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A Discrete-Time Adaptive Filter for 
Stochastic Distributed Parameter 
Systems 
A discrete-time adaptive filter is derived for a distributed system described by a 
linear partial differential equation with some unknown random constants whose a 
priori probabilities are known. The system concerned contains the Gaussian white 
noise in time, and its measurement system is treated as a so-called pointwise ob­
servation in which the measurement is taken at the finite discrete subdomains in the 
coordinate spaces. The use is conceptually made of an adaptive technique based on 
the Bayesian method and it is shown that the optimal distributed filter proposed 
here can be partitioned into two parts, a linear nonadaptive part that consists of a 
bank of distributed Kalman-Bucy type filters and a nonlinear part that incorporates 
the learning nature of the estimator. For the derivation of each "elemental filter, " 
the discrete-time innovation theory is utilized. The eigenfunction expanding method 
in a complete orthonormal system is applied for the numerical procedure of the 
proposed filter. From the simulation of the estimation problem for the neutron flux 
distribution in a slab type nuclear reactor, the proposed adaptive filter is shown to 
have attractive characteristics and therefore can be recommended for practical on­
line adaptive estimation of distributed parameter systems. 

1 Introduction 
The estimation problem of stochastic distributed dynamical 

systems is one of important and necessary problems for 
modeling and adaptive control in a practical field. In recent 
application studies in this field, for instance, the distributed 
square-root filter for estimation of air pollution con­
centrations has been proposed by Koda and Seinfeld [1], the 
least squares filter for estimation of transient temperature 
profile in an alminum slab subject to heating and cooling has 
been derived by Ajinkya, et al. [2], the estimation of tem­
perature distribution for radial and axial direction in a 
cylindrical ingot has been implemented by Lausterer, et al. [3, 
4], and the problem of imaging for gamma rays in the medical 
diagnosis used radioactive rays has been solved by Tzafestas 
[5,6]. 

It should be noted that most of the practical physical 
systems exhibit a randomness over rather broad scales of time 
and space. Especially, the case of parameter uncertainties 
frequently appears in practice. Since the system parameters 
(for example, in thermal conductive systems, the thermal 
conductivity, thermal radiation coefficient, etc.) and noise 
statistics must be completely known at the stage of its syn­
thesis, any adaptive techniques may be required to com­
pensate such uncertainties if the implementing of optimal 
filtering is hoped. 

It is well known that the nonlinear filter techniques [7], 
which perform simultaneous state estimation and parameter 
identification, are effective on such a problem. For lumped 
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parameter systems, though the properties of the extended 
Kalman filter as the parameter estimator are studied rather 
strictly [8], there is a lack of theoretical aspects or a so-called 
"curse of dimensionality" for such augmentation procedures. 
Therefore, comparatively little has been reported on a 
distributed adaptive filter up to now. Sunahara, et al. [9], 
have already tackled these problems in continuous-time 
stochastic distributed systems from the viewpoint of the 
Bayesian method, but they treated only the estimation of 
force term (i.e., thermal sources or pollutant ones) which is 
ineffective on the system stability. 

In this paper, an adaptive filter for a distributed parameter 
system with unknown time and space-invariant parameters 
will be developed. The measurement system is considered as 
a so-called "pointwise observation" [10-12] in which the 
noisy measurement is carried out at several fixed points of the 
spatial domain and the boundary. The unknown parameters 
are assumed to be random constants over the operating range 
and therefore the Bayesian method is selected as the candidate 
for an adaptive procedure. The adaptive filter is derived in 
discrete-time, which is suitable for on-line estimation by 
electronic-computer, and it is shown that consequently this 
filter reduces to the parallel distributed Kalman filter con-
sising of some "elemental distributed filters." That is, the 
present method is a direct extension to distributed parameter 
systems of the "partition theorem" [13,14] given in Lainiotis' 
works. In the derivation of each elemental distributed filter, 
the discrete-time innovation theory [15] for distributed 
systems with pointwise observation is utilized. For numerical 
aspects of this filter, the eigenfunction expansion method 
[2,10] is introduced. Thus, the main feature of this paper is to 
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discretize the system (in time and also in space) and to show 
that the adaptive filter algorithms similar to those of lumped 
parameter systems [13,14,16-19] can be obtained. Finally, 
some qualitative and quantitative features of the proposed 
adaptive filter are examined by the estimation problem for the 
neutron flux distribution in a slab type nuclear reactor. 

2 Problem Formulation 

Let D be a bounded open domain in an r-dimensional 
Euclidean space E r , and 3D, the boundary of D, be a finite 
number of (r— l)-dimensional hypersurface of class C3. Let D 
be the closure of D, D=DVdD and T=[t;f>t0) be a real 
time interval, and define the product space with respect to 
coordinate space D by Ls=DxT. Furthermore, denote the 
spatial coordinate vector byx= (xt, x2,—-,xr)tD. 

Consider a distributed parameter system described by a 
linear spatial differential equation, 

du(x,t) 

dt 
= £x(d)u(x,t) 

+ G{x,t;6)ri(x,t),(x,t)eT,s (2-1) 

where u(x,t) is an /?-dimensional state vector, £x(') is an 
nxn matrix valued linear spatial differential operator whose 
parameters are bounded and may depend upon x and/or / for 
all {x, t) eE„ G(x,t, •) is an n X q system noise intensity matrix 
and r) (x, t) is a ^-dimensional white Gaussian noise process in 
time. Here, a "subscript 9" denotes that there exists unknown 
parameters in the corresponding operators or matrices and the 
unknown parameter 6tQg is assumed to be a p'-dimensional 
random constant vector whose a priori probability is known 
and takes the values in fixed discrete parameter space Qe, and 
G(x,t,')tLa'(fl,oa;L

1(D)) where L2(D) denotes the Hilbert 
space all square integrable real-valued functions with the 
inner product given by 

< ultu2> = \ uf(x) «2 (-*") dx, 

for all w„ ;=l ,2fL2CD). 

The observation process is given as so-called pointwise type 
[10-12] in which the measurement is taken at the finite 
discrete m points x], x2, ••••, xm of the coordinate spaces D 
such as 

zU) =H(fflum (t) + f ( 0 , ttT (2-2) 

where z(t) is a p-dimensional measurement vector at the 
points x1 ,—-,x"\ H(t;>) is apxnm matrix, «,„(/) is an nm-
dimensional state vector defined on finite discrete locations 
x'tD, i—l,2,—-,m and defined as 

u,At)=Co\[u{x\t),-;u(x'"M (2-3) 

where Col denotes the column vector, and l(t) is a Tri­
dimensional white Gaussian measurement noise process. 

The boundary condition for the system (2-1) to be governed 
by homogenous Dirichlet condition is given by 

/3 f(0)y(£ ;/)=O,(£,/)eE, (2-4) 

where T,b = dDxT and /3f (•) is an n x n matrix valued linear 
spatial operator which is defined on the boundary surface dD 
at a point ijedD. This is a matter of convenience cases where 
Neumann and mixed conditions on the boundary can also be 
handled. 

The initial condition is given by 

lim u(x,t)=u0(x) inL2(D),u0(x)iL2(D) (2-5) 
( -+0 

and further the system noise -q(x,t) and measurement noise 
f ( 0 are assumed to be stochastically independent of each 
other and also independent of the random initial condition 

u0(x), and their mean and covariance values are given by 

E[v(x,t)]=0,E[v(x,t)r,T(y,T)] = Q(x,y,t)5(t-T) 

EUV)]=0,E[{(t)tT(T)]=R(t)5{t-T), 
(,x,y,t)eDxZs } (2-6) 

E[u0(x)] = u0(x), E[[u0(x) -u0 (x)} {u0 (y) 
-u0(y)}T]=P0(x,y) 

where £"[•] denotes an expectation operator and 5(«) is the 
Dirac delta function. It is assumed that Q(x,y,t) is sym­
metric, positive semidefinite, and bounded for all x.yeD, and 
that R(t) is symmetric and positive definite. 

Now, it is assumed that on a practical standpoint, the 
continuous-time observation process (2-2) is rewritten by the 
discrete-time one: 

z(ti)=H(ti;6)um(ti)+${ti), i = 0,l,--,k,-- (2-7) 

where t/ denotes the sampling time at iteration number /'. 
Then, given a record of measured data Yk = 
[z(ti);le[0,l,—-,k]} under the parameter uncertainty dtQe, 
an optimal conditional estimate ii(x,tk/tk) £ E 
[u(x, tk) / Yk] is desired in the mean-squared error sense: 

(2-8) Mm{E\\u(x,tk) -u(x,tk/tk) II2 ) for attxeD 

where II • II represents a Euclidean norm. 

3 Discrete-Time Model 

In general, the aforementioned problem can be analyzed as 
a continuous-time model with discrete-time observation [12], 
but in this paper, in order to realize a recursive distributed 
filter by using the digital computer, a discrete-time model for 
the system (2-1) will be considered. 

To do so, the following conditions are further assumed: 
(a) The problem given by (2-1), (2-4), and (2-5) is well-

posed in the sense of Hadamard, i.e., the solution exists 
uniquely and depends continuously on the initial and 
boundary data. 

(b) There exists a fundamental solution1 (or, Green's 
kernel function) nxn matrix $(x,t\y,T,6) of equations (2-1) 
and (2-4) defined for t> T > 0 , x.ytD and 6tUg such that 

*(x,t;y,T,0)=*(y,f,x,TJ6) 

d$(x,t;y,T,d) 

dt 
= £Ad)$(x,t;y,T,6) 

(3-la) 

<i>(x,r,y,T,d)=I5(x-y) 

0 t(fl)*(€,fy,T,0)=O,$t3£> 
where /indicates the nxn identity matrix and the solution of 
equations (2-1), (2-4), and (2-5) is expressed as [33] 

u(x,t) = ^D $(x,t;y,t0,d)u(y,t0)dy 

+ \ \ i(x,t;y,T,d)G(y,r,6)r,(y,T)dTdy; (x,t)tLs. 

(3-16) 

(c) Between sampling instants, the optimal estimate in the 
sense of equation (2-8) satisfies the unforced system (2-1). 
If the sampling interval At = tk+i -tk is sufficiently small, 
then equation (3-16) for t=tk+i may be rewritten as 

«(*.'*+i) =\D*(,x,tk+l;y,tk,6)u(y,tk)dy 

+ \D j / + 1 *(x,tk+iW,T,0)GO>,T,0)ti(y,T)cl7dy 

For mathematically more rigorous discussions, see [31-33]. 
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= $(x,tk+l;y,tk,6)u(y,tk)dy 

• \ i(x,tk+l;y,tk,6)G(y,tk,d) \ k+]
 v(y,T)dTdy,x,yeD. 

J D J tk 

(3-2) 

Applying the same procedure to the measurement system, 
equation (2-2) for t=tk becomes 

* ( ' * ) = ; — ['* [H(T;e)u,„(T) + f(r)]rfr 

= H(tk;6)umVk)+-—!—[* S{r)dr. (3-3) 

Hence, the continuous-time system can be approximately 
expressed by the following discrete-time integral equations: 

uk + l(x)=Ax(d)uk(x)+Bx(d)wk(x),xeD (3-4) 

zk=Hk(9)ukm + vk 

0 t (0)u*+ , t f ) = o,f€ai3 

(3-5) 

(3-6) 

where 

uk{x) £ u(x,tk),wk(x) M V(X,T)C!T 
itk 

vk = 
h ~h~i •> <k-\ 

['" {(T)dT,Hk(6)^H(tk,d) (3-7) 

ukm — u„, (tk) 

and the integral operators Ax (9) and Bx (6) are, respectively, 
given by 

AAO)['] = \D*(x,tk+1y,tk,e)[']dy,xj>tD (3-8) 

5 , ( 0 ) H = j o $(x,tk+l;y,tk,e)G(y,tk;e)[-]dy,X,yeD. (3-9) 

The statistics of white Gaussian noise processes wk (x) and 
vk, and the initial state uk (x) with respect to discrete-time 
are, respectively, given by 

E[wk (x) ] = E[vk] = E[wk (x) vj] 

= E[uko(.x)W
T

k(X)]=E[uko(.x)vI] = 0 - (3-10) 

E[wk(x) wj(y)] = Qk(x,y)8kj, E[vkuj] = Rkbk] _ 

E[uko(x)] = uko(x) 
, (3-H) 

El(uko(x)-uko(x))(uko(y)-uk(j(y))T]=Pko(x,y)_ 

where subscript k0 represents the initial point in discrete-time 
case, Qk (x,y) is symmetric, positive semidefinite and 
bounded for all x,yeD,Rk is symmetric positive definite and 
8kj is the Kronecker delta function. The discrete-time nuclear 
functions Qk (x,y) and Rk are related to those for continuous-
time case as follows: 

("Ar+l (>k+l 

Qk(x,y) = \ E[v(x,t)r,T(y,T)]dtdT 

f <k+\ 
Q(x,y,T)dT 

^AtQ(x,y,tk) 

R„ = 
(AO r i '*:-! J >k~\ 

E[t(t)f{T)\dtdT 

1 

(A0 2 J '* 

1 
= —R(tk). 

At " 

r'k 
2\ R(r)dr 

i 

(3-13) 

4 Wiener-Hopf Theory and Innovation Theorem 

In the following derivation, it is assumed for simplicity of 
the problem that the time-invariant unknown parameter 6 is 
completely known, namely, "6" is omitted. Then, the least 
squares estimates for a discrete-time distributed parameter 
system with pointwise observation will be obtained by using 
the innovation theorem [15]. 

In the pointwise observation system (3-5), the sample 
function of zero-mean signal process is defined as 

Xkm i Hkukm (4-1) 

and it is assumed to have a finite variance: 

£[ILY*mll2]<oo,A:0<A:</t2 

and to be uncorrelated with vk: 

E[vkXl„,]=0,k0^l<k<k2. 

If a set of measured data Ykl = {zk; ke[k0,-—,k2]} is given, 
the conditional mean value: 

«*,/*2(x) =E[uki (x)/Yk2], kx <k2 orkx >k2 (4-4) 

can be obtained by minimizing the following performance 
criterion: 

(4-2) 

(4-3) 

where 

J=EMkl/k2{x)\\2 

ukl/k2(x)^ uk{{x)-ukx/k2{x) 

k2 

(4-5) 

(4-6) 

«*,/*2W= ^N(x,klJ)zj,xeD (4-7) 
j=k0 

where N( •) is an n xp matrix kernel function whose elements 
are continuously differentiable in x. Note that the least 
squares estimate for the system (3-4) - (3-6) is represented as a 
linear combination of a kernel function N{ •) and all the data 
record Yk from the facts of [10-12], Thus, the following two 
theorems can be deduced from the result in the continuous-
time distributed parameter system with pointwise observation 
[11]. 

Theorem 1. The Projection Theorem and Wiener-Hopf 
Equation. The necessary and sufficient condition for the 
estimate (4-7) to be optimal is that the Wiener-Hopf equation: 

5 N(x,kx J)E[ZjzJ] =E[ukl Mzf] (4-8) 
j = k0 

holds for kQ<l<k2, xtD. The foregoing equation is also 
equivalent to the following projection theorem: 

E[ukx/kAx)zJ]=0,k0<l<k2,xtD. (4-9) 

Proof: This theorem can be proved by using the calculus of 
variations [10,25]1 That is, the weak variation with respect to 
kernel function JV(») , 8N=eM, is taken in equation (4-7), 
where M(x,kx, j) is any n x p matrix kernel function and e is 
a scalar parameter. If 

u t,kx/k2 M = E M * . *i J) +eM(x,kx J)]Zj (4-10) 
J=ko 

(3-12) then the necessary and sufficient condition for the estimate 

268/Vol. 103, SEPTEMBER 1981 Transactions of the ASME 
Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



given by (4-8) to be optimal is that 

dJ, 

de 
Ad{E\\ukl(x)-ut:kt/k4x)P 

K\'K2K = 0. 
N=o de U = o 

After carrying out the indicated operation, it is found that 

dJ. 
- _„ =2E\uil/k2{x] ___ 

(4-11) 

de 
= 2E\uJl/k2(x) £ M U , * , ,/)«/] = 0 (4-12) 

or, equivalently, 

fr[ X J £ { « * , / * 2 ( J f ) z / l M 7 ' U * u / ) l = 0 (4-13) 

where "fr" denotes the trace operation of a matrix. If 
M(x,kiJ) =E[ukx/k2(x)zf] is assumed, equation (4-9) may 
be obtained as the necessary condition. On the other hand, the 
sufficiency of equation (4-9) is apparent from equation (4-13). 

Theorem 2. The Innovation Theorem. The innovation 
process for the discrete-time distributed parameter system 
with pointwise observation is defined as: 

A 

where 

Xk 

vk = zk-^k/k^i,m,-°o<kl<k<k2<<x (4-14) 

1*/t-l,m = HkUk/k-l,nf (4-15) 

Then, vk is zero-mean and is a white but with a variance 
different from that for the measurement process. 
Proof: This proof is given by Kailath [15] and hence it is 
omitted here. 

It is noted from the use of previous Theorem 1 that the 
estimation error uk tk (x), xt£> and the pointwise ob­
servation sequence Zi for k0<l<k2 are orthogonal. 
Moreover, since zk and ve are stochastically equivalent from 
Theorem 2, it is obvious that uk /k2 (x) and vt for k0 <l<k2 

must be orthogonal. Hence, the optimal estimator equation 
(4-7) can be rewritten as a linear function of vk as 

k2 

"*,/*2 (x) = XJ N(x,ki J) Vj,xeD. (4-16) 
J=ko 

From the previous discussions and equations (4-16), the 
Wiener-Hopf equation (4-8) can be rewritten as 

E[ukl ,kl (x) vf] = Cov[ukl {x)-ukl/kl (x),v,\ 

= E[ukl (x) vj] - Y, N(x,kx j)E[vjVJ}=Q 
J=ko 

or, equivalently, 

(4-17) 

h 
E[uk] (X)vj}= Y mx,klJ)E[vJvU, 

J=k0 

k0<Kk2,xeD (4-18) 

where Cov[-, '] indicates the covariance operator. Since the 
covariance of the innovation process in the finite dimensional 
space is given by [15] as 

E[pjVf] = [Rl+HlPl/l^Hi]5jl 

Equation (4-18) yields the following relation: 

E[u, 

where 

E[uk] (x) vj ]=N(x,kl MRi+HtPvuHT] 

E[u I/l~l,m"l/l-\,m V.nmxnm matrix 

TViC* 1 . * 1 ) , • • .,/>„/_, (*',*"') 

A, 
(xm,x'")_ 

, * ' , /= 1,2, 

(4-19) 

(4-20) 

(4-21) 

. ,meD 

Hence, using equations (4-16) and (4-20) gives the general 
basic formula for the optimal estimation with pointwise 
observation as 

k2 

"*i'*2 W = L £ K M*I ][Rj+HjPj,J-1H]\-lVj,xtD. 
J="° (4-22) 

Premultiplying equation (4-18) by /?{ and using the fact of 
equation (3-6) gives 

k2 

EWiUk]Q)y[]= £ PlNU,kxJ)m.vjvh 
J=k0 

= 0. (4-23) 

Since E[vj vj] is not identically zero, it follows that 

t3iN(H,klJ) = 0,liedD. (4-24) 

Henceforth, using equations (4-16) and (4-24) gives the 
following boundary condition: 

Piiikl/k2{i) = 0,itdD. (4-25) 

5 Optimal Filter With Pointwise Observation 
In this section, the filter mechanism with pointwise ob­

servation in discrete-time will be approached by the in­
novation theorem. Namely, putting k1 = k2 = k in equation (4-
22) gives 

k 

j=k0 

Using equation (4-4), equation (5-1) can be rewritten as 
follows, 

uk/k(x)=E[uk(x)/Yk] 

= E[uk(x)/Yk_l,zk] 

= E[uk(x)/Yk„l] + [uk(x)/uk] (5-2) 

where Theorem 2 and the orthogonal property between the set 
of measured data Yk and pointwise observation zk have been 
employed in the last equality in equation (5-2). Since the first 
term on the right-hand side of the last equality in equation (5-
2) is apparently a one-stage prediction, the independence of 
w t_j (x) and YK_j gives 

uklk-1 (x) J E[uk (x) I Yk„i ] 

= E[Axuk„](x)+Bxwk_l(x)/Yk_l] 

=Axuk-Wk-i(x). (5-3) 

Using the relation of equations (5-2) and (5-3), equation (5-1) 
may reduce to 
uklk (x) =-^xuk-l/k-\ (X) 

+E[uk(x)pI]lRk+HkPk/k_lHn-1"k. (5-4) 

Furthermore, when the independence of uk (x) and vk, and 
the orthogonal property between uk/k_l(x) and uklk-\,m

 n a v e 

been employed, then 

E[uk (x) xj] = Covfw* (x),Hkuk/k-.Um + vk] 

= E[uk(x)uT
klk=hm]HT

k 

Pi/i-i (x,y) ^E[uln_x (x)ui/l=x{y)],x,yeD. 
where 

= E[uk/k-i(x)ul/k_h,„]Hi 

= Pklk~\,m (x)Hk 

uk/k-l,i uk,m ~uklk-\,m 

(5-5) 

(5-6) 
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Pklk-l.m M J lPk/k-l(X,Xl),Pk/k-l (X,X2), 

. . . , P * , * - , U , J t " ) ] (5-7) 

Pk/k~i(xo>) =E[Uk/k-i(x)uk
r
/k_l(y)],x,ye£>. (5-8) 

Hence, the following mechanism, the optimal filter with 
pointwise observation, is given by 

uk/k(x)=Axuk_l/k_l(x)+Pk/k_lim(x)Hf[Rk 

+ HkPk/k„xHk
r]-1vklXeD. (5-9) 

with the boundary condition 

0««*/*«)=O,fcd£>. (5-10) 

Next, the error covariance equations will be discussed. 
First, from equations (3-4) and (5-3), the one-stage prediction 
error is given as 

"*/*- I (x) = uk (x) - uk/k^, (x) 

=Axuk-l/k-.\{x)+Bxwk_l(x) (5-11) 

with the boundary condition 

0{H*/*-itt)=°.S«M>- (5"12> 
Then, the one-stage prediction error covariance is obtained as 

Pktk-\ (x,y)=E[uklk_i (*)"*/*-1 (y)] 

= Co\[Axuk_uk.l(x) +Bxwk_i (x), 

Ayuk_wk_{ (y) +Bywk_{ (y)] 

=AxPk^i/k_i(x,y)Aj 

+BxQk_1(x,y)Bj (5-13) 

where the independence of iik_uk-.\(x) and wk^i{x) is 
utilized. Premultiplying the first equality of equation (5-13) 
by |8j and using equation (5-12), the boundary condition is 
derived as 

PtPk,k-ASj)=0,StdDytD. (5-14) 

On the other hand, the filtering error equation from equation 
(5-9) is derived as 

"*/*(*) J uk(x)-uk/k(x) 

= uk (x) - uk/k_ i (x) -Kk<m (x) vk 

= uk/k-i(x)-Kkim(x)vk (5-15) 
where 

Kk,m (x) J Pk/k-,,mMHT
k[Rk +HkPk/k^HU']- (5-16) 

Using equations (3-6) and (5-10), the boundary condition for 
equation (5-15) is obtained as 

<3 {um(f)=0,€caD. (5-17) 

Therefore, using equations (4-17), (4-19), (5-15), and (5-16), 
the filtering error covariance is given as 

Pk,k(x,y)i E[uklk(x)uT
klk (y)] 

= Cov[uk/k_, (x) - K K m (x) vk, uk/k_ i O) 

-Kk,m(y)vk\ 

= P, k/k-l (x,y) +Kki,„ (x)E[vkv
T

k}Klm (y) 

-KKm(x)E\vku
T

klk_x(y)\ 

-E[uk/k_\(x)vT
k)Klm(y) 

=Pklk-i(x,y)-Kk,m{x)HkPllk_l,m(y) (5-18) 

and premultiplying the first equality of equation (5-18) by J3J 
and using equation (5-17), the boundary condition reduces to 

PtPk,*tt,y)=0,&D,yeD. (5-19) 

Thus, the optimal filter is given by equations (5-3), (5-9), and 
(5-10), and the corresponding error covariance satisfies 
equations (5-13), (5-14), (5-16), (5-18), and (5-19). Since one 
cannot make continuous measurements in space on a practical 
situation [34], it is noted that the algorithms for the case of 
pointwise observation derived in this paper are more practical 
than those for the case of distributed observation studied in 
Tzafestas [5,6,20]. 

6 Derivation of an Adaptive Distributed Filter 
Viewing the unknown time-invariant parameter as a point 

of a finite-dimensional vector space Qg having dimension 
equal to the number of unknown parameters, Magill [21] 
developed an optimal estimator for a lumped parameter 
system, but the derived algorithm has useless memory 
allocations, and therefore several adaptive techniques [13,14, 
16-19] which have less memory and computational 
requirements compared with that of Magill will be adopted in 
this paper. 

Suppose that {uk(x),zk) comes from a finite number 
collection of possible processes, in which the state and 
measurement spaces are defined on L2 (D) and W, respec­
tively, with an unknown time and space-invariant parameter 
vector 6. Then the optimal conditional mean value (4-4) can be 
derived by using the smoothing property of conditional ex­
pectation as 

uk/k(x) =E[E[uk(x)/Yk,d]/Yk],xeD. (6-1) 

From the assumptions for the unknown parameter 0 which 
have been stated in Section 2, the a priori probability for 6 can 
be expressed as 

M 

pr(0)=JElPr(ei)5(e-ei),el^e (6-2) 
i=\ 

where M denotes the event number for the unknown random 
constant parameter 8, Pr(d) is a priori probability for 8, and 
Pr (8j) is the a priori probability for the event where 6 takes a 
parameter 0,efie from the finite discrete parameter set 
^e = [8i,d2,--<8M}. 

If the a posteriori probabilities for any parameter 0,«fie are 
able to be calculated, then the optimal conditional mean value 
(4-4) may be expressed as 

M 

"k,k(x)= J2uk/k(x;8i)Pr(8i/Yk),xtD,d,eQe (6-3) 
i = l 

M 

Pt«k,k(S)='EPiUl!,k(bOl)Pr{Ol/Yk)=0,StaD (6-4) 

where ^-conditioned mean value, 

um (x;8,) i E[uk (x)/Yk,B,], xeD (6-5) 

£{«*/* (*tf i)=0, &D (6-6) 

will be obtained by using the previous discrete-time 
distributed Kalman filter matched to the system with specified 
parameter 8,. The conditional a posteriori probability is 
calculated by applying a recursive Bayesian algorithm [16] as 

Pr(0i/Yk): 
p(Yk,8i) 

' P(Yk) 

p{zk,Yk^,8i) _p(zk,6i/Yk_l)p(Yk_i) 

p(zk,Yk_,) P(zk/Yk_x)p(Yk_x) 

_p(zk,0i/Yk_{) 

P(zk/Yk_,) 
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P(zk/Yk_ud,)P,(e,/Yk-x) 
= -n • (6-7) 

2>U*/r*-,,«!,)P,(0,7r*-i) 

Here, it is noted that the conditional probability density 
p(zk/Yk_uBi) must be calculated in the functional space 
L2(D) of infinite dimensional state if the distributed ob­
servation over D is concerned ideally. However, in the case of 
the pointwise observation as discussed here, the observation 
space reduces to a finite one of Euclidean space Ep so that the 
conditional probability density p(zk/Yk_l,6i) can be 
evaluated by using the similar derivation to lumped parameter 
systems [16]. 

Since the probabilitiesp(zkIYk_x ,0;) for /=1,2,-—, Mare 
Gaussian ones, the associated one-stage prediction is given by 

E[zk/Yk_l,6i]=Hk(0i)uk/k„Um(8i) (6-8) 

and the conditional covariance matrix for zk is obtained by 

Cov[z t / r i _ , , e / ] = Cov[^(tf /-),^(fl>)] 

= Rk(8i)+Hk( B;) Pklk_, (fl,) HJ( $,) (6-9) 

hence p(zk/Yk_],8j) reduces to 

p(zk/Yk_uB,) 

= C-exp[--<Vk(9i),Cov[vk{di),Vk(6i)]~lpk(di)>] 

(6-10) 

where the scale factor C is 

C=(2-K)-"'2\Cov[vk(ei),vk(6i)]\-v' (6-11) 

here !(•) I denotes the determinant of a matrix (•). Then, the 
optimal filtering error covariance is obtained in terms of 8-
conditioned error covariance by the same way of deriving as 
used in the study of continuous-time cases [22,23], That is, 
obtained results are as follows: 

Pkik (x,y) =E{ [uk (x)-uk/k (x)][uk (y)-uklk (y)]T/Yk) 

M 

= D pk/k,a (x,y, 0,) Pr (0,1 Yk) (6-12) 
i = i 

Pk/k,a (xj.tfi) £ Pklk (x,y,di) + \uklk (x;6i)-uk/k (x)) 

xlum(yA)-iik/k(y)]T (6-13) 

^Pm,a (tj;0,) =0,StdDjtD (6-14) 

M 

P(PMUJ) = T, P(Pk,k,a (Sj;0,)Pr(0l/Yk ) 

= 0,$idD,ytD. (6-15) 

Thus, the optimal distributed filter in discrete-time can 
constitute the parallel distributed Kalman filter when the 
distributed parameter systems with pointwise observation 
contain some time and space-invariant unknown parameters. 
This filter consists of some elemental filter matched to the 
system with specified parameter 8h and the M-distributed 
Kalman filter is implemented to produce the estimates 
uk/k(x;6f) for the states uk(x\dt), xtD, 0,e£V The im­
plementation of uk/k(x;8i) yields automatically as a 
byproduct 0,-conditioned finite-dimensional innovation 
process vk (0,-) and the inverse of its covariance Cov[pk (6,), 
"k (6j) ] ~'. Moreover, it is interesting to note that the adaptive 

realization of the optimal nonlinear distributed parameter 
estimate is given in terms of the parameter ^-conditional 
estimates uk/k(x;9j) and the a posteriori parameter 
probabilities Pr(6j/Yk), and that the a posteriori probability 
Pr(dj/Yk) is given by the ratio of two likelihood ratios of 
finite dimensional state space in discrete-time. 

7 Approximation to Finite-Dimensional Subspace Via 
the Eigenfunction Expansion 

The transformation of the infinite-dimensional space to a 
finite-dimensional one is necessitated when the derived 
adaptive filter is implemented in the practical situation. Under 
the assumption that the fundamental solution matrix and 
other vectors and matrices are square integrable in each space, 
in this study the eigenfunction expansion technique, which is 
effective on the initial and boundary value problems, is in­
troduced. For simplicity of the problem, the coefficients of 
differential operators £x(8) and I3J(0) are assumed to be 
independent of time t. 

Now, it is assumed that there exists a sequence (4>i (x)} ,xeD 
of eigenfunctions and a sequence (A,) of eigenvalues such 
that 

£,x(6)4>i(x) = -\i4>i(x),xtb (7-1) 

X, <X 2 < oo (7-2) 

ft (fl)0,({) = o, $«az> <7~3) 
where llt/(*,f) 11-0 as f-oo if X, >0 and \\u(x,t) 11--°° as 
/—oo if X, <0 in the homogeneous equation of (2-1). Fur­
thermore, (4>j (x)} is assumed to be complete orthonormal 
system in L2 (D) as 

j o 4>Rx)4>j(x)dx=bij, ij= 1,2 (7-4) 

and the assumption of completeness yields 
oo 

i = i 

GO 

iim-i(x;e)='Eul(k/k-UOWi(x) (7-6) 
[ = i 

OO 0 3 

$(x,k+\;y,k\B)=Yi Ytaij(6)<l>i(x)<t>J(y) (7-7) 
( = 1 y = l 

oo oo 

Pk,k(x,y;B) = £ *EPu(k/k;0)4>,(x)<l>J(y) (7-8) 
/ = ! j=\ 

0 0 OO 

Pm-i(xj;9)='E S ^ I W - l l D l ^ W ^ ) (7-9) 
/ = i y = i 

oo oo 

Pk/k-L,„(x;S) = JE EPyik/k-UOHiix)*? (7-10) 
/ = i j=\ 

where the coefficient functions, for example, Uj(k/k;&) and 
cijj (8) are, respectively, given by 

ui(k/k;6)=\JD <l>l(x)uklk(x\8)dx (7-1 la) 

fly (<?)=( \ 4>Kx)<S>(x,k+\;y,k,8)<t>j(y)dxdy (7-1 lb) 

and 

*f=[4j{xl), 0 / ( ^ ) 1 (7-12) 

substituting equations (3-8) and (7-5) into equation (5-3) and 
using the orthonormality condition (7-4) yields 

ui(k/k-l;6)=aii(8)ui(k-Uk-UB). (7-13) 
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oo oo It is noted from equations (4-21) and (7-12) that 

Hk(d)pk/k_[{e)Hi(e) Pmix,y) = L LPuWm.wtfiy) (7-24) 

oo oo 

= E ZPu(k/k-mHk(d)^^jHl(d) (7-14) and the following relations can be easily obtained: 
'•=i '=i PaiJ(k/k;e)=Pu(k/k\d)+[ui(k/k;d) 

and the innovation sequence (4-14) can be rewritten as 
-Ui(k/k)][Uj(k/k;6)-Uj(k/k)] (7-25) 

vk (0) =zk -Hk (0) £ u, ( * /* -1 ;0 )* , . (7-15) 
1=1 M 

Hence, w,(£/A:;0),/=l,2,--aregiven by P^k/k) =J^Paij(k/k;d,)Pr(dl/Yk) (7-26) 

u,(k/k;e)=u,(k/k-\;6) '='M 

Ui(k/k)=Ydui{k/k;dl)Pr(dl/Yk) (7-27) 

0 W = X > , P r ( 0 , / n ) . (7-28) 

x ^ * + L hph/(k/k-l;d)Hk(d)i'll^iHl(e)}-i Approximating these equations by the first TV terms based on 
the practical viewpoint, the approximated ordinary Kalman 

[" _ „ , » > r - , . . i fl\,», "I n \a\ f''ter equations for those coefficient functions can be im-
x\zk tik(U) ^u,(k/k-l;0)*ij. (7-16) p i e r n e n t e d . T h a t is> t h e one-stage predictor for the series 

expanded elemental Kalman filter with 0, is given as follows: 

Using equations (3-8), (3-9), (5-13) and (7-7)-(7-9), noting V(k/k- 1;0;) J A ( 0 , ) U ( £ - l / £ - l ; 0 , ) (7-29) 
that 
Gk{y,e)Qk(y,X)Gl(X;e) F ( * r t - l A ) i A ( . , ) f f ( l - l / t - W 

„ „ + Q(£-1;0 , ) ]A(0 , ) (7-30) 

= EE?«(*;«)**w*to (7-17) where 

G,O>;fl)iG(.y,/ t;0) U(/t/ /(r-l ;0,)^CoI[M1(A://c-l;0 /), . . . ,uN(k/k-\\B,)\ 

he orthonormalit; 
Pjj(k+\/k\6),iJ= 1,2,-- become 

(7-311 and utilizing the orthonormality condition (7-4), then v ' 

A (0,) i diag[fl,,(<?,), . . . ,<W0,-) ] (7-32) 
P,7(rt:+l/fr;0) 

P ( A : / £ - l ; 0 ; ) ^ [P0-(A://r—1;0, }i,j= 1,2,-,/V (7-33) 
= fl„(e)[Pi,-(*/Ar;e)+<7{,-(*;e)]fli,-(0). (7-18) 

Defining the filter gain equation (5-16) as Q(Ar-l;0,) J |<7,y (fr- 1;0,) )i,j=\,2,--,N- (7-34) 
oo 

Kk,mM= £ 0/(*)#,-(A:;0) (7-19) Defining the matrix 
'=' f = [ * l , * 2 , . . . , y : M X i V (7-35) 

then its coefficient functions reduce to 
yields the following series expanded elemental Kalman filter 

Kj(k;d)= with0j 

. „ Cov[vk(0l),Vk(6l)]l\PWk-l;0i):pxp 

YdPAk/k-m*jHT
k(e){Rk+ £ £ PAA'(*/*-!;») 

„ = 1 „. = 1 =/} i+i/ t(«,-)*P(*/A:-l ;f l , -)*7"// ir(e /) (7-36) 

/ / , ( 0 ) # , * / ; , / / / ; ( 0 ) r ' (7-20) K<*;fl,-)=p<*/*-i;0,)* r/tf<i> ( .) 

where tf,-(fc;0) is a/^-dimensional row vector. The filter error P(k/k- 1;0,) ~l:Nxp (7-37) 
covariance coefficient functions are derived by using ,„ „ r r , . , -T/, ,, , „ „ , ._ ,„^ 
equations (5-18), (7-9), (7-10) and (7-19) as •*(*,) = z » - * M 0 , ) * U < * / * - l ; 0 , ) : / ; x 1 (7-38) 

Pij(k/k;6)=Pij(k/k-\;d) U(£/Ar;0,) =V{k/k-1;0,) + K(/t;0,-)x* (0,):/Vx 1 (7-39) 

" P (M;0 , )= [ / -K(A: ;0 / ) / / , t (0 , )S I ' ]P (M-- l ;0 , ) (7-40) 

- D ^ ^ / ^ W / V M - I ^ ) * , . (7~21) 
, = 1 where J denotes the 7VX TV identity matrix. Then the optimal 

By analogy with the foregoing results, the following ex- filter and the corresponding error covariance for the 
pansions: "weighted coefficient functions" reduce to 

°° M 

uk/k(x)=^ui(k/k)<t>i(x) (7-22) V(k/k) = YtV(.k/k;di)Pr(8i/Yk) (7-41) 
1 = 1 ; = i 

M 

PM,a(x,r,8) = ]2Tl
pau(k/k;e)4>i(x)<j>J(y) (7-23) P(k/k) =^PAk/k;6i)Pr(di/Yk) (7-42) 

/ = i y = i , = i 
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UNKNOWN PARAMETER 

L™LS,e, \, 

k ( x ) u ( k ) 

<r=H£ 
EIGENFUNCTION 

D I S T R I B U T E D 

SYST E M 

COMPUTE A-POSTERIOR 

PROBABILITIES 

P . ( 0 . / k ) , 1 = 1 , . . . ,1 

TF 
u C k / k - l ^ i D 

<i 
u t k / k . e , ) 

SERIES EXPANDED 

ELEMENTAL 

KALMAN FILTER 

u(k/k,9M) 

SERIES EXPANDED 

ELEMENTAL 

KALMAN FILTER 

e - » M 

Fig. 1 Adaptive distributed-parameter filter structure 

where 

Va(k/k;e,)=V(k/k;el) 

+ [V(k/k;6i)-\J(k/k)][U(k/k;6i)-l)(k/k)]T. (7-43) 

Furthermore, if the matrix which represents the eigenfunction 
for the coordinate of any estimated location is defined as: 

ix = [<t>dx),4>2(x), . . . ,4>N{x)}:nxN,xtb (7-44) 

after all, the state estimate and its covariance at any coor­
dinate xeD are obtained by 

uk/k(x)=*xV(k/k),xtD (7-45) 

Pm (x,y) = $xP(k/k) # J , x,yeD. (7-46) 

It is interesting to note that the filter algorithms obtained by 
equations (7-36)-(7-40) are similar to those of lumped 
parameter systems studied by Kalman [24], Kailath [15], and 
Meditch [25], etc. In addition, note that the present adaptive 
filtering method is a direct extension to distributed parameter 
systems of the partition theorem [13,14] given in Laintiotis' 
works. The proposed adaptive distributed parameter filter 
structure is also depicted in Fig. 1. 

8 Illustrative Example 
To illustrate the application of the proposed adaptive 

distributed filter, the estimation for the flux pattern in a slab 
type nuclear reactor [26] will be considered. Assume that the 
reactor is operating at a given neutron flux level with a steady 
state spatial pattern. 

The diffusion equation to be treated is described by 

du(xj) d2u(x,t) 

a = 0.0256,c = 0.252. (8-5) 

The eigenfunctions for equations (8-1) and (8-2) are selected 

as 
4>i(x) =\/2 sin((7rx), /=1,2, . . . ,N 

and then the fundamental solution reduces to2 

N 

= 2 J ] e xPl —\(6)At]sm(iirx)sm(!iry) 

(8-6) 

(8-7) 

(8-8) 

+ cu{x,t) +w(x,t), 0 < x < l (8-1) 
dt dx2 

where the state u(x,t) denotes the deviation from that in a 
steady state. The boundary conditions for this equation are 
the following Dirichlet type: 

u(x,t) \x=0 = u(x,t) l . v = 1 =0fora lU (8-2) 

The conditions for the initial distribution are assumed that 
uK0{x)=uko(x)=0 (8-3) 

Pk0(x,y)=0.58(x-y). (8-4) 

The diffusivity coefficient a and the absorption factor c are, 
respectively, given by 

\(.(0) = (;2Tr2a-c) ,6T = [a,c\. 

For this case, a,7 (9) in equation (7-32) becomes 

« , ( 0 ) = e x p ( - A , ( 0 ) A / ) . (8-9) 

The system noise covariance function for wk (x) is assumed to 
be 

Qk(x,y)=0.Q48(x-y) (8-10) 

and therefore q^ in equation (7-34) reduces to 

<lM = \0\0
OM8(y'-x')<l>h(y')<t>i(x')dy'dx' 

= \ 0.044>h (y')<!>!(y')dy' 
Jo 

= 0.045,,,. (8-11) 

The measurement of the flux level u(x,t) is observed at 
several locations at 0 < x < 1, but it is corrupted by the additive 
measurement noise. 

9 Simulation Results and Discussion 
To simulate the system (8-1) (8-3), nine node approximation 

is used and the coordinate division and the sampling interval 
are Ax = 0.1 and At = 0.1, respectively. 

2If the boundary condition (8-2) is assumed to be the Neuman type, then 
equations (8-6)-(8-8) reduce to 
^i0(x) = l , 0 ( (x )=V2cos ( i« : ) , (= l , 2 N, 

i>(x,tk+l'-y>'k-0) 
N 

= exp(cAr] +2 7 , e x P l -\i(S)At\cos(iirx)cos(iiry) 

andX,(e) = ( / 2 7r 2 o-c ) . 
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p r ( e , / k ) 

P r ( e 2 / k ) 

P r f e 3 / k ) 

P r(B*/k) 

20 30 40 5 

k, Number of Samples 

Fig. 2 A posteriori probabilities 

Table 1 Unknown parameter events 
k, Number of Samples 

Fig. 3 Estimated parameter evolution 

Filter 

1 
2 
3 
4 

6T = [ a 

0'[= [0.0256 
$J= [0.0256 
e{= [o.ooio 
ej= [o.ooio 

c ] 

0.2520] 
0.8000 ] 
0.0098 ] 
0.0008 ] 

Pr(6/Q) 

0.25 
0.25 
0.25 
0.25 

(/') Case of the Noise Statistics Are Known. The following 
typical example will be considered to grasp the properties of 
the proposed adaptive distributed filter. The number of points 
measured is assumed as m = 3 which is located at 

*' =0.3, x2 =0.5, xl = 0.7 

and the number of points to be estimated and point locations 
are assumed to be identical. The measurement noise is 
assumed to be 

i?* = diag(0.01,0.01,0.01). 

Four distributed Kalman filters given in Table 1 were used for 
estimating the unknown parameters, a and c, one of which 
matched the pure diffusion model. That is, Filter 1 in the 
bank of distributed Kalman filters has the true parameter 
values. Here, the truncation number of the expansion 
coefficients was applied as N=4. 

The results after 100 samples are shown in Figs. 2-7. It is 
seen from Figs. 2 and 3 that the convergence was attained at 
about 60 sample points. Figures 4-6 illustrate the estimated 
flux pattern in this case, and the associated optimal error 
covariance is depicted in Fig. 7. Note that the quantization of 
unknown parameters, which is lying in the continuous 
parameter space, must be done so as to keep the first eigen­
value of equation (7-2) discussed in Section 7 within a positive 
real domain. However, in order to show a typical action of 
Filter 1 with the true parameters, Filter 2 was intentionally 
unstabilized. Indeed, quantizing the unknown parameters for 
the thermal problem as discussed in [2] may be an easier task 
than for a neutron one because in the former case the 
eigenvalue (8-8) is always a positive value due to replacing c in 
equation (8-1) by-c. 

(ii) Case of the Noise Statistics Are Unknown. Hereafter, 
as a measure of the filter performance, the following two 
criteria will be introduced [27]. Namely, 

[ 1 r 12 î 

" 7 L ,•=i ,•=i j j 

• 

/ \ 

V /' 
• A / ' 

v ' 

v° / 
\ ft 
\ 1 \ / ' vv// \v/ \ / 

V 

l\ 

\20\A 
\ /' 

Y 

True State u (x 

Estimated State 

* 
ft 

A n -~J\L A? \k° 

= 0.3) 

U | ((x=0.3) 

* Ik 

V I * 

so v«o 

i 1 
\ 1 

1 

A 
V 
7P 

k. Number of Samples 

Fig. 4 Estimated flux pattern at x = 0.3 

Fig. 5 

k, Number of Samples 

Estimated flux pattern at x = 0.5 

1 '"' J2 = — HE[uk (x! )-uk(x> )]2 

m 

where Jx expresses an estimate of the real variance of the 
average error and J2 denotes an average of the mean-square 
errors between the actual states and the filtered ones. The 
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Table 2 Unknown parameter events 

Filter 

1 
2 
3 
4 
5 
6 
7 
8 

dT = [ a 

0f= [0.03000 
dl= [0.02875 
dj= [0.02750 
dj= [0.02625 
»J= [0.02500 
dl= [0.02375 
07

r= [0.02250 
0j = [0.02125 

c 

0.2750 
0.2750 
0.2500 
0.2500 
0.2250 
0.2250 
0.2000 
0.2000 

q 
0.05 
0.04 
0.05 
0.04 
0.05 
0.04 
0.05 
0.04 

r ] 
0.015 ] 
0.010 ] 
0.015 ] 
0.010 ] 
0.015 ] 
0.010 ] 
0.015 ] 
0.010 ] 

pr(,e/o) 
0.125 
0.125 
0.125 
0.125 
0.125 
0.125 
0.125 
0.125 

Table 3 Parameter estimates and performance criteria for Case (ii) 

a(xl0~ 2 ) c ( x l 0 " ' ) <7(xl0"2) r\xlQ-2) J^xlO'1) / 2 (x I0" 2 ) 
Completely 
Known 

Unknown 2.8293 2.7043 1.00 4.00 

1.2465 

1.2468 

9.1106 

9.1031 

Table 4 Unknown parameter events 

Filter = [ a ] Pr(6/0) 

e{= [0.0300 
&l= [0.0275 
8%= [0.0250 
ej= [0.0225 

0.275 
0.250 
0.225 
0.200 

0.25 
0.25 
0.25 
0.25 

expected value is obtained by taking the average over 100 
samples. The measurement locations are the same as those in 
Case (0 and the points to be estimated are taken at nine node 
points m' = l,2,-—,9 except for two boundaries x=0 and 
x=l. The events of unknown parameters 8T = [a,c,q,r] for 
each elemental distributed Kalman filter are shown in Table 2. 
The variances for measurement noises at three observation 
points are assumed to be Rk = diag{r,r,r) where /•=0.01. 
Table 3 shows that the filter performances for the cases of 
completely known parameters and unknown parameters 
resemble although the estimates for the diffusivity coefficient 
a and absorption factor c have still some biases. 

{Hi) Effect of Measurement Point Numbers. After 
replacing the events of unknown parameters for Case (ii) by 
ones shown in Table 4, the effect of measurement point 
numbers is examined. 

It is seen from Table 5 that the filter performance is more 
improved if the measurement point numbers increase. For 
the performance criterion J2, although increasing the 
measurement point numbers seems to be insignificant for its 
filter performance, as may be seen from later simulation, this 
effect will be changed due to the difference of selection for 
measurement locations: If the note is restricted to the 
parameter identification, it may be desirable for its purpose to 
have one or two measurement points. This means that if the 
unknown parameters are regarded as some state values by 
using a usual nonlinear filter technique, increasing the in­
formation on filtering may improve the correctness of 
parameter estimation, but in the proposed method, the 
number of measurement points is ineffective on its parameter 
estimation directly; rather, the proposed method depends 
upon the successful quantization levels for the unknown 
parameter values. 

{iv) Effect of the Location of the Measurement Points. 
Under the unknown parameter events of Case (iii), three cases 
were considered, m = l, m = 2, and m = 3 as Tables 6, 7, and 8. 
Table 6 shows the results of the case where m = 1. It is noted 
that the optimal measurement location is #=0.5 for the 
systems which have the parabolic operator as equation (8-1) 
with the constant system and measurement noise variances 

k, Number of Samples 

Fig. 6 Estimated flux pattern at x = 0.7 

P k / k ( 0 . 3 . 0 . 3 ) = P k / k t 0 . 7 , 0 . 7 ) 

0 1 2 5 4 5 6 7 

k, Number of Samples 

Fig. 7 Optimal state-error covariances trajectory 

(over the time and coordinate space). This result may be 
conjectured easily from the problem for the optimal sensor 
allocations [28]. 

It is seen from Table 7 that*1 =0.4 and x2 =0.6 are suitable 
for filtering performance and xx =0.4 and x 2 =0.5 are also 
desirable for parameter estimation in two measurement 
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Table 5 Parameter estimates and performance criteria for Case (Hi) 

Location 
x1 ,i= 1, . . . ,m a(xlO~'!) c(xlO_1) ^(xlO"1) /2(xlO~') 

1 
2 
3 
4 
5 
6 
7 
8 
9 

0.1 
0.1,0.9 
0.1,0.5,0.9 
0.1,0.4,0.6,0.9 
0.1,0.3,0.5,0.7,0.9 
0.1,0.2,0.4,0.6,0.8,0.9 
0.1,0.3,0.4,0.5,0.6,0.7,0.9 
0.1,0.2,0.3,0.4,0.6,0.7,0.8,0.9 
0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 

2.8820 
2.9396 
2.9618 
2.9932 
2.9935 
2.9964 
2.9961 
2.9976 
2.9976 

2.6320 
2.6896 
2.7118 
2.7432 
2.7435 
2.7464 
2.7461 
2.7476 
2.7476 

1.7793 
2.8080 
1.3766 
0.8286 
0.5311 
0.5196 
0.4401 
0.2930 
1.1761 

0.7933 
1.0934 
1.0884 
1.2723 
0.7731 
0.9899 
1.2701 
0.8168 
0.7207 

Table 6 
point 

Location 
x1, i=\ 

0.1 
0.4 
0.5 
0.6 
0.9 

Table 7 
points 

Location 
*',/'= 1,2 

0.1,0.9 
0.1,0.4 
0.4,0.5 
0.4,0.6 
0.4,0.9 

Parameter estimates and performance 

» ( x l 0 ' 2 ) 

2.8820 
2.7794 
2.7158 
2.7730 
2.8401 

c(xl0~"') 

2.6320 
2.5294 
2.4658 
2.5230 
2.5901 

s criteria for 

7 i ( x l 0 " ' ) 

1.7793 
1.6900 
1.5851 
2.1558 
4.5855 

Parameter estimates and performance criteria for 

a"(xl0^2) 

2.9396 
2.9316 
2.8452 
2.8990 
2.9214 

c ( x l 0 ~ ' ) 

2.6896 
2.6816 
2.5952 
2.6490 
2.6714 

7 , ( x l 0 ~ ' ) 

2.8080 
1.2834 
1.2311 
1.0272 
1.4038 

one measurement 

J 2 ( x l 0 - 2 ) 

7.9333 
7.8223 
7.6005 
7.9769 
13.128 

two measurement 

y2(xio"2) 

10.934 
6.4290 
9.1689 
7.5913 
9.3386 

Table 8 Parameter estimates and performance criteria for three 
measurement points 

Location 
x', /= 1,2,3 

0.1,0.5,0.9 
0.2,0.5,0.8 
0.1,0.4,0.7 
0.3,0.6,0.9 
0.3,0.5,0.7 

<?(xl0~2) 

2.9618 
2.9554 
2.9499 
2.9679 
2.9432 

c ( x l 0 _ 1 ) 

2.7118 
2.7054 
2.6999 
2.7279 
2.6932 

y , ( x l 0 " 2 ) 

13.766 
6.2455 
10.323 
9.5152 
12.476 

y 2 ( x l 0 " 2 ) 

10.884 
8.1225 
7.9074 
11.153 
9.0932 

Table 9 Parameter estimates and performance criteria for eigenf unction up 
to 10-term approximation 

Terms 
N 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

<?(xl0~2) 

2.6241 
2.7657 
2.9253 
2.9432 
2.9865 
2.9888 
2.9912 
2.9930 
2.9939 
2.9939 

c ( x l 0 ~ ' ) 

2.3741 
2.5157 
2.6753 
2.6932 
2.7365 
2.7388 
2.7412 
2.7430 
2.7439 
2.7439 

/ , ( x l 0 ' ' ) 

1.1210 
1.1764 
1.2670 
1.2476 
1.0826 
1.0813 
1.0814 
1.0810 
1.0730 
1.0730 

/ 2 ( x l 0 " 2 ) 

11.567 
8.6228 
9.1228 
9.0932 
8.6607 
8.6391 
8.6173 
8.6049 
8.6035 
8.6035 

Table 10 Parameter estimates and performance criteria for variation of 
measurement noise variance 

Variance 
/ • 

0.005 
0.010 
0.020 
0.030 
0.040 
0.050 
0.100 

d ( x l 0 ~ 2 ) 

2.9476 
2.9432 
2.9364 
2.9310 
2.9263 
2.9220 
2.9033 

c ( x l 0 " ' ) 

2.6976 
2.6932 
2.6864 
2.6810 
2.6763 
2.6720 
2.6533 

y , ( x l 0 _ l ) 

1.1737 
1.2476 
1.3787 
1.4950 
1.6013 
1.6999 
2.1124 

7 2 ( x l 0 ~ 2 ) 

8.8598 
9.0932 
9.5046 
9.8589 
10.190 
10.508 
11.803 
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3 4 5 6 7 8 9 

N, Truncation Number 

Fig. 8 Effect of the truncation number of eigenfunction 

is the separation principle of the parameter identification 
scheme from the state estimation discussed in a continuous-
time case [9]. That is, the essentially nonlinear adaptive 
distributed estimators are shown to be partitioned into two 
parts, a linear nonadaptive part consisting of a bank of 
distributed Kalman filters and a nonlinear part incorporating 
the learning nature of the estimator. This also implies that the 
Lainiotis' partition theorem for lumped parameter systems 
[20] holds at distributed parameter systems. 

It is found from numerical results that this adaptive filter 
approximated by the eigenfunction expansion technique is 
highly effective in reducing the parameter uncertainties. 
Moreover, the problems for the effectiveness of measurement 
point numbers, the location of the measurement points, and 
the truncation number of eigenfunction are pointed out 
through those simulations. The problems of finding a suc­
cessful technique for quantizing the unknown parameters 
[17], of extending the results obtained here to the case when 
the parameters are spatially and/or temporally [18] depen­
dent, and of applying them to the detection-estimation are 
current research areas. 

locations. The former tendency agrees nearly with the result 
of [29]. It is seen that the filtering performance is good at 
x1 = 0.2, x2 = 0.5 and x3 = 0.8 or x1 = 0.1, x2 = 0.4 and x3 = 0.7 
for the case of m = 3 in Table 8, and the latter is superior to 
the former slightly in the viewpoint of parameter estimation. 

(t>) Effect of the Truncation Number of Eigenfunction. In 
order to examine the effect of the truncation number of 
eigenfunction, the simulations in the case of the adaptive filter 
with approximation of up to 10-term were achieved. It is seen 
from Table 9 that 2-term approximation is enough for 
criterion J2, but if another criterion 7, is considered, too, a 5-
term approximation may be necessary for the guarantee of 
filter performance. 

If the following two simplified criteria are utilized, the 
conclusions previously discussed may become more apparent 
ones (see Fig. 8): 

J) —J\ —J\ (9-3) 

J*2=J2-J2,W (9-4) 

where subscript "10" indicates the performance 7,, /= 1,2 at 
/V=10. 

(vi) Effect of the Measurement Noise Level. The 
correctness of parameter estimation and the filtering per­
formance due to the variation of measurement noise level are 
shown in Table 10. It is seen that increasing the noise level 
degrades the filter performance in Table 10. This tendency 
may be understood from the information matrix for 
distributed systems (e.g., see equation (37) in reference [29]). 
It is noted that there exists an opposite tendency to the case of 
parameter identification by using a usual gradient search 
method [30]. If the unknown parameter is estimated by using 
a usual nonlinear filter, the correctness of parameter 
estimation will deteriorate as the noise level increases. The 
proposed adaptive filter, however, is independent of the 
mechanism for parameter estimation and the identified 
parameters are not fed back to the filter mechanism (see Fig. 
1). Thus it is concluded that the best weight for the unknown 
parameters always becomes the best one for the elemental 
distributed Kalman filter, but not vice versa. 

10 Conclusions 
An adaptive filter in discrete-time has been developed for a 

stochastic distributed parameter system with unknown time 
and space-invariant parameters. The basic idea presented here 
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