
Then if S, n S v 4:•, there is some element j ~ S, n S v such that (n + 
u, j )  and ( n +  v , j )  both support ESSs. It follows, from the triangle 
exclusion rule, that (n + u, n + v) cannot support  an ESS. Thus there is 
no T i = ( n  + u,n + v). Thus Condition 1 holds, and Condition 2 is 
simply the triangle exclusion rule. 

(b) Suppose that the T i satisfy Conditions 1 and 2. Suppose that 
(U, S~, S 2 . . . . .  S k ) is attainable on matrix A + defined sequentially as in 
Theorem 4, using Lemma 3. Define A* by 

+1  i f 3 x T x = ( n + i , n + j ) ,  

a ~ =  + 1  i f 3 x T x = ( n + j , n + i  ),  

a~ otherwise. 

Now the change from A ÷ to A* does not affect the existence of the ESS 
of U, since only elements with both indices exceeding n have been 
changed. The ESSs of the form (n + i , j )  for j ~ S i remain, because for 
any I either S i n  S t =Q,  in which case an+lj = a++lj = - M, or j ~ S i A S/, 

* + - - M .  Thus ( n + i , j )  will not be in which case a n + l n + i = a n + l n + i  - 

invaded. 
Finally, we see that for any T x = (n + i, n + j )  there is an ESS. Within 

the set of strategies {n + 1, n + 2 . . . . .  n + k}, (n + i, n + j )  is clearly an 
ESS [3]. We have that S i n Sj =Q,  so that for any 1 ~< u ~< n, either 

* - M, * aun+i- - -  aun+j = - M ,  or both, so that ( n + i , n + j )  is not invad- 
able. • 

4. C O R O L L A R I E S  

COROLLARY 1 

I f  {S1,S 2 . . . .  ,S k} is such that 3 ( i , j )  such that {i,j}ff£ S u for an u, then 
(U, Sl,S 2 . . . . .  S k) is attainable. 

Proof. The tournament  T(U,E), where E = { U  l¢i<j<~n(i,j)}t-;(n,1) 
\ ( 1 ,  n), is strong, because (1,2,3 . . . . .  n) defines a spanning circuit, and 
each subtournament  that does not contain both 1 and n is transitive. • 

COROLLARY 2 

I f  (U, SI,S 2 . . . . .  S k) is attainable, then (U, SI,S 2 . . . . .  S~,Sk+ 1 . . . . .  
Sk+ m ) where ISk+il ~< 2 for 1 <~ i <~ m is attainable. 

Proof. (U, S1,S2 . . . . .  S~) attainable implies that there exists a strong 
tournament  with transitive subtournaments T(Si, F). Clearly any Si of  
size 1 or 2 can be added because T(S~,F) will be automatically transitive. 
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COROLLARY 3 

I f  T(U,E) is strong, then (U, SI,S 2 . . . . .  S k)  is attainable i f  none o f  the 
S i contains a triple ( r , s , t )  that is a cyclic triangle in T(U,E). 

Proof. T(U,E) is strong implies that (U, SI,S 2 . . . . .  Sk) is attainable if 
V i T(Si,E) is transitive, and this occurs if and only if T(Si,E) contains 
no cycles. Since any cycle implies the existence of a three-cycle, the 
result follows. • 

COROLLARY 4 

I f  (U, SI,S 2 . . . . .  S k) is attainable, then (U, S1,S 2 . . . . .  Sk,Sk+ 1 . . . . .  
Sk÷ m) where Sk+ j c S i for  some i and all 1 <<. j <<. m is attainable. 

Proof. Since there exists a strong tournament  with transitive sub- 
toumaments  on each S i, all 1 ~< i ~< k, all subtournaments of these are 
transitive. • 

The above corollaries allow one to specify the set of possible attain- 
able patterns of  interest in terms of certain maximal sets of sets. 
Suppose that for given n, ~ ={T1,T 2 . . . . .  T t} is such that there exists a 
strong tournament  in which each T i is transitive and such that every 
transitive subtournament  is a subset of some T i. Then (U ,A)  where 
IAI = m and A ~ qb m is attainable (for any m). Thus each such qb 
specifies a family of attainable patterns and the set of possible 
specifies the set of attainable patterns. We shall write a possible • as 
[T1,T2 . . . . .  Tt]. 

An alternative specification is via cycle triangles. We say that a set of 
triples F = {T1,T 2 . . . . .  T t} is a minimal cyclic set for given n if there 
exists a strong tournament  that has cyclic triangles corresponding to the 
T i and there is no strong tournament  with given n whose cyclic triangles 
are a subset of F. We shall display the sets F as ((71,(72) . . . . .  (7t)). qb 
and F are related in a simple manner;  for any F there is a matching qb 
whose elements are those that are minimal and do not contain any of 
the members  of F. 

5. CASES n = 4  A N D  n = 5  

THE CASE n = 4 

There is essentially only one case to consider; we ignore S i of size 1 
or 2 because they may be added, by Corollary 2. 

(1) Suppose that (1,4) is not in any S i. Then we can take S 1 =(1 ,2 ,3)  
and S 2 = (2,3,4). 
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(2) If there is no missing pair in the S i, then we obtain the same 
result because the unique strong tournament on four vertices (suitably 
numbered) is precisely the one constructed in Corollary 1. 

Accordingly for n = 4 we have that the S i are a subset of 

(1) ,  (2) ,  (3 ) , (4 ) ,  (1 ,2) ,  (1 ,3) ,  (1 ,4) ,  (2, 3), (2 ,4) ,  (3 ,4) ,  ( 1 ,2,3) ,  (2 ,3 ,4) ,  

so that the unique attainable pattern is specified by the cycles 
[(1,2,3),(2,3,4)] up to a permutation 

THE CASE n = 5 

For n = 5 there are four permutationally distinct strong tournaments 
[9] but only two minimal sets of cyclic triangles, 

( (1 ,2 ,3 ) ,  (1 ,2 ,4) ,  (1 ,2 ,5 ) )  and ( (1 ,2 ,3 ) ,  (2 ,3 ,4) ,  (3 ,4 ,5 ) ) .  

Thus there are two permutationally distinct patterns of S i, 

[ (1 ,3 ,4 ,5 ) ,  (2 ,3 ,4 ,5)]  

and 

[ ( 1 , 3 , 4 ) , ( 1 , 3 , 5 ) , ( 2 , 3 , 5 ) ,  (1 ,2 ,4 ,5 ) ] .  

To each of these may be added the seven noncyclic triangles and all the 
pairs and singletons. 

M. B. gratefully acknowledges support under B B S R C  research grant 
G R  / J31520. 
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