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ABSTRACT

Genes that are important for the detoxification of drugs and other
xenobiotics show a high degree of interindividual variation attribut-
able to regulation by diverse genetic, nongenetic, and epigenetic
mechanisms including microRNAs (miRNAs). We selected a set of 56
miRNAs predicted to target the 39-untranslated region of absorp-
tion, distribution, metabolism, excretion (ADME) genes to assess
their hepatic expression levels and interindividual variability in
a well-documented human liver tissue cohort (n = 92), together
with the well-known hepatic miRNAs miR-122, miR-21, miR-27b,
and miR-148a. Quantification by stem-loop real-time reverse-
transcription polymerase chain reaction confirmed high expres-
sion for these microRNAs and revealed particularly strong
variability of expression (>1000-fold) for miR-539, miR-200c,
miR-31, miR-15a, and miR-22. Association analysis revealed a high
degree of correlation among various miRNAs, suggesting cor-
egulation. Statistical analysis considering liver donor meta-data

including correction for multiple testing revealed strongly elevated
levels of miR-21, miR-34a, miR-130b, and miR-132 in cholestatic
liver and of miR-21 and miR-130b during inflammation, as in-
dicated by elevated C-reactive protein levels in serum. Although
none of the miRNAs was strongly associated with sex, several
miRNAs, including miR-34a and miR-200a/b, were positively cor-
related with age. Association analysis with ADME gene expression
profiles and with cytochrome P450 gene expression phenotypes
(mRNA, protein, enzymatic activity) revealed numerous significant
correlations. Negatively affected protein and/or activity levels
were observed for CYP1A1 (e.g., miR-132, miR-142-3p, miR-21),
CYP2A6 (miR-142-3p, miR-21), CYP2C19 (e.g., miR-130b, miR-185,
miR-34a), and CYP2E1 (miR-10a, let-7g, miR-200c). These data
should be useful to further elucidate regulatory functions of
miRNAs in liver pathophysiology and regulation of ADME gene
expression.

Introduction

Cytochrome P450 (P450) and other drug metabolizing enzymes,
drug transporters, and regulatory genes that are important for the
absorption, distribution, metabolism, and excretion (ADME) of drugs
and xenobiotic substances are typically regulated by a multitude of
intrinsic and extrinsic factors, resulting in large interindividual vari-
ability of expression and function with clinical relevance (Ingelman-
Sundberg et al., 2007; Zanger and Schwab, 2013). Interestingly, the
importance of each of these factors differs among ADME genes such
that each gene appears to be regulated by a unique set of factors. For
example, CYP2D6 appears to be almost exclusively regulated by gene

polymorphisms, whereas other enzymes including CYPs 1A2, 2C8, and
3A4 are less affected by genetic polymorphism but strongly inducible
through transcriptional regulation by ligand-dependent receptors [e.g.,
aryl hydrocarbon receptor, pregnane X receptor (PXR), constitutive
androstane receptor, peroxisome proliferator-activated receptor a (Plant,
2007; Yang et al., 2010; Thomas et al., 2013)]. Additional factors
including sex and age (Yang et al., 2010; Zhang et al., 2011) as well as
hepatic disease states such as cholestasis and inflammatory conditions
(Morgan, 2009; Nies et al., 2009; Klein et al., 2010) can have marked
influence on the expression and function of ADME genes.
Knowledge of the intrinsic and extrinsic factors that influence

expression and function of ADME genes is a prerequisite for predicting
variable pharmacokinetics and drug response. However, despite
extensive research into the mechanisms of ADME variability,
personalized prediction is still difficult, indicating that unrecognized
factors may exist that need to be identified. In recent years a new
type of regulation by non-coding RNAs, particularly microRNAs
(miRNAs) has been shown to affect the expression of a large
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proportion of the genome. These single-stranded, noncoding RNA
molecules consist of about 22 nucleotides that imperfectly hybridize
to 39-UTR or other regions of mRNAs, typically leading to trans-
lation inhibition and lower protein expression or to transcript de-
gradation (Bartel, 2009). The large number of miRNAs, estimated at
over 2000 different molecules per mammalian species, and their poorly
defined binding specificities allow for a vast number of potential
miRNA-target gene interactions, which has been estimated to comprise
up to 60% of human mRNAs (Friedman et al., 2009). MicroRNAs are
involved in virtually all cellular processes and were also identified as
tumor suppressors or oncogenes (Abba et al., 2012). Interestingly, many
miRNAs appear to be tissue specifically regulated, but nevertheless they
may be found in various body fluids within stable exosomes, making
them potentially interesting biomarker candidates for a variety of
conditions and disorders (Gusachenko et al., 2013).
Theoretical and experimental studies suggest that miRNAs are

involved in the regulation of ADME gene expression, thus potentially
contributing to drug response and toxicity (Ramamoorthy and Skaar,
2011; Yokoi and Nakajima, 2013). For example, human CYPs 1B1,
2E1, and 3A4 have been shown to be posttranscriptionally regulated
by miR-27b (Tsuchiya et al., 2006), miR-378 (Mohri et al., 2010), and
miR-27b (Pan et al., 2009). Furthermore, indirect influences of miRNAs
on ADME gene expression have been shown to occur via transcriptional
regulators, e.g., downregulation of CYP3A4 via posttranscriptional
repression of PXR by miR-148a (Takagi et al., 2008) or of CYP7A1 via
downregulation of hepatocyte nuclear factor 4a by miR-24 and miR-34a
(Takagi et al., 2010; Ramamoorthy et al., 2012). Further examples were
recently summarized (Yokoi and Nakajima, 2013).
However, little information is presently available regarding the

expression variability of miRNAs that may be involved in ADME
gene regulation in human liver. Although large systematic studies
have been performed to compare tissue-specific expression profiles of
miRNAs (Barad et al., 2004; Landgraf et al., 2007), interindividual
variation of expression was rarely studied, and most data on human
liver expression have been obtained in context of hepatocellular
carcinoma (Murakami et al., 2006; Jiang et al., 2008). In rat models,
however, studies suggested that miRNA expression can also be affected
by acute and chronic hepatocellular injuries (Yamaura et al., 2012).
In this study we selected 56 miRNAs that have predicted binding

sites in 39-UTR of important ADME genes and that are expressed in
human liver. We then quantified these miRNAs in a large cohort (n =
92) of well-documented Caucasian human liver samples to determine
their relative expression and population variability. Extensive correla-
tion and association analyses identified extrinsic and intrinsic factors
affecting miRNA expression and provided evidence for selective ADME
regulation patterns.

Materials and Methods

Caucasian Human Liver Cohort. Liver tissues and corresponding blood
samples for genomic DNA extraction had been collected from patients
undergoing liver surgery at the department of general, visceral, and trans-
plantation surgery at the Campus Virchow, Humboldt University, Berlin,
Germany. The study was approved by the ethics committees of the medical
faculties of the Charité, Humboldt University and of the University of
Tuebingen and conducted in accordance with the Declaration of Helsinki.
Written informed consent was obtained from each patient. All tissue
samples were examined by a pathologist, and only histologically non-
tumorous tissues were collected and stored at 280°C. For each patient,
detailed documentation of clinical parameters was available concerning age,
sex, smoking habits, alcohol consumption, presurgical drug exposure,
presurgery liver serum parameters including gamma glutamyl-transferase
(GGT), C-reactive protein (CRP), and cholestasis, as well as diagnosis

leading to liver resection, as previously described (Nies et al., 2009, 2013;
Klein et al., 2010). Patients who suffered from hepatitis, cirrhosis, or
alcohol abuse were excluded. In this study we investigated 92 randomly
selected human livers out of a set of 150 particularly well-characterized
samples (40 men, 52 women; Table 1). Gene expression profiles on these
livers by microarray analysis are publically available as previously described
(Schröder et al., 2013).

miRNA Isolation and Quantification. Total RNA was prepared from
frozen liver tissue using mirVana Isolation Kit (Ambion, Austin, TX). Reverse
transcription (1 mg of total RNA) was performed by using Megaplex RT
Primers, Human Pool A v2.0 and the TaqMan Reverse Transcription Kit
(Applied Biosystems, Darmstadt, Germany) following the protocol provided by
the manufacturer. To amplify all microRNAs prior to quantitation by real-time
quantitative polymerase chain reaction (qPCR), reverse transcription Megaplex
PreAmp Primers, Human Pool A v2.0 were used along with the TaqMan
PreAmp Master Mix (Applied Biosystems). Initially, expression of a larger set
of 378 miRNAs by qPCR in four pools of 10 liver samples each (2�10 men
and 2�10 women) was performed by using microfluidic cards TaqMan Low
Density Array A v2.0 for humans (Applied Biosystems) and detected with the
ABI 7900 HT Fast real-time reverse-transcription polymerase chain reaction
system. Expression of 56 selected miRNAs (see Fig. 1) was quantified by
high-throughput stem-loop real-time reverse-transcription polymerase chain
reaction using predeveloped TaqMan assays (Applied Biosystems) on
a Biomark high-throughput qPCR chip platform (Fluidigm Corporation,
San Francisco, CA). Relative quantification was calculated by normalization
to the endogenous control RNU48 and to the mean relative quantification =
2exp(2ddCt).

Hepatic P450 Phenotype Analysis. Total liver RNA was prepared by
Trizol/QiagenRNeasy protocol as described previously (Gomes et al., 2009).
P450 mRNA expression was quantified using either previously described self-
designed TaqMan gene expression assays for CYP1A2 (Klein et al., 2010),
CYP2A6 (Haberl et al., 2005), CYP2B6 (Hofmann et al., 2008), CYP2C19
(Burk et al., 2005), CYP2D6 (Toscano et al., 2006), CYP3A4 (Wolbold
et al., 2003), and NADPH:cytochrome P450 reductase (POR; Gomes et al.,
2009) or predeveloped TaqMan assays (Applied Biosystems) for CYP2C8
(Feidt et al., 2010), CYP2C9 (Feidt et al., 2010) ,and CYP2E1 (Hs00559368_m1

TABLE 1

Population demographics and serum parameters of 92 liver donors

Subgroup Number

Sex
Male 40
Female 52

Age
#70 77
.70 15

Smoking habitsa

Nonsmoker 66
Smoker 23

Alcohol consumptiona

None 42
1–2 times/week 36
Daily 10

Presurgery drug exposure
None 17
Yes 75

Bilirubin (mg/dl)
Normal (#1.2) 78
Elevated (.1.2) 14

GGT (U/l)a

Normal (f: # 36; m: # 64) 53
Elevated (f: . 36; m: . 64) 37

CRP (mg/l)a

Normal (#8.2) 87
Elevated (.8.2) 5

Cholestasisb

Noncholestatic 76
Cholestatic 16

a Sample number are not summing up to 92 because of missing information.
b Cholestasis diagnosis as described in Nies et al., 2009.
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CYP2E1; Applied Biosystems) using the TaqMan 7500 system (Applied
Biosystems). Raw data were normalized to 60S large ribosomal protein P0
determined in the same samples using the endogenous control assay (4326314E)
from Applied Biosystems. A TaqMan assay for CYP1A1 was newly designed
(Supplemental Table 1).

P450 and POR protein expression was quantified in human liver
microsomes by Western blotting as described before (Lang et al., 2001;
Zanger et al., 2001; Wolbold et al., 2003; Haberl et al., 2005; Gomes et al.,
2009; Klein et al., 2010, 2012). Details for protein determination of CYP1A1,
CYP2C8, CYP2C9, CYP2C19, and CYP2E1 will be published elsewhere.
Determination of microsomal enzyme activities was carried out with enzyme-
specific prototype substrates for CYP1A2 (phenacetin), CYP2A6 (coumarin),
CYP2B6 (bupropion), CYP2C8 (amodiaquine), CYP2C9 (luciferin-H),
CYP2C19 (S-mephenytoin), CYP2D6 (propafenone), CYP2E1 (chlorzoxazone),
CYP3A4 (atorvastatin), and POR (cytochrome C) as described previously
(Gomes et al., 2009).

Statistical Analysis. All statistical analyses were performed using
GraphPad Prism (GraphPad Software Inc., San Diego, CA) and R-2.15.0
(www.r-project.org) with additional packages quantreg 4.96 and coin 1.0-21.
Spearman correlation tests were applied to study associations 1) among
miRNAs, 2) between miRNAs and ADME genes, and 3) between miRNAs
and P450 phenotypes. Wilcoxon-Mann-Whitney tests and Spearman
correlation tests were used as appropriate to study univariate correlations
between microRNAs and nongenetic factors. In addition, for each
microRNA a median regression model with seven nongenetic factors (sex, age,
nicotine and alcohol consumption, presurgical drug exposure, cholestasis, and
C-reactive protein) was calculated to study corresponding multivariate
interrelationships. Analysis of variance for multivariate median regression
was applied to analyze the associations between miRNAs and P450
phenotypes, when taking nine different nongenetic factors into account (the 7
factors listed above plus serum bilirubin and GGT). To be more precise, for
each phenotype, we used function anova.rq in R-package quantreg (with rank

Fig. 1. Expression variability of 56 ADME-related miRNAs in 92 human liver samples. The miRNAs were selected based on liver expression and presence of in silico
predicted seed sequences in the 39-UTRs of a panel of ADME genes. Expression was measured by using predeveloped TaqMan assays and relatively quantified by
normalization to the endogenous control RNU48. The miRNAs are sorted according to their mean expression levels, with boxes and whiskers indicating minimum and
maximum value and lower and upper quartile relative to the median which was set at 1. The scale at left indicates approximate expression levels relative to the lowest
expressed miR-200c, which was set at 1.
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test-statistic and Wilcoxon score function) to compare two median
regression fits: 1) with only the nine nongenetic factors as covariates
versus 2) the nine nongenetic factors plus the miRNA considered. Where
indicated, P values were adjusted for multiple testing by Bonferroni
correction or the Benjamini-Hochberg procedure. Statistical significance
was defined as P , 5%.

Results and Discussion

miRNA Selection for Detection in Human Liver Samples. To select
miRNAs that are of potential relevance for ADME gene regulation in
liver, we first determined expression levels of 384 well-described
miRNAs available on a predesigned array in pools of human liver

Fig. 2. Correlation matrix of hepatic miRNA expression. Levels of individual miRNAs determined by quantitative PCR were correlated to each other and Spearman
correlation coefficients (rs) were calculated and displayed in a grayscale ranging from 1 (perfectly correlated) to 0 (no correlation). Inset, diagram of the 10 strongest
correlation pairs. Only significant results after Bonferroni correction for multiple testing are shown.
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samples. We then determined which of the liver-expressed miRNAs have
predicted binding sites on a selection of 60 ADME genes, including
the most important P450s, phase II enzymes, drug transporters,
and transcriptional regulators (Rieger et al., 2011). By use of our
previously developed miRNA ranking tool, MIRNA-DISTILLER, we
combined prediction data from three miRNA databases, i.e., TargetScan
(Friedman et al., 2009), microCosm (Griffiths-Jones et al., 2006), and
miRDB (Wang, 2008), to select miRNAs according to number and
strength of predicted binding sites on ADME genes and their
expression level in liver (Rieger et al., 2011). In addition, we
included the liver specific miRNA miR-122 (Lagos-Quintana et al.,
2002) as well as miR-21, miR-19a/b, and miR-106a/b because of
their high expression in liver, despite low ranking order for ADME
gene regulation. The final set of 56 selected miRNAs predicted to regulate
ADME genes and expressed in liver is shown in Supplemental Table 2.
Expression Profiling of Selected miRNAs in Human Liver

Tissue. As shown in Fig. 1, the overall most abundant microRNA in
our liver cohort was the liver-specific miR-122, confirming reports by
others (Lagos-Quintana et al., 2002; Landgraf et al., 2007). We also
found high expression of the ubiquitous miR-21, which has a wide

TABLE 2

Univariate analysis of nongenetic factors influencing miRNA expression

Bold letters emphasize significant results after correction for multiple testing (Benjamini-Hochberg).

Upregulated FCa P Valueb Downregulated FC P Valueb

Sex miR-31 1.45 0.03
(male versus female)
GGT miR-34a 2.27 0.00005 miR-148a 0.75 0.0332
(normal versus elevated) miR-21 2.00 0.00002 miR-19b 0.79 0.0100

miR-130b 1.90 0.0030 miR-17 0.81 0.0468
miR-132 1.84 0.0039 miR-106a 0.82 0.0299
miR-142-3p 1.70 0.0021 miR-19a 0.83 0.0257
miR-150 1.51 0.0100
miR-130a 1.39 0.0089
miR-221 1.38 0.0008
miR-31 1.38 0.0497
miR-27a 1.33 0.0361
miR-106b 1.20 0.0125

Bilirubin miR-200a 2.58 0.0144 miR-455-3p 0.59 0.0180
(normal versus elevated) miR-21 2.31 0.0029 miR-148a 0.60 0.0058

miR-31 2.12 0.0429 miR-27b 0.67 0.0223
miR-34a 2.08 0.0104 miR-17 0.69 0.0385
miR-132 1.89 0.0043 miR-106a 0.69 0.0236
miR-130b 1.83 0.0299 miR-19b 0.72 0.0101

miR-19a 0.75 0.0251
miR-122 0.75 0.0056

CRP miR-130b 6.00 0.00003
(normal versus elevated) miR-200c 5.83 0.0495

miR-21 3.13 0.0005
miR-34a 3.10 0.0229
miR-539 2.53 0.0433
miR-130a 2.10 0.0254
miR-18b 1.98 0.0254
miR-142-3p 1.62 0.0394

Cholestasis miR-200c 2.54 0.0105 miR-17 0.64 0.0030
(normal versus elevated) miR-21 2.54 0.0000003 miR-106a 0.68 0.0019

miR-130b 2.51 0.00002 miR-148a 0.69 0.0433
miR-34a 2.41 0.00003 miR-27b 0.69 0.0371
miR-132 2.20 0.0001 miR-455-3p 0.69 0.0065
miR-31 1.92 0.0380 miR-455-5p 0.70 0.0444
miR-221 1.59 0.0040 miR-19b 0.74 0.0037
miR-142-3p 1.45 0.0227 miR-19a 0.80 0.0098
miR-27a 1.41 0.0467 miR-122 0.81 0.0343
miR-130a 1.27 0.0044

Alcohol miR-185 1.53 0.0063
(Non-alcohol versus alcohol)

FC, fold change.
a Based on medians of relative miRNA expression.
b Wilcoxon-Mann-Whitney test. Only associations with P , 0.05 are listed.

TABLE 3

Univariate analysis of age influencing miRNA expression

Bold letters emphasize significant results after correction for multiple testing (Benjamini-
Hochberg).

Correlation rs P value a

Age miR-200a 0.42 0.00003
(Increasing) miR-34a 0.41 0.00004

miR-200b 0.35 0.0006
miR-21 0.32 0.0020
miR-132 0.30 0.0035
miR-200c 0.28 0.0078
miR-142-3p 0.25 0.0175
miR-150 0.25 0.0159
miR-106b 0.24 0.0233
miR-29a 0.24 0.0239
let-7g 0.23 0.0243
miR-221 0.22 0.0394
let-7d 0.21 0.0463
miR-130a 0.21 0.0426
miR-31 0.21 0.0402

a Spearman correlation test. Only associations with P , 0.05 are listed.
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Fig. 3. Heat map of correlation analysis between 56 different miRNAs and selected ADME genes. Columns represent hepatic mRNA expression of 60 ADME genes
determined by microarray analysis and rows represent the individually assayed miRNAs. Heat map colors represent Spearman correlation coefficients as indicated by the
color key (bottom). Significant correlations are marked by stars (*P , 0.05; **P , 0.01; ***P , 0.001). Correlations that remain significant after Benjamini-Hochberg
adjustment of P values are framed. ABC, ATP-binding cassette; AHRR, aryl-hydrocarbon receptor repressor; DPYD, dihydropyrimidine dehydrogenase; GST, glutathione
S-transferase; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase; HNF, hepatocyte nuclear factor; INSIG, insulin induced gene; NAT, N-acetyltransferase; NR, nuclear
receptor; PON, paraoxonase; PPAR, peroxisome proliferator-activated receptor; RXR, retinoid X receptor; SLC, solute carrier; SLCO, solute carrier organic anion
transporter; SREBF, sterol regulatory element binding transcription factor; SULT, sulfotransferase; TPMT, thiopurine S-methyltransferase; VDR, vitamin D receptor.
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role in various biologic processes (Kumarswamy et al., 2011), of miR-
27b, described to regulate CYP3A4 (Pan et al., 2009) and peroxisome
proliferator-activated receptor a (Kida et al., 2011), and of miR-148a,
described to regulate PXR (Takagi et al., 2008). Among the 10 most
highly expressed miRNAs were miR-19b, described to be downregulated
in fibrotic compared with normal human livers (Lakner et al., 2012), miR-
106a, which has been involved in HCC (Murakami et al., 2006), and
miR-24, targeting hepatocyte nuclear factor 4a (Takagi et al., 2010) and
aryl hydrocarbon receptor nuclear translocator (ARNT) (Oda et al., 2012).
The 56 miRNAs showed highly variable expression, although none

of them was normally distributed. Particularly broad distributions were
observed for miR-22, miR-15a, miR-31, miR-200c, miR-539, and let-
7f, which displayed variability from ~1000- to over 30,000-fold,
whereas miR-26a, miR-125b, miR-28-3p, and let-7a displayed vari-
ability below 10-fold. We then analyzed whether miRNA expression
levels were correlated to each other (Fig. 2). A high degree of inter-
miRNA correlation was observed. Particularly highly correlated
mRNA pairs were miR-19a and miR-19b [Speaman correlation (rs) =
0.95, Bonferroni-corrected P value , 0.001]; miR-17 and miR-106a
(rs = 0.94, P , 0.001); let-7g and miR-26a (rs = 0.90, P , 0.001);
and miR-148a and miR-101 (rs = 0.88, P , 0.001; Fig. 2, inset).
These data are in part in agreement with published evidence. For
example, high correlations among miRNAs miR-17, miR-19a/b, and
miR-106a (compare with Fig. 2), which are involved in control of
transforming growth factor beta signaling, correspond well to their
presence within miRNA clusters and common regulation by c-myc
(Petrocca et al., 2008; Kumar et al., 2013). Furthermore, let-7g and miR-
26a have been found to be similarly regulated during cellular senescence
(Maes et al., 2009). However, the data presented in Fig. 2 suggest that
a considerable fraction of hepatic miRNAs is coregulated even if they
are not derived from a common transcript (Baskerville and Bartel, 2005).
Influence of Nongenetic Factors on miRNA Expression. A

significant influence of the liver donor’s sex was only seen for miR-31,
which was expressed at higher levels in men compared with women
(Table 2). Age had a significant influence on expression of several
miRNAs. The strongest correlations between miRNA expression and age
were attributable to upregulation in the elderly observed for miR-34a,
miR-200a, and miR-200b. These showed Spearman correlation coef-
ficients greater than 0.35 and remaining statistically significant after
correction for multiple testing (Supplemental Fig. 1A; Table 3).
Interestingly, miR-34a was shown to be upregulated in senescent
endothelial cells in culture and also in different organs of aged mice
(Ito et al., 2010). Although age-dependent expression has also been
observed for several other miRNAs including miR-21, miR-142-3p,
and miR-200c (Dimmeler and Nicotera, 2013), most of the data available
so far were from mice, cell-culture systems, or other tissues than liver.
Several miRNAs were associated with pathologic changes in liver

function parameters. Thus, decreased liver function as indicated by
elevated GGT was associated with greater than 1.5-fold increased
levels of miR-34a, miR-21, miR-130b, miR-132, miR-142-3p, and
miR-150 (Table 2). In patients with pathologically increased levels of
CRP, an acute phase response protein synthesized by the liver used as
marker for systemic inflammation, we discovered a significant sixfold
upregulation of miR-130b (Supplemental Fig. 1B; Table 2), a finding
that has not been reported before to the best of our knowledge. This

result remained significant after correction for multiple testing and
in a multivariate model considering seven factors as covariates (see
Materials and Methods; Supplemental Table 3). MiR-130b was
observed before to be downregulated in plasma of bile-duct ligation-
induced cholestatic rats (Yamaura et al., 2012) and has been suggested
as potential marker for hepatocellular carcinoma (Li et al., 2011).
We also found increased expression of miR-21 in livers from donors
with elevated CRP, a well investigated miRNA that plays a crucial
role in many biologic and pathologic processes including in-
flammation (Kumarswamy et al., 2011). Several additional miRNAs
correlated to elevated CRP; however, these were only statistically
significant in univariate tests without correction for multiple testing
(Table 2).
Strong differences between patients with and without cholestasis

were observed; in particular, miR-21, miR-130b, miR-34a, and miR-
132 showed greater than twofold increased levels, and these effects
remained significant after correction for multiple testing (Supplemen-
tal Fig. 1D; Table 2). Multivariate modeling confirmed the asso-
ciations of miR-21 and miR-34a with cholestasis (Supplemental
Table 3). To our knowledge, the association of these two miRNAs
with cholestatic conditions has not been described before. As miR-21
and miR-34a belong to the most extensively studied miRNAs showing
a plethora of physiological and pathophysiological functions, it should
be interesting to further investigate the mechanism of this relationship
and their potential suitability as biomarkers for cholestasis and other
liver diseases. In contrast, the liver specific miR-122 was down-
regulated in cholestasis as well as in patients with elevated bilirubin
levels, although these effects were only statistically significant in
univariate tests and without multiple testing corrections. Additional
miRNAs with decreased levels in cholestatic tissues were miR-148a
and miR-27b, among others (Table 2). Finally, regular alcohol con-
sumption was significantly associated with higher miR-185 expression
compared with donors not consuming alcohol (Supplemental Fig. 1C;
Table 2), whereas smoking did not seem to have a significant effect.
Correlation of miRNA to ADME Gene Expression Levels. We

correlated the miRNA expression profiles to gene expression profiles
obtained previously on these livers by microarray analysis (Schröder
et al., 2013). As illustrated in Fig. 3, miRNAs were associated with
both up- and downregulated ADME gene expression patterns. On the
basis of the predominant type of regulation, there appeared to be two
classes of miRNAs, i.e., those associated with lower gene expression
(e.g., miR-132, miR-142-3p, miR-150, miR-185, miR200a/b, miR-21,
miR-221, miR-223, miR-27a, miR-34a) and those associated with
higher expression (e.g., miR-148a, miR-19a/b, miR-204, and others).
ADME genes negatively correlated to miRNAs included, in particular,
the CYPs 1A1, 1A2, 2C19, and 3A4; the UDP glucuronosyltrans-
ferases (UGTs) 2B7 and 2B17; the transporters ABCG2, SLC47A1,
and SLCO1B1 and 1B3; the nuclear receptors LXRa (NR1H3), con-
stitutive androstane receptor (NR1I3), glucocorticoid receptor (NR3C1),
and RXRa (NR2B1). Mainly positive correlations were seen for
ABCB1, ABCB11, ABCC2, and GSTP1. Because miRNA regulation
does not necessarily affect transcript stability and mRNA levels, we
did not systematically assess whether these data coincide with the
predictions by the database algorithms used for selecting the miRNAs
(Supplemental Table 2). It appears that there is good agreement for

Fig. 4. Heat map of correlation analysis between miRNA and P450/POR phenotypes. Columns represent expression of mRNA (R, determined by TaqMan qPCR), protein
(P), and activity (A) of 10 P450s and POR involved in detoxification. The following enzyme activities were measured (Gomes et al., 2009): CYP1A2, phenacetin O-
deethylation; CYP2A6, coumarin O-deethylation; CYP2B6, bupropion hydroxylation; CYP2C8, amodiaquine N-demethylation; CYP2C9, luciferin-H oxidation; CYP2C19,
S-mephenytoin 49-hydroxylation; CYP2D6, propafenone 5-hydroxylation; CYP2E1, chlorzoxazone 6-hydroxylation; CYP3A4, atorvastatin ortho-hydroxylation, and POR,
cytochrome C reduction. Heat map colors correspond to Spearman correlation coefficients (rs) as indicated by the color key (bottom). Significant correlations are marked by
stars (*P , 0.05; **P , 0.01; ***P , 0.001). Correlations that remain significant after Benjamini-Hochberg adjustment of P values are framed.
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some miRNAs (e.g., of seven predicted targets of miR-142-3p that
were analyzed, four were correlated) but not for others (e.g., of
six predicted and measured miR-21 targets, only one, UGT2B7,
was negatively correlated). As a limitation of the approach it
should be noted that microarray data were used for these analyses
and that no protein/activity data were available except for the
P450s, discussed below. The data should nevertheless be valuable for
exploratory purposes.
Correlation of miRNA to P450 Phenotypes. Because major

effects of miRNAs occur at the posttranscriptional level, we compared
the hepatic miRNA levels further to protein and activity phenotypes
determined for the 10 most important drug metabolizing P450s, as
well as POR (Fig. 4; Table 4). For these genes, we attempted to
validate the mRNA expression levels by qPCR data. It should be noted
that the significant findings in Fig. 3 were largely reproduced for some
CYPs, e.g., 1A1, 2C19, but not for others, e.g., 1A2, 3A4, indicating
differences in the expression data. At the protein/activity level, most of
the significant correlations were negative, whereas only few examples
with apparently upregulated P450s were observed (e.g., for miR-148a,
although only significant without multiple testing adjustment). In-
terestingly, DNA-methyltransferase 1 was verified as a target for
miR-148a, resulting in positive correlations between miR-148a and
DNA-methyltransferase 1 targets (Braconi et al., 2010). For example,
decreased level of promoter methylation of CYP3A4 and PXR had
previously been shown to correlate to increased mRNA expression
(Habano et al., 2011; Kacevska et al., 2012). Several negative
correlations on the protein/activity level were observed for CYPs 1A1/
2, 2A6, 2C19, 2D6, and 2E1, which were linked to miR-130a/b, miR-
132, miR-142-3p, miR-200a/b, miR-21, miR-27a, miR-31, and miR-
34a. The strongest negative correlations at the protein level (rs , 2
0.35, P , 0.05) were observed for CYPs 1A1 (miR-142-3p: rs = 2
0.36, miR-200a: rs = 20.36, miR-200b: rs = 20.36), 2A6 (miR-
142-3p: rs = 20.46), and 2C19 (miR-34a: rs = 20.35, miR-185: rs =
20.37). Interestingly, most of the negative correlations of CYPs 1A2,
2A6, 2D6, 2E1, and POR were not accompanied by significant
changes at the transcript level, in agreement with posttranscriptional
regulation by miRNAs.
In contrast to the above mentioned P450s, the negative correlations

of CYP1A1 and CYP2C19, e.g., with miR-132, miR-142-3p, miR-21,
miR-34a, and others were also seen at the transcript level, indicating
direct regulation through transcript degradation or indirect transcrip-
tional regulation. The latter possibility may be explained, for example,
by miR-142-3p-mediated downregulation of the glucocorticoid re-
ceptor (Lv et al., 2012) or by miR-132 and miR-34a-mediated
downregulation of the SIRT1 deacetylase, which could lead to the
inactivation of several nuclear receptors involved in P450 regulation
(Strum et al., 2009; Lee and Kemper, 2010). The remaining P450s
seemed to be less affected by these miRNAs: CYP2C9 was negatively
correlated to other miRNAs at the mRNA level only. Only few
correlations, most of which did not withstand multiple testing ad-
justment, were seen for CYP2B6, CYP2C8 (to miR-204, positive),
CYP3A4 (e.g., to miR-142-3p, negative, to miR-148a, positive, and at
all levels to miR-34a), and POR (Fig. 4). In particular, we were not
able to detect correlations between miR-27b and CYP3A4 (Pan et al.,
2009) or miR-148a and either PXR or CYP3A4 (Takagi et al., 2008).
The lack of correlation between miR-148a and CYP3A4 expression
was also recently reported for Chinese liver donors (Wei et al., 2013).
A possible explanation may be that miRNA regulation is often being
studied in optimized in vitro model systems, whereas P450 expression
in liver is multifactorial and miRNA effects on regulation may not be
sufficiently strong to be detectable by correlation. Thus, the observed
correlation coefficients were in the range 20.5 , rs , 0.5, indicating

TABLE 4

Multivariate analysis of miRNAs associated with P450 phenotypes

miRNAs that have a predicted target sites within P450 39- -UTRs are marked in bold.

Gene miRNA
mRNA Protein Activity

P Valuea

CYP1A1 let-7d 0.040
let-7e 0.021 0.026
miR-132 0.050
miR-142-3p 0.003 0.020
miR-16 0.029
miR-18a 0.020
miR-200a 0.014 0.0097
miR-200b 0.026 0.011
miR-21 0.025
miR-27a 0.009
miR-9 0.016

CYP1A2 miR-204 0.005b

miR-27a 0.036 0.031
CYP2A6 miR-142-3p 0.013

miR-146a 0.013
miR-150 0.049

CYP2B6 let-7e 0.043
miR-130a 0.033
miR-18a 0.042
miR-18b 0.021
miR-200c 0.025b

CYP2C8 miR-200c 0.042b

miR-223 0.019
CYP2C9 let-7f 0.024b

miR-133a 0.037b

miR-148b 0.0449b

miR-200c 0.033b

miR-223 0.030
miR-28-3p 0.034

CYP2C19 miR-130a 0.044
miR-150 0.049
miR-185 0.038
miR-21 0.046
miR-214 0.014
miR-24 0.037

CYP2D6 let-7f 0.047
miR-323-3p 0.045

CYP2E1 let-7a 0.021
let-7b 0.0098
let-7g 0.035
miR-10a 0.016
miR-130a 0.049
miR-150 0.027
miR-19a 0.028
miR-19b 0.037
miR-26a 0.046 0.006
miR-26b 0.045
miR-323-3p 0.020 0.031
miR-455-3p 0.008
miR-455-5p 0.048
miR-9 0.028

CYP3A4 miR-133a 0.021b

miR-200c 0.029b

miR-204 0.011b

miR-223 0.005
POR let-7a 0.048

miR-10a 0.021
miR-133a 0.003
miR-142-3p 0.044
miR-143 0.009
miR-150 0.009 0.006
miR-204 0.005
miR-214 0.020
miR-223 0.027
miR-27a 0.031
miR-455-3p 0.049

a ANOVA P value, computed by comparing two median regression models (I and II), each
incorporating 9 nongenetic factors as covariates, where model II additionally comprised the
miRNA considered. Covariates taken into account were sex, age, nicotine and alcohol
consumption, presurgical drug exposure, cholestasis, serum bilirubin, CRP, and liver GGT.
Only associations with P , 0.05 are listed.

b Positive correlation, all others negative.
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a modulatory role of miRNA regulation for ADME genes, in
agreement with the current general view of miRNA regulation (Bartel,
2009).
Multivariate analysis taking seven nongenetic factors into account

did not reveal several strong associations seen by univariate tests (e.g.,
the negative associations of miR-34a with CYPs 1A1, 1A2, 2A6,
2C19, and 3A4), whereas various new associations were also observed
(compare Table 4 and Fig. 4). Furthermore, multivariate analysis
revealed significant correlation between miRNAs miR-125b, miR-
152, and miR-22 with age (Supplemental Table 3), which were not
seen by univariate analysis (Table 4). These differences between
univariate and multivariate analysis may be explained by the strong
association of some miRNAs to pathophysiological conditions, which
simultaneously affect P450 expression (e.g., inflammation). The
mechanism of these correlations thus remains to be established. A
further limitation to be mentioned is that we did not take into account
the potential effect of genetic variation, which may occur either in the
miRNA target genes, where they may affect the binding sites, or in the
miRNA genes, where they may affect the miRNA seed sequence or
structure and binding properties.

Conclusion

In this study we determined expression levels of 56 miRNAs with
predicted binding sites in 39-UTRs of important ADME genes in
a well-documented cohort of 92 human surgery liver samples. Our
data confirm and extend findings from previous studies that ex-
pression of some miRNAs is related to age and sex. Our data suggest
that expression of certain miRNAs is strongly affected by hepatic
pathophysiological conditions. In particular, several miRNAs in-
cluding miR-21, miR-34a, and miR-130b were pronouncedly in-
creased in cholestatic livers as well as during acute phase response,
suggesting their potential usefulness as liver disease biomarkers.
Correlation analyses revealed numerous associations between these
and other miRNAs with ADME and cytochrome P450 expression
phenotypes apparently resulting from both direct and indirect in-
teractions. Although these associations need to be confirmed, they
indicate potential for novel biomarkers in pharmacokinetics and
hepatic disease.
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