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A Discrete-Time Adaptive Filter for
Stochastic Distributed Parameter
Systems

A discrete-time adaptive filter is derived for a distributed system described by a
linear partial differential equation with some unknown random constants whose a
priori probabilities are known. The system concerned contains the Gaussian white
noise in time, and its measurement system is treated as a so-called pointwise 0b-
servation in which the measurement is taken at the finite discrete subdomains in the
coordinate spaces. The use is conceptually made of an adaptive technique based on
the Bayesian method and it is shown that the optimal distributed filter proposed
here can be partitioned into two parts, a linear nonadaptive part that consists of a
bank of distributed Kalman-Bucy type filters and a nonlinear part that incorporates
the learning nature of the estimator. For the derivation of each “‘elemental filter,”
the discrete-time innovation theory is utilized. The eigenfunction expanding method
in a complete orthonormal system is applied for the numerical procedure of the
proposed filter. From the simulation of the estimation problem for the neutron flux
distribution in a slab type nuclear reactor, the proposed adaptive filter is shown to
have attractive characteristics and therefore can be recommended for practical on-
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line adaptive estimation of distributed parameter systems.

1 Introduction

The estimation problem of stochastic distributed dynamical
systems is one of important and necessary problems for
modeling and adaptive control in a practical field. In recent
application studies in this field, for instance, the distributed
square-root filter for estimation of air pollution con-
centrations has been proposed by Koda and Seinfeld [1], the
“least squares filter for estimation of transient temperature
profile in an alminum slab subject to heating and cooling has
been derived by Ajinkya, et al. {2], the estimation of tem-
perature distribution for radial and axial direction in a
cylindrical ingot has been implemented by Lausterer, et al. [3,
4], and the problem of imaging for gamma rays in the medical
diagnosis used radioactive rays has been solved by Tzafestas
[5,6].

It should be noted that most of the practical physical
systems exhibit a randomness over rather broad scales of time
and space. Especially, the case of parameter uncertainties
frequently appears in practice. Since the system parameters
(for example, in thermal conductive systems, the thermal
conductivity, thermal radiation coefficient, etc.) and noise
statistics must be completely known at the stage of its syn-
thesis, any adaptive techniques may be required to com-
pensate such uncertainties if the implementing of optimal
filtering is hoped.

It is well known that the nonlinear filter techniques [7],
which perform simultaneous state estimation and parameter
identification, are effective on such a problem. For lumped
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parameter systems, though the properties of the extended
Kalman filter as the parameter estimator are studied rather
strictly [8], there is a lack of theoretical aspects or a so-called
“‘curse of dimensionality’’ for such augmentation procedures.
Therefore, comparatively little has been reported on a
distributed adaptive filter up to now. Sunahara, et al. [9],
have already tackled these problems in continuous-time
stochastic distributed systems from the viewpoint of the
Bayesian method, but they treated only the estimation of
force term (i.e., thermal sources or pollutant ones) which is
ineffective on the system stability.

In this paper, an adaptive filter for a distributed parameter

“system with unknown time and space-invariant parameters

will be developed. The measurement system is considered as
a so-called ‘“‘pointwise observation’’ [10-12] in which the
noisy measurement is carried out at several fixed points of the
spatial domain and the boundary. The unknown parameters
are assumed to be random constants over the operating range
and therefore the Bayesian method is selected as the candidate
for an adaptive procedure. The adaptive filter is derived in
discrete-time, which is suitable for on-line estimation by
electronic-computer, and it is shown that consequently this
filter reduces to the parallel distributed Kalman filter con-
sising of some ‘‘elemental distributed filters.”” That is, the
present method is a direct extension to distributed parameter
systems of the ‘‘partition theorem’’ [13,14] given in Lainiotis’
works. In the derivation of each elemental distributed filter,
the discrete-time innovation theory [15] for distributed
systems with pointwise observation is utilized. For numerical
aspects of this filter, the eigenfunction expansion method
[2,10} is introduced. Thus, the main feature of this paper is to
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discretize the system (in time and also in space) and to show
that the adaptive filter algorithms similar to those of lumped
parameter systems [13,14,16-19] can be obtained. Finally,
some qualitative and quantitative features of the proposed
adaptive filter are examined by the estimation problem for the
neutron flux distribution in a slab type nuclear reactor.

2 Problem Formulation

Let D be a bounded open domain in an r-dimensional
Euclidean space E’, and dD, the boundary of D, be a finite
number of (» — 1)-dimensional hypersurface of class C3. LetD
be the closure of D, D=DUdJD and T={t;t=1,} be a real
time interval, and define the product space with respect to
coordinate space D by L, =D X T. Furthermore, denote the
spatial coordinate vector by x= (x;, x53,-,X, ) eD.

Consider a distributed parameter system described by a

linear spatial differential equation,
du(x,t)
T =£x(0)u(x,t)

+G(x,60)n{x 1), (x, ) el (2-1)

where u(x,t) is an n-dimensional state vector, £, () is an
nx n matrix valued linear spatial differential operator whose
parameters are bounded and may depend upon x and/or ¢ for
all (x,t) eZ;, G(x,t,¢)is an n X g system noise intensity matrix
and 75 (x,?) is a g-dimensional white Gaussian noise process in
time. Here, a ‘“‘subscript 6> denotes that there exists unknown
parameters in the corresponding operators or matrices and the
unknown parameter eQ)y is assumed to be a p’-dimensional
random constant vector whose a priori probability is known
and takes the values in fixed discrete parameter space (y, and
G(x,t,9)elL=(0,00;L%(D)) where L?*(D) denotes the Hilbert
space all square integrable real-valued functions with the
inner product given by

<UL Uy > = SD ui(x)uy(x)dx,

forallu;, i=1,2eL*(D).

The observation process is given as so-called pointwise type
[10-12] in which the measurement is taken at the finite
discrete m points x!, x2, +, x™ of the coordinate spaces D
such as

z(t) =H(t;00u,, (1} + (1), teT (2-2)

where z(¢) is a p-dimensional measurement vector at the
points x!, ... x", H(t;») is a pX nm matrix, u,, (¢) is an nm-
dimensional state vector defined on finite discrete locations
x'eD, i=1,2,,m and defined as

Uy () = Col[u(x' 1), u(x™,0)] (2-3)

where Col denotes the column vector, and {(f) is a p-
dimensional white Gaussian measurement noise process.

The boundary condition for the system (2-1) to be governed
by homogenous Dirichlet condition is given by

Be (B)u (&) =0,(&,1) ey 24

where L, =D x T and B; () is an n X n matrix valued linear
spatial operator which is defined on the boundary surface dD
at a point £edD. This is a matter of convenience cases where
Neumann and mixed conditions on the boundary can also be
handled.

The initial condition is given by

limou(x,t) =uqy (x) in L2 (D), uy(x) el (D) (2-5)

and further the system noise 5(x,?) and measurement noise
¢(t) are assumed to be stochastically independent of each
other and also independent of the random initial condition

Journal of Dynamic Systems, Measurement, and Control
Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Uy (x), and their mean and covariance values are given by
Eln(x,0)]1=0, E[n(x, )77 (3,D]=Q0(x1,1)8(t—7)

E[(H)]=0, E[() {T(N]=R(t)d(t—1),
(e,y,8) eD X L

Elug(x)) = uo(x), E[{ug(x) = tho (x) } {1o (¥)
=ty (¥)}71=Po(x,y)

where E[+] denotes an expectation operator and 6(e) is the
Dirac delta function. It is assumed that Q(x,»,¢) is sym-
metric, positive semidefinite, and bounded for all x, yeD, and
that R (¢) is symmetric and positive definite.

Now, it is assumed that on a practical standpoint, the
continuous-time observation process (2-2) is rewritten by the
discrete-time one:

(1) =H{50) uy (1) +5(), 150,150, K500 2-7)

where f; denotes the sampling time at iteration number i.
Then, given a record of measured data Y,=
{z(t;);le[0,1,--,k]} under the parameter uncertainty feQy,
an optimal conditional estimate u(x,#;/¢,)2E
[u(x,£)/Y,]is desired in the mean-squared error sense:

(2-6)

MIN{Elu(x,t;) —i(x,t, /1) 1*} for all xeD
where lis || represents a Euclidean norm.

(2-8)

3 Discrete-Time Model

In general, the aforementioned problem can be analyzed as
a continuous-time model with discrete-time observation [12],
but in this paper, in order to realize a recursive distributed
filter by using the digital computer, a discrete-time model for
the system (2-1) will be considered.

To do so, the following conditions are further assumed:

(a) The problem given by (2-1), (2-4), and (2-5) is well-
posed in the sense of Hadamard, i.e., the solution exists
uniquely and depends continuously on the initial and
boundary data.

(b) There exists a fundamental solution' (or, Green’s
kernel function) n X n matrix ®(x,z;y,7,8) of equations (2-1)
and (2-4) defined for = 720, x, yeD and 8¢, such that

®(x,t;y,7,0) =00, t;x,7,0) B
e (x, by, 1,0
BLENTD _ ¢ (0)8(xty,7,0)
ot b G-l

®(x,73y,7.0) =I8(x—y)

Be (0)®(&,4y,7,0) =0, £edD J

where I indicates the 7 X n identity matrix and the solution of
equations (2-1), (2-4), and (2-5) is expressed as [33]

u(x,t)= SD P (x, 650, 8,0)u (¥, to)dy

t
| 2t nn 6o onday; e,
° (3-15)
(c) Between sampling instants, the optimal estimate in the
sense of equation (2-8) satisfies the unforced system (2-1).
If the sampling interval Aft=t,,, —¢, is sufficiently small,
then equation (3-1b) for ¢=1,,, may be rewritten as

U(X by y) = SD S (X, iy 1Y b0 u () dy

h+
S g
D ty

Tkor mathematically more rigorous discussions, see [31-33].

1
@ (x,l44159,7,0)G(3,7,0) 9 (y,Ndrdy
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=SD (Xt 5 ¥ b, 0y u (Y, 8 ) dy
k+1 _
+ SD (X Ly 13051, 0) G (1, 1, 0) S’ (¥, nYd7dy,x,yeD.
k
(3-2)

Applying the same procedure to the measurement system,
equation (2-2) for t=t¢, becomes

!

1 k
W= == | HEO, () + 5

I &(r)dr.

k-1

1
=H(t;0)u, (1) + mg (3-3)

Hence, the continuous-time system can be approximately
expressed by the following discrete-time integral equations:

g1 (0) = A (Ot (x) + By (0w (x), xeD (-4)
Zk:Hk(e)uk171+Uk (3‘5)
Bs (0) gy (5) =0, £edD (3-6)
where
!
e () 2wt w0 2 [ e ar
A 1 'k A
ved o | prdn, H(0) £ H(10) 37
L =Tp—y 11

ukm =A U (tk)
and the integral operators 4, () and B, (6) are, respectively,
given by

A= | 00t 100)1dy, xpeD (3-8)

Be®l1= | @00t DGO 1y, xyeD. (3-9)

The statistics of white Gaussian noise processes w; (x) and
vy, and the initial state Uy, ) with respect to discrete-time
are, respectively, given by

E[wy (x)] = E[vc] = E[wy (x)vi]
= Eluey (X) wf (x)]= Elus, () vf1=0
Elwe (X)) wI(9)1= Q4 (x,9) 8> Elvgv]1= Ry

(3-10)

Elug, ()] = 1y, (x)

@3-11)
E(uyy (X) =gy (0)) (g, ) — 1k 0)) T1= Py, (x,J/)}

where subscript k, represents the initial point in discrete-time
case, Q,(x,y) is symmetric, positive semidefinite and
bounded for all x,yeD,R, is symmetric positive definite and
84; is the Kronecker delta function. The discrete-time nuclear
functions Q, (x,y) and Ry, are related to those for continuous-
time case as follows:

Ok (x,)) =S

Y1 [ k+1 T
S B oo e
k k

k+1
= S Q(x,y,7)dr
s

‘=AtQ(x,y,tk) (3-12)
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_ 1 % I .
R W ka_l S’kﬂ E[S(n) ¢ (nldidr

I

s ka_. R(Ddr

1
::ER(tk)' (3-13)

4 Wiener-Hopf Theory and Innovation Theorem

In the following derivation, it is assumed for simplicity of
the problem that the time-invariant unknown parameter @ is
completely known, namely, ‘‘0’’ is omitted. Then, the least
squares estimates for a discrete-time distributed parameter
system with pointwise observation will be obtained by using
the innovation theorem [15].

In the pointwise observation system (3-5), the sample
function of zero-mean signal process is defined as

Xim 2 Hyty,, 41
and it is assumed to have a finite variance:
EllX,,, 1] <oo,ky<k<k, 4-2)
and to be uncorrelated with vy:
Elv, X7, 1=0, ko <i<k<k,. 4-3)

If a set of measured data Y, = {z; kel[ko,-,k;]} is given,
the conditional mean value:
Up, sk, (X) =Eluy, )/ Y, |, ki skz orky >k, (4-4)

can be obtained by minimizing the following performance
criterion:

J=Elily i, () 12 4-5)
where
iy iy (X) 2 1y (X) — g ey (6) (4-6)
k2
ﬁkl/kz(x) = Ek N(x7k1J)Zj,XED -7
Jj=ko

where N(+) is an n X p matrix kernel function whose elements
are continuously differentiable in x. Note that the least
squares estimate for the system (3-4) —(3-6) is represented as a
linear combination of a kernel function N(+) and all the data
record Yy, from the facts of [10-12]. Thus, the following two
theorems can be deduced from the result in the continuous-
time distributed parameter system with pointwise observation
[11].

Theorem 1. The Projection Theorem and Wiener-Hopf
Equation. The necessary and sufficient condition for the
estimate (4-7) to be optimal is that the Wiener-Hopf equation:

k2

Y Nxky ) Elzjal 1= Elug, (x) 2] (4-8)

i=kg
holds for k,<!<k,, xeD. The foregoing equation is also
equivalent to the following projection theorem:

Eliiy /5, %) 2[1=0, kg =I<ky, xeD. (4-9)
Proof: This theorem can be proved by using the calculus of
variations [10,25]. That is, the weak variation with respect to
kernel function N(e), 6N=eM, is taken in equation (4-7),
where M(x,k,, j)is any n X p matrix kernel function and ¢ is
a scalar parameter. If

k2
Aoy iy 0) 2 )3 INCx, ki) +eM (k1) )z
J=ky

then the necessary and sufficient condition for the estimate

(4-10)
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given by (4-8) to be optimal is that

dJ d{Elu,, (x)—i )2

aJs. A ky aky kg ’ _ i
de le=0 — de e=0 0. @11
After carrying out the indicated operation, it is found that

ky

aJ, _r .

| =2 L Mk iz, ] =0 (4-12)
or, equivalently,

2
tr| 1 Bty i, 0)IMT (k1) | =0 @-13)

J=kg
where “‘¢r’’ denotes the trace operation of a matrix. If
M (x,kJ) =El# 1, (x)z]1 is assumed, equation (4-9) may
be obtained as the necessary condition. On the other hand, the
sufficiency of equation (4-9) is apparent from equation (4-13).

Theorem 2. The Innovation Theorem. The innovation
process for the discrete-time distributed parameter system
with pointwise observation is defined as:

Ve 2 2 = Xypkotms — 0 <hy Sk <k, <00 (4-14)

where
(4-15)

Then, », is zero-mean and is a white but with a variance
different from that for the measurement process.

Proof: This proof is given by Kailath [15] and hence it is
omitted here.

It is noted from the use of previous Theorem 1 that the
estimation error akl/kz (x), xeD and the pointwise ob-
servation sequence gz, for k,<I<k, are orthogonal.
Moreover, since 7, and v, are stochastically equivalent from
Theorem 2, it is obvious that & 4, (x) and v, for ky =/<k;
must be orthogonal. Hence, the optimal estimator equation
(4-7) can be rewrittex}( as a linear function of »; as

2
ey () = Y3 NOxky ) vy, xeD,
J=ko
From the previous discussions and equations (4-16), the
Wiener-Hopf equation (4-8) can be rewritten as

Elity, i, (%) v] 1= Covlug, () =g, i, (X), 9]

- A .
Xk/k~1,m = Hk uk/k—l,m .

(4-16)

ky
=Elue, 1= Y N(x,k, ) Ely1=0 @-17)
j=kg
or, equivalently,
&y
Elug, (x)of 1= ), Nk J)Elyif],
J=kg
ko <i<k,, xeD (4-18)

where Cov{e,+] indicates the covariance operator. Since the
covariance of the innovation process in the finite dimensional
space is given by [15] as

E[Vjv,T]=[R,+H,P,,,_1H,T]6j, 4-19)
Equation (4-18) yields the following relation:
Eluy, (x)vf 1=N(x,k; ,DIR, +H, Py - Hf | (4-20)
where
Py 2 Eliy il m]inm X nm matrix 4-21)
Pryoi XXty Py (X))
= . : X i=1.2, ... meD

P ™), o Py (XM x™)
Py (x,9) BEldy_, (%) @l-10)],x,yeD.
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Hence, using equations (4-16) and (4-20) gives the general
basic formula for the optimal estimation with pointwise
observation as

k
ﬁkl/k2 (x)= E E[uk] {x) V/‘T ][Rj +ijj/jﬁ1HjT]71 Vj,XED.
=k 4-22)
Premultiplying equation (4-18) by 8, and using the fact of

equation (3-6) gives
k2

ElByu, (£)vf1= D5 BN(Ek ) Bl

J=kg
=0. (4-23)
Since El»;»]] is not identically zero, it follows that

Henceforth, using equations (4-16) and (4-24) gives the
following boundary condition:

Byt 1k, (8)=0, £edD. (4-25)

5 Optimal Filter With Pointwise Observation

In this section, the filter mechanism with pointwise ob-
servation in discrete-time will be approached by the in-
novation theorem. Namely, putting k£, = k, = k in equation (4-
22) gives

&
e (X) = Y Elug () o] 1R +H; Py HIV 'y (5-1)
j=ky
Using equation (4-4), equation (5-1) can be rewritten as
follows,
gy (X) = Eluy (x) /Y]

=FElu; (x)/ Yi-1,2]

=Eug (x)/ Y1+ [ () /9] (5-2)

where Theorem 2 and the orthogonal property between the set
of measured data Y, and pointwise observation z, have been
employed in the last equality in equation (5-2). Since the first
term on the right-hand side of the last equality in equation (5-
2) is apparently a one-stage prediction, the independence of
wy_; (x) and Yg_, gives

o1 (x) 2 Elug (x)/ Y]
=E[Acu .y (x) +Bow,_ (X)) /Y]

=A de k-1 (X). (5-3)
Using the relation of equations (5-2) and (5-3), equation (5-1)
may reduce to

Ui (X) = Al y/5-1 (X)

+Eluy (X)vE 1R + Hy Py H[ 17 Vo, (5-4)

Furthermore, when the independence of u, (x) and v, and
the orthogonal property between &y, _,(x) and ty,,_; ,, have
been employed, then

Eluy (x)vi]=Coviug (X) ,Hiligsk—1,m + Vil
=E[uk (x) ﬁ[/k:l,m]HIZ
IE[ak/k—l (X) al{/k— l,m]HIZ-

=Pk/k—l,m (X)HIZ (5'5)

where
(5-6)

- A ~
uk/k—l,m = uk,m - uk/k—l,m
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Prri—1m (X) 2 [Prsp—1 (6,51, Py 1 (x,22),

oo Prear (0] (-7

Prrk-106,Y) BE[ru— 1 () Gl 1) ],x,peD. (5-8)

Hence, the following mechanism, the optimal filter with
pointwise observation, is given by

Bip (X) = Al 151 (X) + Pyp ) m (XYHEIR,

+H Py HI 7 v, xeD. (5-9)
with the boundary condition
Belyn (§) =0, £edD. (5-10)

Next, the error covariance equations will be discussed.
First, from equations (3-4) and (5-3), the one-stage prediction
error is given as

Bipe-1 (%) 2 e (%) = gy (x)

=A bk 1/k-10) +Bywi_; (x) (5-11)
with the boundary condition
Betigp—1(£) =0, £edD. (5-12)

Then, the one-stage prediction error covariance is obtained as
Prjie—1(6,Y) = Eltlg -y (X) 81 (9)]

=CoV[A iy _1/k-1(x) +Bywi_y (X)),
Ayt () +Bywi_ ()]
= A Pr_ik-1 (6Y)A]

+B,Qk_1(x.y)B] (5-13)

where the independence of d,_,,;_;(x) and w,_,(x) is
utilized. Premultiplying the first equality of equation (5-13)
by @; and using equation (5-12), the boundary condition is
derived as

BePisk—1 (£.) =0, £€dD,peD. (5-14)

On the other hand, the filtering error equation from equation
(5-9) is derived as

Tgesn (X) 2 g (X) — tggp (X)
= Uy (X) = gy (X) =Ky (X) 9y

=1 (X) = Kp m (X) v (5-15)

where
Kim (X) 2 Py (X)HL[Ry + Hy Py (HI17'. (5-16)

Using equations (3-6) and (5-10), the boundary condition for
equation (5-15) is obtained as

Beiig (£) =0,8edD. (5-17)

Therefore, using equations (4-17), (4-19), (5-15), and (5-16),
the filtering error covariance is given as

Py (%,y) 2 Elilgp () @5 ()]
=CovVlitg 1) =Ky m (X) v, i1 ()
—Kpm (¥)vil
=Prij—1(6Y) + Ky (X) Elv 1K (9)
= Kyom OO Elvil—1 ()]
= Eldiyi—1 (X) KL (¥)

=P (5Y) = Ki XY HePL_1m (¥) (5-18)
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and premultiplying the first equality of equation (5-18) by 8,
and using equation (5-17), the boundary condition reduces to

B Prsi (£,9) =0, £€dD, yeD. (5-19)

Thus, the optimal filter is given by equations (5-3), (5-9), and
(5-10), and the corresponding error covariance satisfies
equations (5-13), (5-14), (5-16), (5-18), and (5-19). Since one
cannot make continuous measurements in space on a practical
situation [34], it is noted that the algorithms for the case of
pointwise observation derived in this paper are more practical
than those for the case of distributed observation studied in
Tzafestas [5,6,20].

6 Derivation of an Adaptive Distributed Filter

Viewing the unknown time-invariant parameter as a point
of a finite-dimensional vector space 2, having dimension
equal to the number of unknown parameters, Magill [21]
developed an optimal estimator for a lumped parameter
system, but the derived algorithm has useless memory
allocations, and therefore several adaptive techniques [13,14,
16-19] which have less memory and computational
requirements compared with that of Magill will be adopted in
this paper.

Suppose that {u,(x),z;} comes from a finite number
collection of possible processes, in which the state and
measurement spaces are defined on L? (D) and E?, respec-
tively, with an unknown time and space-invariant parameter
vector 6. Then the optimal conditional mean value (4-4) can be
derived by using the smoothing property of conditional ex-
pectation as

ik (x) = E[Euy (X) / Y401/ Y ],xeD. 6-1)

From the assumptions for the unknown parameter § which
have been stated in Section 2, the a priori probability for § can
be expressed as

M
P.(0)= Y, P.(6,)6(8—6,),0,eQ
i=1
where M denotes the event number for the unknown random
constant parameter 8, P, (8) is a priori probability for 4, and
P, (0;) is the a priori probability for the event where 6 takes a
parameter 0;eQ, from the finite discrete parameter set
Qg = [ 0[ ,02 ,“",GM } .
If the a posteriori probabilities for any parameter 8,¢Q, are
able to be calculated, then the optimal conditional mean value
(4-4) may be expressed as

(6-2)

M
Aepp (X)) = E Ui (0, P, (6,/Y ), xeD,0;€,

i=1

(6-3)

M
Beiti (£)= Y Beti (£:0,)P,(8,/Y,) =0,6dD  (6-4)
i=1

where 6-conditioned mean value,

Ui (%:8;) 2 Eluy (x) /Yy ,0;1, xeD (6-5)

Byt (£:0;) =0, £edD (6-6)

will be obtained by using the previous discrete-time
distributed Kalman filter matched to the system with specified
parameter ;. The conditional a posteriori probability is
calculated by applying a recursive Bayesian algorithm [16] as

p(Y,8)
p(Yy)
D2, Y ,0)) _ Pz 8/ Y )p(Y_y)

P (0;/Y,) =

Pz, Y y) a P/ Yo )p(Yyy)
ZP(Zk,ei/Yk—x)
P2/ Yi_y)
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Pz /Y 1,0:) P (0;/ Y _y)

¥ 67
Y P2/ Yier 0 P (6,/ Y, _)

j=1
Here, it is noted that the conditional probability density
p(z; /Y _1,0;) must be calculated in the functional space
L*(D) of infinite dimensional state if the distributed ob-
servation over D is concerned ideally. However, in the case of
the pointwise observation as discussed here, the observation
space reduces to a finite one of Euclidean space E? so that the
conditional probability density p(z,/Y,_,,0;) can be
evaluated by using the similar derivation to lumped parameter
systems [16].

Since the probabilities p(z,/Y,_;,0;) for i=1,2,-, M are
Gaussian ones, the associated one-stage prediction is given by

Elzi /Y1 01 =H, (8;) gy _1,m (6;) (6-8)

and the conditional covariance matrix for z, is obtained by
Covlz, /Yy _y,0;1=Covly, (6,),v, (6,)]

=Ry (0;) +Hi (0;) Py (0)HI(8,)  (6-9)
hence p(z,/Y,_;,0;) reduces to
P2/ Yy y,0;)
=Crexp{ = 3 < (0),Covlr (0, (011, (8)) > ]
(6-10)
where the scale factor Cis
C=(2m) =" 1Cov[, (8;),v (6,)11 % (6-11)

here ()| denotes the determinant of a matrix (). Then, the
optimal filtering error covariance is obtained in terms of 6-
conditioned error covariance by the same way of deriving as
used in the study of continuous-time cases [22,23]. That is,
obtained results are as follows:

Py (x,3) =E{ g (x) — g )Mty (0) = gy (177X )

S

= Y Puska (6236 P, (6,/ )

i=

Pk/ka (xayn )

(6-12)

Py (x,930;) + [y (x30;) — digepie ()]

X [isac (736;) = e )17 (6-13)
BePrika (£.38;) =0,£ID,yeD (6-14)
M
BePi (£9)=" Y, B Puska (£330, P, (8:/Yy)
i=1
=0,tedD,yeD. (6-15)

Thus, the optimal distributed filter in discrete-time can
constitute the parallel distributed Kalman filter when the
distributed parameter systems with pointwise observation
contain some time and space-invariant unknown parameters.
This filter consists of some elemental filter matched to the
system with specified parameter 8;, and the M-distributed
Kalman filter is implemented to produce the estimates
Upe (x:0;) for the states uy(x;60;), xeD, 6;eQy. The im-
plementation of i, (x;6;) yields automatically as a
byproduct §;-conditioned finite-dimensional innovation
process v, (8;) and the inverse of its covariance Cov{y, (8;),
v, (6,)]17'. Moreover, it is interesting to note that the adaptive
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realization of the optimal nonlinear distributed parameter
estimate is given in terms of the parameter §-conditional
estimates i, (x;0;) and the a posteriori parameter
probabilities P, (0,/Y, ), and that the a posteriori probability
P,(6;/Y,) is given by the ratio of two likelihood ratios of
finite dimensional state space in discrete-time.

7 Approximation to Finite-Dimensional Subspace Via
the Eigenfunction Expansion

The transformation of the infinite-dimensional space to a
finite-dimensional one is necessitated when the derived
adaptive filter is implemented in the practical situation. Under
the assumption that the fundamental solution matrix and
other vectors and matrices are square integrable in each space,
in this study the eigenfunction expansion technique, which is
effective on the initial and boundary value problems, is in-
troduced. For simplicity of the problem, the coefficients of
differential operators £,(0) and §;(0) are assumed to be
independent of time £, _

Now, it is assumed that there exists a sequence { ¢, (x)},xeD
of eigenfunctions and a sequence {A;} of eigenvalues such
that

£, (0)¢; (x) = —N;p; (x) ,xeD (7-1)
A SN <00 (7-2)
B (0)9;(£)=0, £edD (7-3)

where lu(x,t) =0 as t—oo if \; >0 and lu(x,f)}ll—o0 as
t—oo if N\, <0 in the homogeneous equation of (2-1). Fur-
thermore, {¢;(x)} is assumed to be complete orthonormal
system in L? (D) as

| sfws,mar=s, =12, ... )
and the assumption of completeness yields
e (x30) = Y i (k/K30) & (x) (7-5)
i=1
Bee—1 (0) = 3 il (k/k—130) & (x) (7-6)
i=1
Q(xk+ Ly, ki) = Y, Y, a;(8); (x)$1(») a-7
i=1 j=1
P (x,730) = E N Py (kik:0) i (x) BT () (7-8)
i=1 j=1
P 1 (6,336) E Epg(k/k—l;t;)qs,»(xwf(y) (7-9)
i=1 j=
Peseorm (530) = )5 5 Py (k/k—1:0)$:(x) 8] (7-10)

i=1 j=1

where the coefficient functions, for example, #;(k/k;6) and
a;; (0) are, respectively, given by

iy K/ Ks) = | 6T00) g (50)x (-11a)

a, 0= | slos@k+inhnemady  (-11b)
and

(l)jT= [d’jr(xl)a L ] jT(xm)] (7'12)

substituting equations (3-8) and (7-5) into equation (5-3) and
using the orthonormality condition (7-4) yields

i (k/k—1;0) =a; (0)u,(k—1/k—1;0). (7-13)
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It is noted from equations (4-21) and (7-12) that
Hy (0) Py (0)HE(6)

=Y Y Putksk—130)H, (0) %% HT (6)
(=1 I=1
and the innovation sequence (4-14) can be rewritten as

(7-14)

v (8) =24 —Hi (0) Y, i) (k/k—1;0) . (7-15)

I=1
Hence, #; (k/k;0), i=1,2,are given by

i (k/k;0) =1, (k/k—1;0)

+ ) Py (k/k—1;0) 8T HJ (6)
=1

(NgE

X[Ry + Py (k/k—1;6)H, (6)®, 8] H] (6)) !

@

=

h=1 I=1

x [zk-Hk(e) Y ﬁ,(k/k—l;())d),]. (7-16)
=1

Using equations (3-8), (3-9), (5-13) and (7-7) —(7-9), noting
that

G, (7:0) Oy (¥,X) GF (x;6)

=Y Y gu(ks0) by () 67 ()

(7-17)
h=1 I=1
Gy (3:0) £ G(»,4,30)
and utilizing the orthonormality condition (7-4), then
Py(k+1/k8),i,j=1,2, become
Py(k+1/k;0)
=a; (0) [Py (k/k;0) +q;; (k;0)]a; (6). (7-18)
Defining the filter gain equation (5-16) as
K (X) 2 Y 6 () K, (k36) (7-19)
i=1

then its coefficient functions reduce to

K, (k;0) =

Y Py (kik—10)8THE ()[R + Y, 3 Puw (k/k—156)
h=1 h'=1

=1

H ()%, %] H] (8)] " (7-20)
where K, (k;6) is a p-dimensional row vector. The filter error
covariance coefficient functions are derived by using
equations (5-18), (7-9), (7-10) and (7-19) as

= L Kk H (0) Py (k/k—1;0)®,.
=1
By analogy with the foregoing results, the following ex-

(7-21)

o

J

pansions:
e (%) = Y, 1 (k/k) 6, (%) (7-22)
i=1
Pia (x330) = Y3 Y Py (k/K;6) 6, (x) $] () (7-23)

i=
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Pow(x3)= 23 X3 Py(k/K) 6, (x) $](0) (7-24)
i=1 j=1
and the following relations can be easily obtained:
Py (k/k;0) =Py (k/k;0) +[a; (k/k;0)
— i Ck7k) i (k/ks0) —a; (k/k) ] (7-25)
M
Py(k/k)= EP,,,j(k/k;G,)P,(G,/Yk) (7-26)
=1
M
dilk/k)y= ), 4;(k/k;60,)P,(8;/Y}) (7-27)
=1
. M
B(ky=Y, 6P, (6,/Yy). (7-28)

=1
Approximating these equations by the first N terms based on
the practical viewpoint, the approximated ordinary Kalman
filter equations for those coefficient functions can be im-
plemented. That is, the one-stage predictor for the series
expanded elemental Kalman filter with 6, is given as follows:

Uk/k—1:6,) 2 A6,) U0 (k—1/k—1;6;) (7-29)
P(k/k—1:6,) 2 A6 [P(k—1/k—1;8;)
+Q(k—1;6,)1A(6;) (7-30)

where

U(k/k~1;8;) 2 Collt (k/k—1;8,), . . . iy (k/k—1;6,)]

(7-31)

A(;) £ diaglay (6), . . . ,anw (6;)] (7-32)

P(k/k—1;0)) £ (P (k/k—1;0,}ij=1,2,N (7-33)

Q(k—1;6,) 2 {q; (k—1;6,) }ij=1,2,~+,N. (7-34)
Defining the matrix

V=[®,,8,,...,5y:nmxN (7-35)

yields the following series expanded elemental Kalman filter
with 6;

Covlr (6;),v (0,)12 P(k/k—1;6;):pXp

=Ry +H, (8;)¥P (k/k—1;0,)¥TH] (6;) (7-36)
K(k;0,)=P(k/k—1;,6,)¥TH] (6,)

P(k/k—1;8;) "":Nxp (7-37)

v (0;) =24 —H (0,) WU (k/k—1;0,) :px | (7-38)

U(k/k;0;) =U(k/k—1;8;,) +K(k;6,) v (8;):Nx 1 (7-39)

P(k/k;8;) =[T—K(k;0;) H, (6;) ¥IP (k/k—1;6,) (7-40)

where 7 denotes the Nx N identity matrix. Then the optimal
filter and the corresponding error covariance for the
“weighted coefficient functions’’ reduce to
M

Uk/ky =), O(k/k;0,) P8,/ Y,) (7-41)

i=1

M
P(k/k)= ), P, (k/Kk;8,) P, (6, Yy) (7-42)

i=1
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where
P, (k/k;8,) =P (k/k;0;)

+ [0 (k/k:0;) = O (k7110 (k7 k38;) — O (k7K1 (7-43)
Furthermore, if the matrix which represents the eigenfunction
for the coordinate of any estimated location is defined as:

&, 2 [01(),02(x), . . . 0N (X):nXN,xeD (7-44)

after all, the state estimate and its covariance at any coor-
dinate xeD are obtained by

Gy (x) = 8,0 (k/k) ,xeD (7-45)

Pk (%) = &P (k/k) @], x,yeD. (7-46)

1t is interesting to note that the filter algorithms obtained by
equations (7-36)~(7-40) are similar to those of lumped
parameter systems studied by Kalman [24], Kailath [15], and
Meditch [25], etc. In addition, note that the present adaptive
filtering method is a direct extension to distributed parameter
systems of the partition theorem [13,14] given in Laintiotis’
works. The proposed adaptive distributed parameter filter
structure is also depicted in Fig. 1.

8 Illustrative Example

To illustrate the application of the proposed adaptive
distributed filter, the estimation for the flux pattern in a slab
type nuclear reactor [26] will be considered. Assume that the
reactor is operating at a given neutron flux level with a steady
state spatial pattern.

The diffusion equation to be treated is described by

du(x,t) Fu(x,t)
=a
ot ax?

where the state u(x,f) denotes the deviation from that in a
steady state. The boundary conditions for this equation are
the following Dirichlet type:

u(x0) oo =u(xt) -, =0forallz.

+eu(xt)+wixt), 0<x<l (8-1)

(8-2)
The conditions for the initial distribution are assumed that

Ukg(x) =ty (x) =0 (8-3)

Py (x,y) =0.58(x—y). (8-4)

The diffusivity coefficient a and the absorption factor ¢ are,
respectively, given by

Journal of Dynamic Systems, Measurement, and Control

Adaptive distributed-parameter filter structure

a=0.0256, c=0.252. (8-5)

The eigenfunctions for equations (8-1) and (8-2) are selected
as

¢;(x) =V2 sin(imx), i=1,2, . . . \N (8-6)
and then the fundamental solution reduces to?
DX, L1305 13 0)
N
=2 ) exp{ —\; (8) At}sin(imx) sin(imy) (8-7)
i=1
N (8) = (i*7ta—c),0T =]a,c]. (8-8)
For this case, a; (8) in equation (7-32) becomes
a; (0) =exp{ —N\; (8) At}. (89

The system noise covariance function for w, (x) is assumed to
be

Ok (x,y) =0.045(x—y) (8-10)
and therefore g;; in equation (7-34) reduces to
1 1
an=| | 0.0450" ~x10, )8 (x)ty
1
= [ 0.046, 72010y
=0.048,. (8-11)

The measurement of the flux level u(x,¢) is observed at
several locations at 0 <x < 1, but it is corrupted by the additive
measurement noise.

9 Simulation Results and Discussion

To simulate the system (8-1) (8-3), nine node approximation
is used and the coordinate division and the sampling interval
are Ax=0.1 and Ar=0.1, respectively.

21f the boundary condition (8-2) is assumed to be the Neuman type, then
equations (8-6)-(8-8) reduce to
o lx) =1, ¢; (x) =v2cos(imx), i=1,2,...,N,

@ (x, 1410 K30)
N

=exp{cAt) +2 Eexp( —\; (8) At}cos (imx)cos(imy)

i=1

and \; (8) = (I x2a—c).
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Fig.2 A posteriori probabilities

Table1 Unknown parameter events

Filter 0T=[ a c 1 P, (6/0)
1 67 =[0.0256 0.2520 0.25
2 69 =10.0256 0.8000 ] 0.25
3 67 =10.0010 0.0098 ] 0.25
4 67 =10.0010 0.0008 | 0.25

(i) Case of the Noise Statistics Are Known, The following
typical example will be considered to grasp the properties of
the proposed adaptive distributed filter. The number of points
measured is assumed as m =3 which is located at

x'=03,x2=0.5,x*=0.7

and the number of points to be estimated and point locations
are assumed to be identical. The measurement noise is
assumed to be

R, =diag(0.01,0.01,0.01).

Four distributed Kalman filters given in Table 1 were used for
estimating the unknown parameters, @ and ¢, one of which
matched the pure diffusion model. That is, Filter 1 in the
bank of distributed Kalman filters has the true parameter
values. Here, the truncation number of the expansion
coefficients was applied as N=4,

The results after 100 samples are shown in Figs. 2-7. It is
seen from Figs. 2 and 3 that the convergence was attained at
about 60 sample points. Figures 4-6 illustrate the estimated
flux pattern in this case, and the associated optimal error
covariance is depicted in Fig. 7. Note that the quantization of
unknown parameters, which is lying in the continuous
parameter space, must be done so as to keep the first eigen-
value of equation (7-2) discussed in Section 7 within a positive
real domain. However, in order to show a typical action of
Filter 1 with the true parameters, Filter 2 was intentionally
unstabilized. Indeed, quantizing the unknown parameters for
the thermal problem as discussed in [2] may be an easier task
than for a neutron one because in the former case the
eigenvalue (8-8) is always a positive value due to replacing c in
equation (8-1) by -c.

(ii) Case of the Noise Statistics Are Unknown. Hereafter,
as a measure of the filter performance, the following two
criteria will be introduced [27]. Namely,

(Lo - L))

i=1 i=1
274/Vol. 103, SEPTEMBER 1981

1
JIZE{ 7
m

n
4
pit 0.252
g o0.20} ’
H
=
i
&
o
2
]
£ 0.03}
s a
183 /
D.02% 0.0256
0.01p
0.0 L L X 1 1 i ]
0 10 20 30 40 50 60 70
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Fig.3 Estimated parameter evolution |
Lo
0.8} True State uk(x=0.3)
0.6k ~ —— Estimated State ﬂk(x=0‘3)

Deviation from Steady State

-0.8L
k, Number of Samples
Fig.4 Estimated flux pattern at x=0.3
0.8
True State uk(x=0.5)
0.6k

~—— Estimated State ﬁk(x=0.5)

Deviation from Steady State
=3

k, Number of Samples

Fig.5 Estimated flux pattern at x=0.5

J2=

1 m’ ) 3 )
— Y Eluy (x') — i (x) 12

m- =

where J, expresses an estimate of the real variance of the
average error and J, denotes an average of the mean-square
errors between the actual states and the filtered ones. The
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Table 2 Unknown parameter events

Filter 0= a ¢ q roo P, (6/0)
1 67 = [0.03000 0.2750 0.05 0.015 ] 0.125
2 67 =[0.02875 0.2750 0.04 0.010 | 0.125
3 07 =10.02750 0.2500 0.05 0.015 ] 0.125
4 07 =10.02625 0.2500 0.04 0.010 | 0.125
5 67 =10.02500 0.2250 0.05 0.015 ] 0.125
6 0f'=10.02375 0.2250 0.04 0.010 ] 0.125
7 67 =10.02250 0.2000 0.05 0.015 ] 0.125
8 67 =10.02125 0.2000 0.04 0.010 ] 0.125
Table 3 Parameter estimates and performance criteria for Case (ii)
d(x1072)  A(x107h  G(x107%)  AX107%)  J(x107D) Uy (x1072)
Completely * * * * 1.2465 9.1106
Known
Unknown 2.8293 2.7043 1.00 4.00 1.2468 9.1031

Table4 Unknown parameter events

Filter 6T=[ a ¢ 1 Pr(6/0)
1 67 =[0.0300 0.275 ] 0.25
2 67=10.0275 0.250 ] 0.25
3 67=10.0250 0.225 ] 0.25
4 67 =[0.0225 0.200 ] 0.25

expected value is obtained by taking the average over 100
samples. The measurement locations are the same as those in
Case (i) and the points to be estimated are taken at nine node
points m’ =1,2,---,9 except for two boundaries x=0 and
x=1. The events of unknown parameters 87 =[a,c,q,r] for
each elemental distributed Kalman filter are shown in Table 2.
The variances for measurement noises at three observation
points are assumed to be R;=diag(s,r,r) where r=0.01.
Table 3 shows that the filter performances for the cases of
completely known parameters and unknown parameters
resemble although the estimates for the diffusivity coefficient
a and absorption factor ¢ have still some biases.

(iii) Effect of Measurement Point Numbers. After
replacing the events of unknown parameters for Case (ii) by
ones shown in Table 4, the effect of measurement point
numbers is examined.

It is seen from Table 5 that the filter performance is more
improved if the measurement point numbers increase. For
the performance criterion J,, although increasing the
measurement point numbers seems to be insignificant for its
filter performance, as may be seen from later simulation, this
effect will be changed due to the difference of selection for
measurement locations. If the note is restricted to the
parameter identification, it may be desirable for its purpose to
have one or two measurement points. This means that if the
unknown parameters are regarded as some state values by
using a usual nonlinear filter technique, increasing the in-
formation on filtering may improve the correctness of
parameter estimation, but in the proposed method, the
number of measurement points is ineffective on its parameter
estimation directly; rather, the proposed method depends
upon the successful quantization levels for the unknown
parameter values.

(iv) Effect of the Location of the Measurement Points.
Under the unknown parameter events of Case (iii), three cases
were considered, m=1, m=2, and m=3 as Tables 6, 7, and 8.
Table 6 shows the results of the case where m=1. It is noted
that the optimal measurement location is x=0.5 for the
systems which have the parabolic operator as equation (8-1)
with the constant system and measurement noise variances

Journal of Dynamic Systems, Measurement, and Control

True State uk(x=0.7)
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Fig.6 Estimated flux pattern at x=0.7
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Fig.7 Optimal state-error covariances trajectory

(over the time and coordinate space). This result may be
conjectured easily from the problem for the optimal sensor
allocations [28].

It is seen from Table 7 that x! =0.4 and x* = 0.6 are suitable
for filtering performance and x' =0.4 and x?=0.5 are also
desirable for parameter estimation in two measurement
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Table5 Parameter estimates and performance criteria for Case (iii)

~ Location
m xLi=1,...,m d(x107%)  &x107Y  Ji(x107Y)y  Jy(x107h
1 0.1 2.8820 2.6320 1.7793 0.7933
2 0.1,09 2.9396 2.6896 2.8080 1.0934
3 0.1,0.5,0.9 2.9618 2.7118 1.3766 1.0884
4 0.1,0.4,0.6,0.9 2.9932 2.7432 0.8286 1.2723
5 0.1,0.3,0.5,0.7,0.9 2.9935 2.7435 0.5311 0.7731
6  0.1,0.2,0.4,0.6,0.8,0.9 2.9964 2.7464 0.5196 0.9899
7 0.1,0.3,0.4,0.5,0.6,0.7,0.9 2.9961 2.7461 0.4401 1.2701
8 0.1,0.2,0.3,0.4,0.6,0.7,0.8,0.9 2.9976 2.7476 0.2930 0.8168
9  0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 2.9976 2.7476 1.1761 0.7207

Table 6 Parameter estimates and performance criteria for one measurement

point

Location ,

X, i=1 a(x1072) Ax10-1h) Ji(x107h J2(x1072)
0.1 2.8820 2.6320 1.7793 7.9333
0.4 2.7794 2.5294 1.6900 7.8223
0.5 2.7158 2.4658 1.5851 7.6005
0.6 2.7730 2.5230 2.1558 7.9769
0.9 2.8401 2.5901 4.5855 13.128

Table 7 Parameter estimates and performance criteria for two measurement

points

Location ,
xi=1,2 a(x10"%) x1071 Ji(x10™hH J2(x1072)
0.1,0.9 2.9396 2.6896 2.8080 10.934
0.1,0.4 2.9316 2.6816 1.2834 6.4290
0.4,0.5 2.8452 2.5952 1.2311 9.1689
0.4,0.6 2.8990 2.6490 1.0272 7.5913
0.4,0.9 2.9214 2.6714 1.4038 9.3386

Table 8 Parameter estimates and performance criteria for three
measurement points

Location

xi=1,2,3 d(x1072%) x1071 Ji(x1072) Jo(x1072)
0.1,0.5,0.9 2.9618 2.7118 13.766 10.884
0.2,0.5,0.8 2.9554 2.7054 6.2455 8.1225
0.1,0.4,0.7 2.9499 2.6999 10.323 7.9074
0.3,0.6,0.9 2.9679 2.7279 9.5152 11.153
0.3,0.5,0.7 2.9432 2.6932 12.476 9.0932

Table 9 Parameter estimates and performance criteria for eigenfunction up
to 10-term approximation

Terms

N a(x1072) Hx1071) Ji(x107H J2(x1072)
1 2.6241 23741 1.1210 11.567
2 2.7657 2.5157 1.1764 8.6228
3 2.9253 2.6753 1.2670 9.1228
4 2.9432 2.6932 1.2476 9.0932
5 2.9865 2.7365 1.0826 8.6607
6 2.9888 2.7388 1.0813 8.6391
7 2.9912 2.7412 1.0814 8.6173
8 2.9930 2.7430 1.0810 8.6049
9 2.9939 2.7439 1.0730 8.6035

10 2.9939 2.7439 1.0730 8.6035

Table 10 Parameter estimates and performance criteria for variation of
measurement noise variance

Variance
r d(x 1072) Ax10" Ji(x10™h J(x1072)
0.005 2.9476 2.6976 1.1737 8.8598
0.010 2.9432 2.6932 1.2476 9.0932
0.020 2.9364 2.6864 1.3787 9.5046
0.030 2.9310 2.6810 1.4950 9.8589
0.040 2.9263 2.6763 1.6013 10.190
0.050 2.9220 2.6720 1.6999 10.508
0.100 2.9033 2.6533 2.1124 11.803
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N, Truncation Number

Fig.8 Effect of the truncation number of eigenfunction

locations. The former tendency agrees nearly with the result
of [29]. It is seen that the filtering performance is good at
x'=0.2,x*=0.5and x> =0.8 or x! =0.1, x2=0.4 and x> =0.7
for the case of m=3 in Table 8, and the latter is superior to
the former slightly in the viewpoint of parameter estimation.

(v) Effect of the Truncation Number of Eigenfunction. In
order to examine the effect of the truncation number of
eigenfunction, the simulations in the case of the adaptive filter
with approximation of up to 10-term were achieved. It is seen
from Table 9 that 2-term approximation is enough for
criterion J,, but if another criterion J, is considered, too, a 5-
term approximation may be necessary for the guarantee of
filter performance.

If the following two simplified criteria are utilized, the
conclusions previously discussed may become more apparent
ones (see Fig. 8):

J?=J1 _JI,JO 9-3)

Ji=J2=J210 9-4)

where subscript ‘“10”’ indicates the performance J;, i=1,2 at
N=10.

(vi) Effect of the Measurement Noise Level. The
correctness of parameter estimation and the filtering per-
formance due to the variation of measurement noise level are
shown in Table 10. It is seen that increasing the noise level
degrades the filter performance in Table 10. This tendency
may be understood from the information matrix for
distributed systems (e.g., see equation (37) in reference [29]).
It is noted that there exists an opposite tendency to the case of
parameter identification by using a usual gradient search
method [30]. If the unknown parameter is estimated by using
a usual nonlinear filter, the correctness of parameter
estimation will deteriorate as the noise level increases. The
proposed adaptive filter, however, is independent of the
mechanism for parameter estimation and the identified
parameters are not fed back to the filter mechanism (see Fig.
1). Thus it is concluded that the best weight for the unknown
parameters always becomes the best one for the elemental
distributed Kalman filter, but not vice versa.

10 Conclusions

An adaptive filter in discrete-time has been developed for a
stochastic distributed parameter system with unknown time
and space-invariant parameters. The basic idea presented here

Journal of Dynamic Systems, Measurement, and Control

is the separation principle of the parameter identification
scheme from the state estimation discussed in a continuous-
time case [9]. That is, the essentially nonlinear adaptive
distributed estimators are shown to be partitioned into two
parts, a linear nonadaptive part consisting of a bank of
distributed Kalman filters and a nonlinear part incorporating
the learning nature of the estimator. This also implies that the
Lainiotis’ partition theorem for lumped parameter systems
[20] holds at distributed parameter systems.

It is found from numerical results that this adaptive filter
approximated by the eigenfunction expansion technique is
highly effective in reducing the parameter uncertainties.
Moreover, the problems for the effectiveness of measurement
point numbers, the location of the measurement points, and
the truncation number of eigenfunction are pointed out
through those simulations. The problems of finding a suc-
cessful technique for quantizing the unknown parameters
[17], of extending the results obtained here to the case when
the parameters are spatially and/or temporally [18] depen-
dent, and of applying them to the detection-estimation are
current research areas.
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