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Abstract. Method overloading is a controversial language feature, especially in
the context of Object Oriented languages, where its interaction with overriding
may lead to confusing semantics. One of the main arguments against overloading
is that it can be abused by assigning the same identity to conceptually different
methods.
This paper describes a study of the actual use of overloadingin JAVA . To this end,
we developed a taxonomy of classification of the use of overloading, and applied
it to a large JAVA corpus comprising more than 100,000 user defined types.
We found that more than 14% of the methods in the corpus are overloaded. Using
sampling and evaluation by human raters we found that about 60% of overloaded
methods follow one of the “non ad hoc use of overloading patterns” and that
additional 20% can be easily rewritten in this form. The mostcommon pattern is
the use of overloading as an emulation of default arguments,a mechanism which
does not exist in JAVA .

1 Introduction

208, 765, 973, 875, 851, the count of distinctadmissibleidentifiers in early versions of
C [15], may seem a fairly large number. Still, as large as thisnumber is, it is infinitesi-
mally small when compared to its JAVA [1] counterpart. Yet,adequateidentifier names
are hard to come by, both in JAVA and in C, as anyone who tried naming a programming
entity—be it a variable, a function, or a newly introduced type—must have noticed: the
problem is not of finding the needle in the haystack, but the simple truth that, no matter
how large the universe of discourse is, the competition on the few scarce good names
remains fierce.

Striking a balance between the desire to make names descriptive and meaningful,
and the practical demand that these are not overly verbose, we often wish to use iden-
tifiers such asprint, close, sort, execute or draw in reference to distinct entities.
Program blocks and scoping rules serve this wish in making itpossible to reuse a name
in differentcontexts in an orderly fashion. A common, yet controversialmechanism for
reusing a name within thesamecontext, isoverloading, an ad-hoc kind of polymor-
phism [5].

Several style guides3 all but completely forbid the use of overloading. This practice
could be justified e.g., by the vigorous criticism by B. Meyer[18], expressed succinctly
with his, almost axiomatically-true, statement:

∗ On sabbatical from the Technion
3 http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
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Different Things Should have Different Names

But, this statement could be (and often is) answered by an equally self-evident truth

The Same Things Should Have the Same Name

which reveals the clumsiness in the encoding function signatures into their names, e.g.,
in the definition of a series of functions:

– printInt(int i),
– printBoolean(boolean b),
– printChar(char c), etc.,

instead of straightforward use of overloading:print(int i), print(boolean b),
print(char c), etc.

Meyer and others [4] point a finger at the ambiguity innate in overloading—an am-
biguity which is exacerbated in the presence of inheritance, genericity, coercion, and
language-specific mechanisms (e.g., non-explicit, single parameter constructors in
C++ [20], covariance in EIFFEL [14], etc.). Arguably, setting the rules for resolving this
ambiguity may require a hefty load of language legalese, anda not so pleasant chal-
lenge to the unsuspecting programmer. Suffice to say that even the semantics of the
trivial case of overriding one of two overloaded versions ofa function is different in
JAVA and in C++.

Constructors pinpoint the difference in opinion between the parties to this debate:
JAVA , C++ and C# [13] programmers are not free to name constructors as they please—
all constructors of a given class must bear its name. Since constructors are not inherited,
at least the intricacies of interaction between overloading and inheritance are saved.
Still, even supporters may see flaws in constructor overloading. To quote a JAVA World
article:4

“With JAVA , the language design for constructors is quite elegant—so elegant,
in fact, that it’s tempting to provide a host of overloaded constructors. When
the number of configuration parameters for a component is large, there can
be a combinatorial explosion in constructors, ultimately leading to a malady
known asconstructor madness. . . ”

1.1 This Work

In this paper, we contribute to the discussion between proponents and opponents of
overloading by a study of the use of overloading in JAVA programs. For this study, we
developed a taxonomy of categories (which can also be calledpatterns and evenmicro-
patterns[11]), for the classification of the use of overloading, based mostly on the
type of interaction between overloaded methods. This taxonomy is also characterized
by stretching a spectrum of the use of overloading, from ad hoc patterns, in which
overloading is coincedental, to systematic patterns, in which overloaded methods are
semantically cohesive.

4 “Java Tip 63, Jerry Smith, Nov. 1, 1998”
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In order to estimate the prevalence of the various overloading patterns in actual
code we conducted an empirical evaluation, in which we applied this taxonomy to a
large corpus of JAVA applications using a new research method. This method includes
randomly sampling the corpus, manually evaluating the sampled items and testing the
reliability of this evaluation, while employing techniques traditionally used in social
sciences. Also of interest is the way in which the development of the taxonomy was
in tandem with the two batches of work by human raters, and howthe reliability of the
human classification was estimated. This research method, to the best of our knowledge,
was not previously applied to the study of software.

In the empirical evaluation we sought to answer the following questions:

1. What is the probability that a method, selected at random from the corpus, is over-
loaded?

2. What is the probability that a constructor, selected at random from the corpus, is
overloaded?

3. For each of the overloading pattern, what is the probability that a method (or a
constructor), selected at random, follows this pattern?

The answers to these questions provide evidence that overloading is used extensively in
Java programs, and that, in contrast with the predictions ofits opponents, overloading
is used mostly in a systematic fashion.

The use of overloaded functions to implement a similar, but slightly different seman-
tics, does prove that programmers do not abuse the mechanism. At the same time, even
systematic use of overloading is not so desired from a software engineering standpoint.
For the class’s author, this means a blown up interface with extra code to document and
maintain. For the class’s client, this practice requires familiarity with different versions
of essentially the same method.

Moreover, the semantics of the interaction between overloading and overriding
varies between languages [4]. Understanding this subtletyis requiered in order to make
sure that the intended method is indeed invoked. The examplein Figure 1, drawn from
[4], illustrates the problem.

ClassDown presented in this figure overloads methodsf andg introduced in its
super class. Now, consider the following invocations:
(new Down()).f(new Top());
(new Down()).g(new Bottom());

Which methods get called? The answer depends on the languagein which this model
is implemented. In JAVA , both calls invokeUp’s methods, while in C++ the first call
results in an error and the second invokesDown’s g. The reason for these differences is
that in C++,Down’s methodshidethose ofUp rather than overload them.

1.2 On Empirical Study of Programming Languages

The design of an object oriented programming language, justas an extension of one, is
an art in many ways. In other ways, it is an exact science, requiring rigorous analysis of
semantics, soundness, etc. and of course, exciting engineering is also involved. But, do
we really understand how this tool is really used, or abused?



4 Joseph (Yossi) Gil and Keren Lenz

Both issues of data gathering and data analysis are what makes it difficult to un-
derstand how the industry really uses a programming language. But, these difficulties
should not stop us from trying.

This paper offers, in a sense, one direction at which such understanding may be
gained. First, it uses Qualitas corpus5, an organized collection of software systems in-
tended to be used for empirical studies in software engineering. Observing the size
and the increasing acceptance of this corpus we can say that we are getting closer to a
meaningful sample of the global concrete use of JAVA .

The issue of data analysis remains. Exact static analysis techniques are prohibitively
resource consuming, especially when applied to such a largecorpus. More importantly,
for our purposes, we need a classification which is conceptual rather than syntactic—
taking into consideration not only strictly adherence to a formally defined category but
also close resemblance. For example, a method which invokesanother, can be rewrit-
ten without such invocation, by simple inlining and then applying local polishing. It
requires a human to reveal the fact that this inlined call is in fact a case of (say) default
arguments.

(On a side note, recall that dynamic analysis is not easier than static analysis. It is a
great achievement to assemble a software corpus from so manycomponents. But, it is
a much higher mountain to set out a running environment for all of these components,
each with its own bugs, idiosyncratic reliance on external libraries of very specific ver-
sions, and specific weird constraints on the execution environment. And, as if this is
not sufficiently difficult, the question of finding “typical”inputs or “runs” has to be
addressed.)

The alternative direction taken here is of a controlled human evaluation. We some-
what compromise the preciseness of the definitions, and employ humans to classify and
understand the studied body of software.

Of course, it is unrealistic to apply such human analysis to large data corpus such as
Qualitas. But, it is possible, as we did here, to subject a random sample drawn from the

5 http://www.cs.auckland.ac.nz/∼ewan/corpus/

class Top{}
class Middle extends Top{}
class Bottom extends Middle{}

class Up{
void f(Top t){/∗...∗/}
void g(Bottom b){/∗...∗/}

}

class Down extends Up{
void f(Middle m){/∗...∗/}
void g(Middle m){/∗...∗/}

}

Fig. 1. Different behavior in different languages
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corpus to human analysis and then use statistical methods toreason about the reliability
of this analysis, and to deduce conclusions on the entire corpus, and through this, on
the illusive global programming practice.

Outline. The remainder of this paper is organized as follows. In Section 2 we de-
scribe the setting of our empirical evaluation, the resultsof the automatic analysis, the
sampling and the employment of human evaluators. Section 3 presents the taxonomy
of the kinds of overloading that may be found in actual code, as developed with the aid
of the human experimenters. The reliability of the classification is studied in Section 5,
which also lays the foundation for deduction of conclusionsregarding the entire cor-
pus from the sample. The results of the classification according to this taxonomy are
presented in Section 6. Section 7 concludes.

2 Research Method

This section describes the method of experimentation, bothautomatic and manual, and
the JAVA corpus in which it was carried out.

2.1 Definitions

The Java Language Specification [12] defines method overloading as follows:

“ If two methods of a class (whether both declared in the same class, or both
inherited by a class, or one declared and one inherited) havethe same name but
signatures that are not override-equivalent, then the method name is said to be
overloaded.”

Thus, overloading can occur betweenpublicandprivatemethods,staticand
not-staticmethods,abstractandfinalmethods, etc.

1. We restrict our attention to method (and constructor) overloading, even though one
may argue that there are other kinds of overloading, e.g., when a class features
a data member and a function member of the same name. Similarly, we exclude
overloading of the ’+’ operator, thefinal keyword, etc.

2. Even though the JAVA semantics precludes a definition of two methods which are
different only in their return type, cases of this sort can be(and indeed are) found
in .class files, e.g., as a means for implementing co-variance by certain JAVA

compilers. Thissyntheticoverloading is ignored in our study.

A constructor cohortis the set of constructors of a class. Methods are grouped in
method cohorts, each being the maximal set of methods sharing the same name,and
available in the same user-defined type, that is aclass, aninterface, anenum or
an annotation. In this paper we restrict attention tonon-degeneratecohorts, i.e., cohorts
with two or morepeers.

The primary methods in a method cohort, are those which are firstintroducedor
reimplementedin the type. The remaining methods, i.e., those which areinheritedfrom
a parent, are calledsecondary.
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2.2 Data and Automatic Analysis

Our study started with the Qualitas corpus, consisting of 99open-source JAVA applica-
tions, which was used extensively in the literature (e.g., in [2, 3, 17, 21, 23]) and con-
sidered to be well representing the standard programming practice in JAVA . The corpus
was pruned to the most recent version of each application in it. Overall, the remain-
ing data set consisted of 6,538 packages, with 128,482 classes, 14,214 interfaces, 48
enumerated types, and 106 annotations.

Our evaluation began with an automated analysis, which scanned the entire corpus
for occurrences of overloaded methods and constructors. This analysis was carried out
on the bytecode representation with a precise implementation of the above definition of
overloading in the Java Tools Language (JTL) [8].

Constructor Cohorts

There were 162,495 constructors in total in the corpus. Thisnumber includes also syn-
thetic constructors, which are generated automatically bythe compiler when the pro-
grammer does not define any constructor for a given class, except when the class is
anonymous, which do not have any constructors.
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(a) Constructor cohorts (b) Method cohorts

Fig. 2. Distribution of cohorts’ size (semi-logarithmic scale).

Figure 2(a), depicting the number of classes defining each number of constructors,
shows the typical Zipf law distribution [24], that isf(k) ∝ k−α whereα > 1, as found
in many software metrics [7]. It can be seen that the majorityof all classes have only
one constructor. (the exact number is 83%). We also found that 35% of constructors
take part in non-degenerate cohorts. (Note that synthetic constructors never participate
in non-degenerate cohorts.)

It is also evident there are a number of classes with a large number of constructors,
and even two classes with as many as 25 constructors. Yet, on average the number of
constructors per class is small: 1.264.
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In the corpus, we found 1,030,623 method definitions (a definition of a method as
abstractor in aninterfacebeing counted); this number includes redefinitions of
methods. Of these, 148,192 methods are peers in 45,352 non-degenerate cohorts, i.e.,
slightly over 14% of the methods are overloaded. It follows that, as might be expected,
overloading is much more prevalent among constructors thanwith methods.

Method Cohorts

Figure 2(b) is the equivalent of Figure 2(a), but focusing onmethod cohorts. It can be
inferred from the graph that method cohorts tend to be largerthan constructor cohorts.
In fact, the average non-degenerate method cohort size is 3.27.

The linear decrease, typical of Zipf distribution, is not asevident here. With some
imaginative effort, we can discern here a Zipf like distribution describing most cohorts’
sizes (note that the slope of the Zipf decrease in constructors is much shallower than in
methods), combined with a cluster of giant cohorts with over80 methods.

Clearly, the size of this cluster exceeds what might be predicted by the Zipf distri-
bution. A closer look at the 304 cohorts with 80 methods or more, shows that almost
all of these are part of an implementation of the VISITOR design pattern [10]. In fact,
the name of 268 giant cohorts is simplyvisit, while 31 cohorts are namedendVisit.
The remaining 5 giants can probably be explained by the tail of the Zipf distribution.

2.3 Sampling and Human Classification

Pre-Test

The pre-test phase was designed to produce a taxonomy of overloading, consisting of
clear and unequivocal definitions, which are not merely that, but also effective for clas-
sifying concrete use of overloading in JAVA .

The development of taxonomy commenced in a brain storming session between the
authors, based on our own JAVA programming experience and on sporadic inspections
of cohorts found in the corpus.

This draft was then perfected using the following process: Arandom sample of 100
method cohorts was selected from the ensemble of such cohorts found by the automatic
analysis of the corpus. The sample was restricted to cohortssatisfying the following
conditions: (i) The cohort is associated with aclass. That is, we excluded cohorts of
interfaces (no cohorts were found inenums nor in annotations). (ii) At least one
method in the cohort was nonabstract. Cohorts were then further trimmed down to
include only methods defined in the same class, i.e., primaryoverloading.

The sample was then subjected to human classification as follows. First,cohorts
were classified by the second author, using the taxonomy draft. In the course of doing
so, the taxonomy was refined, definitions were clarified, categories reorganized, etc.
The refined taxonomy was then explained to three volunteer computer science gradu-
ate students, with a solid background in object oriented languages. (This explanation
involved examples taken from the corpus, but not from the sample.) The raters were
then asked to classify 50 specimens of the sample, 25 of whichwere common to all
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raters, while the remaining 25 specimens were specific to therater. (Other than these
conditions, the distribution of specimens among the raterswas random.)

The results were then manually inspected by the authors, using discrepancies for
further refinement of the definitions and the taxonomy.

Method Cohorts Categorization

Having gained our initial confidence in our taxonomy we proceeded to experimentation
concerning reliability—that is the extent at which human rating according to it is repro-
ducible. To do so, we repeated the rating of method cohorts. This time, with 10 recruits,
undergraduate- junior and senior students. All students have successfully completed the
Technion’sObject Oriented Programmingcourse. They were each offered a monetary
reward for their efforts (200 NIS, roughly equivalent to 50USD). The taxonomy and the
categories in it were then explained to the raters in a two-hour frontal presentation (the
presented slides are available online6.)

A newly selected sample of 100 method cohorts was then distributed among the
participants, where the random distribution satisfied the conditions that each rater was
assigned 40 cohorts and that each cohort was rated by four independent raters. To en-
courage seriousness, raters were promised (and paid) 2.5NIS (about $0.62) for each
correct categorization. The rating process lasted about 2.5 hours. It was carried out in
a supervised setting, in which the raters could not communicate with each other. In
addition, and independent of the student raters, all cohorts were rated by the second
author.

A battery of statistical tests was then applied to the raw results of method cohorts
classification. As reported below, these tests indicated that the rating of cohorts by the
second author is reliable with high confidence margins.

Constructor Cohort Classification

Relying on the reliability of the classifications of the second author, we did not repeat
the same process for constructor cohorts classification, instead, this classification was
done solely by the second author. The sample consisted againof 100 cohorts selected
at random from the constructor cohort base.

3 Taxonomy of Overloading

We now present the fruit of the experiments and process of perfecting a taxonomy of the
use of overloading in JAVA . This section gives a high level survey of the main categories.
The next section elaborates, describing the specific patterns in greater detail.

The primary question that our classification asks in considering an onverloading
incidence is how coincidental it is. An extreme case is, for example, a class representing
a cartoon cowboy, featuring an overload of methoddraw. At the other end, will find
e.g., the overloaded methodsetLocation of classawt.Point, whose partial view is
presented in Figure 3.

6 http://www.cs.technion.ac.il/∼ssdl/pub/JavaMethodClassification/JavaOverloadingClassification.pdf
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class Point {
public int x;
public int y;

public void setLocation(Point p) {
setLocation(p.x, p.y);

}

public void setLocation(int x, int y) {
move(x, y);

}

public void move(int x, int y) {
this.x = x;
this.y = y;

}
}

Fig. 3. An example of INTRINSIC overloading

A classification according to this criterion is important since overloading is criti-
cized precisely because there is no enforcement of any semantical relationship between
methods in the same cohort. Yet, in practice we find that such methods are often re-
lated, and that overloading is often used to capture a situation in which the input to a
certain operation can be presented in different ways. Figure 4 draws a spectrum of the
relationship between the semantics of overloaded methods.

The boxes in the figure representoverloading categories(which we will inter-
changeably also callpatterns).

Fig. 4.The overloading spectrum, from systematic to ad hoc.

As we move to the right from the central dividing line we meet patterns which
are progressively more systematic, that is, patterns in which the semantics of peers is
progressively more related. Conversely, a move to the left reveals patterns in which
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overloading is of a more ad hoc nature. Boxes on the central line represent “neutral”
patterns, i.e., patterns in which overloading can beeitherad hoc or systematic.

Systematic overloading occurs e.g., when the body of one overloaded method is
in essence a transformation of its arguments, followed by a call to one of its cohort
peers. Cases of this sort fall into the INTRINSIC category (this category includes also
other kinds of overloading, as explained later). The POTENTIAL category is similar in
that our human reviewers concluded that it can be brought into the INTRINSIC category
with minimal effort. PEER-CALLERS are overloading instances in which a method calls
its peer, but it is not clear whether it can be rewritten in theINTRINSIC form.

At the other end of the spectrum, the ACCIDENTAL category, refers to cases in which
no peer calls occurred, and no other relationship between peers could be identified.

On the dividing line, we find, PLACEHOLDERS in which all methods in the cohort
have no body. The overloading kind can fall into any other category, depending on
the implementation in the inheriting class or classes. Cohorts of this patterns were ex-
culded from the sample since their classification is trivial. On this line, we also find the
rather rare DUMMY ARGUMENT in which an extra, otherwise unused, argument distin-
guishes between peers (particularly constructors) which need the same arguments’ type
sequence. (Think for example on distinguishing between a polar- and cartesian- based
constructors to a classPoint).

Notice that the above categories apply to a pair of peers. Different pairs selected
from the same cohort, do not necessarily fall into the same category. An exception is the
V ISITORScategory, which represents the use of overloading for realizing the VISITOR

design pattern. Usually, in a cohort which is classified intothe VISITORS category,
most, if not all, peers fall into this category.

Finally, the PSEUDO-GENERIC category pertains to cases of use of overloading in
JAVA which were candidates to generic based implementation, hadJAVA generics been
applicable to primitive types, e.g., as in the different implementations ofMath.round
for typesdoubleandfloat. Here again, we may expect several peers to fall into this
category.

4 Overloading Patterns Catalog

In this section we discuss the overloading patterns in greater detail and exemplify their
use. Our presentation starts from the systematic end of the overloading spectrum and
progresses towards the ad-hoc patterns.

4.1 INTRINSIC Overloading

The INTRINSIC category refers to methods whose relationship with its name-peer is
semantical. Further breakdown of this category is offered by Figure 5.

In the figure we see that there are two main subcategories here: RESENDING in
which defines an asymmetric relation between two methods in acohort and INDUCED

applies equally to all of the methods in a cohort
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Fig. 5. Classification of intrinsic overloading patterns.

Induced Overloading

In the INDUCED category, overloading in one cohortinducesan overloading in another
cohort. Suppose that the designer of a certain class sees it fit to equip this class with two
constructors. Now, if this class is extended by way of inheritance, then it is only natural
that the subclass will offer two constructors, each delegating to a distinct constructor
in the base class. This situation occurs in many other situations, e.g., in design pat-
terns [10] such as COMPOSITEand DECORATOR, and in general, in all cases in which
a class delegates duties to another. In all of these, the desire to provide a rich and consis-
tent interface brings about overloading (in the delegator)which replicates overloading
in another cohort (the delegate).

The requirement in our natural language description of thiscategory was double
folded:(i) the delegator and its delegate have identical argument list; (ii) the delegator
invokes the delegate precisely once in any of its execution paths.

The left hand side of Figure 5, shows a breakdown of INDUCED based on the rela-
tionship between the delegator and the delegate:

1. INTRA-CLASS DELEGATION, in which each method invokes a method with a dif-
ferent name but same arguments of the same class, and in the case the callee is
not static, the call is tothis. One example of this pattern is the cohort named
removeBundle in Eclipse’s classRequireBundleHeader which is located in
packageorg.eclipse.pde.internal.core.text.bundle:
void removeBundle(String id) {
removeManifestElement(id);

}

void removeBundle(RequireBundleObject bundle) {
removeManifestElement(bundle);

}

2. SUPER-CLASS DELEGATIONtype in which each method invokes a method with the
same signature on thesuper class. This pattern is common in constructors, as can
be found in classRuntimeException of the JAVA standard library:
public class RuntimeException extends Exception {
public RuntimeException() {

super();
}
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public RuntimeException(String message) {
super(message);

}

public RuntimeException(String message, Throwable cause) {
super(message, cause);

}

public RuntimeException(Throwable cause) {
super(cause);

}
}

3. INTER-CLASS DELEGATION, in which each method invokes a method with the
same signature on a member object. The cohort namedupdateString in class
AS400JDBCRowSet (found in packagecom.ibm.as400.access) drawn from the
open source version of the IBM toolbox for Java (JTOpen) demonstrates this pat-
tern:
public class AS400JDBCRowSet implements RowSet, Serializable {

/∗ ... ∗/
private AS400JDBCResultSet resultSet_;
/∗ ... ∗/
void updateString (int columnIndex, String columnValue) {

validateResultSet();
resultSet_.updateString(columnIndex, columnValue);
eventSupport_.fireRowChanged(new RowSetEvent(this));

}
void updateString (String columnName, String columnValue) {

validateResultSet();
resultSet_.updateString(columnName, columnValue);
eventSupport_.fireRowChanged(new RowSetEvent(this));

}
}

Resending

In the RESENDINGcategory, one overloaded method carries out its mission by resend-
ing its arguments to its peer after some preprocessing phase. We say that a designated
caller method is RESENDING to a designated callee method when all four of the fol-
lowing conditions hold:(i) the caller invokes the callee precisely once in any of its
execution paths,or there is a single call site, which is executed iteratively;(ii) the caller
does not call any other peer;(iii) the returned type of the caller and the callee is the
same; and(iv) if the caller returns a value, it is the value returned by callee, unaltered.

Figure 5 distinguishes between five patterns of RESENDING, based on the process-
ing work carried out by the caller on the arguments it passes on to the callee:

1. PACKING, in which the caller packs some of its arguments into a collection or an ar-
ray and then sends it to the callee. MethodsetValue of classPreferenceConverter
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of found in packageorg.eclipse.jface.preference of the Eclipse develop-
ment environment, illustrates this pattern:
void setValue(IPreferenceStore store, String name, FontData value) {

setValue(store, name, new FontData[] { value });
}

2. UNPACKING, in which the caller accepts a collection or an array, and invokes the
callee on each element of the collection (array). One example of this pattern is
methodconvertToVector of classDefaultTableModel which is located in
packagejavax.swing.table:
Vector convertToVector(Object[][] anArray) {

if (anArray == null)
return null;

Vector v = new Vector(anArray.length);
for (int i=0; i < anArray.length; i++)

v.addElement(convertToVector(anArray[i]));
return v;

}

3. CONVERSION, in which the caller converts one or more of its arguments to another
type, to make it suitable for the callee to digest. MethodsetLocation of class
Point depicted in Figure 3 is a case of this pattern.

4. REDUCING, in which the caller processes some of its arguments and sends a subset
of the arguments to the callee, as is demonstrated by thecreate method of class
BidiOrder which resides in packagecom.ibm.as400.access of the Azureus
application:
ResourceDownloader create(URL url, boolean force_no_proxy) {
ResourceDownloader rd = create(url);
if (force_no_proxy && rd instanceof ResourceDownloaderURLImpl)
((ResourceDownloaderURLImpl)rd).setForceNoProxy(force_no_proxy);

return rd;
}

5. DEFAULT ARGUMENTS in which overloading is used as a substitute to default ar-
guments mechanism, and the caller does nothing but resend all of its arguments, as
well as some other default value or values, to the callee. Thefollowing constructors,
which belong to classPoint, presented in Figure 3 fall into this category:
public Point() {
this(0, 0);

}

public Point(int x, int y) {
this.x = x;
this.y = y;

}

4.2 POTENTIAL Overloading

The refinement of the INTRINSIC category as presented in Figure 5 is appicable in
principal also to the POTENTIAL category. However, the manual task of identifying
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“Potential Induce” overloading, that is, checking whethera certain method paircould
be rewrittenby delegation to another such pair, which could be anywhere in the system,
is formidable. We did not ask our raters to do that, and instructed them to concen-
trate in finding cases in which one method could be rewritten in terms of a name-peer,
whereby restricting the breakdown of the POTENTIAL category into the various sorts of
RESENDING.

For example, the first version ofsetLocation method in Figure 3, rewritten as
public double setLocation(Point p){
move(p.x, p.y);

}

belongs to this category.

4.3 PEER-CALLER Overloading

A method is classified as PEER-CALLER when it invokes one of its peers, but it is not
classified as RESENDING.

MethodfindResources, drawn from classStandardPluginClassLoader, which
resides in packageorg.java.plugin.standard illustrates such a case:
public Enumeration findResources(final String name) {

List result = new LinkedList();
findResources(result, name, this, null);
return Collections.enumeration(result);

}

Since the return type of this method differs from that of the invoked peer it cannot be
rewritten as an instance of the INTRINSIC category.

4.4 VISITOR Overloading

The VISITOR design pattern is a way of separating operations from the data structure
upon which they operate. This pattern is often realized in JAVA by an interface which
has avisit() method for each class whose objects may reside in the data structure.
Thus, this design pattern usually implies using overloading. Moreover, often the data
structure may contain objects of many different type, and asa result the number of
overloadedvisit() methods becomes very high.

One example of this category is the cohort namedvisit of classGenericVisitor,
found in packageorg.eclipse.jdt.internal.core.dom.rewrite of the Eclipse
framework. There are 83 methods in this cohort, each accept asingle parameter, which
represents a type of a node in the Abstract Syntax Tree representation of a JAVA pro-
gram.

5 Statistical Analysis of the Experiment

The definitions of the various categories in the previous section may seem more intuitive
than precise, and difficult to formalize. Take for example the definition of the DEFAULT

ARGUMENTS category, which required that the “caller does nothing but resend all of
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its arguments”. Then, it is not difficult to construct spiteful cases, which challenge the
accuracy and even decidability of, say, the phrase, “does nothing”—by adding involved
computation, which would take tremendous resources for a statistical analyzer to prove
vacuous, or by throwing in a reduction of the halting problem.

Instead of doing so, we restrict our classification to the intuitive meaning, as in-
terpreted by humans, and devote this section to the reliability of this classification. We
start with some general figures. Recall that raters where rewarded based on their hit rate,
which was computed against the independent rating carried out by the second author.
Scores ranged between73% and85%, and averaged at79%.

As expected, there were many disagreements regarding classifications in the some-
what loosely defined POTENTIAL category. It turned out thatalmost alldisagreements
were with regard to this category. In contrast, the DEFAULT ARGUMENTS category
raised the fewest disagreements, reaching a fully unanimous vote casted in85% of the
cases.

The more important question which we explore next is the systematicstatistical
reliability of this human classification. The analysis here shall demonstrate that the
results of the manual classification are indeed reproducible, and that the numerical value
that will be presented in thefollowingsection are therefore significant. At the end of the
current section we remind the reader the notion ofconfidence interval, which should
help in deducing conclusions regarding the entire corpus from what was observed for
the sample.

5.1 Reliability of Human Classification of Overloading

Cronbach’sα-coefficient[9], or for shortα, is a statistic which is used in social sciences
to estimate the internal consistency of multiple items within a scale. It is employed in
cases, such as ours, in which the scale is nominal rather thanordinal or rational. The
value of this estimator ranges between0 and1, where a value of0 corresponds to the
case that items are uncorrelated, i.e., all variation is dueto random fluctuations. A value
of 1 corresponds to the case that the items are in complete correspondence. For research
purposes it is customary to requireα ≥ 0.8 [19].

Cohen’sκ-coefficient[6], or for shortκ, is a leading measure of agreement which
assesses the extent to whichtwo raters give the same ratings to the same objects, while
factoring out the probability of agreement between the raters that would be expected
due to chance. Theκ values range from -1, which means perfect disagreement to 1,
meaning perfect agreement, where 0 is interpreted as agreement achieved by chance. A
value of 0.6 or higher is considered as a strong agreement.

Table 1 presents the values of these two statistics in relation to the classifications
carried out by the human raters in the experiment. The first row corresponds to evalu-
ations of all cohorts which fell in the sample, while the second is restricted to cohort
samples of size 2.

Examining the table, we see that the high hit rate the evaluators achieved is far
from being accidental, and it cannot be attributed to chance. Further, we see high cor-
respondence not only in classification according to top level categories, but also to sub
categories.
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Tab. 1.Statistical estimators of manual classifications of overloading

Experiment Categories Cronbach α Cohen’sκ (averaged)

All cohorts
all categories 0.877 0.731
top-level categories only 0.886 0.743

Size-2 cohorts
all categories 0.890 0.765
top-level categories only 0.892 0.768

Few words are in place in order to explain the method of computation, which in-
volved data aggregation. Recall that ten raters participated in the experiment, each clas-
sifying a subset of 40 methods, while there was no single pairof raters who classified
the same subset. However, calculating theα measure requires that all raters refer to the
same items. Thus, instead of considering a model in which 10 raters evaluated 40 items
each, we switched to a model in which we consider only the ratings of each item, with-
out taking into consideration who rated it. Our transformedmodel therefore included
four sets of ratings, each referring to 100 cohorts.

Although theα measure is not originally designed to check inter-rater reliability,
there is evidence showing that its use for such purposes is adequate, and even desir-
able when multiple raters are involved [16]. Following transposing of the data set, this
statistic was used to estimate the correspondence between all ratings, rather than raters.

We used the same aggregated model forκ calculations as well. Theκ measure was
used in this study to estimate inter-rater reliability between the second author and each
of the aggregated rating sets. The table displays the average value of the fourκ values
that were obtained.

Finally, we should say that the excellent values reported inTable 1 are relevant
only to the categories which were actually presented in the sample. As we shall see
below, some of the categories in the taxonomy, although theoretically interesting, did
not manifest in the sample.

5.2 Binomial proportion confidence interval

Now that we have established the statistical significance ofthe manual classification, it
remains to determine what can be inferred about the entire corpus from the classification
of the specimens in the sample. Suppose that a fraction of size p of the elements in a
sample fell into a certain category, then, we would like to find a value∆p such that
there is a vanishing probability that the true fraction of cases in the corpus is not within
betweenp − ∆p andp + ∆p.

Thebinomial proportion confidence intervalprovides this information precisely. It
uses the proportion estimated in a statistical sample and allows for sampling error. There
are several ways to compute a confidence interval for a binomial proportion. We chose
the Wilson score interval [22] due to the good properties of this test for even a small
number of trials or an extreme probability. To estimate the sampling error we calculated
95% confidence intervals using Wilson score method for a binomial proportion.
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Tab. 2. The 95% confidence intervals for a sample of size 77 (confidence interval is symmetric
for p and1 − p).

Proportion in Sample 0% 1% 5% 10% 20% 35% 50%
Confidence Intervaln = 77 0%–6%0%–8%1%–13%5%–19%12%–30%25%–46%39%–61%
Confidence Intervaln = 65 0%–8%0%–9%1%–15%4%–20%12%–32%25%–47%38%–62%

We calculated the confidence intervals based on a sample of size 77 (method cohorts
of size two) and 65 (constructor cohorts of size two), for various proportions in the
sample. The results are presented in Table 2. As can be seen inthe table, the values of
∆p are quite large, but still, if a certain pattern is infrequent in the sample, it is with
very high probability infrequent in the corpus. Conversely, patterns which are common
in the sample, are very likely to be common in the corpus.

6 Results

Now that we have established the reliability of our classification system and understood
what can be inferred from its values to the full corpus, it is time to present the actual
results of this classification.

6.1 Method Cohorts

Table 3 shows the distribution of sizes of cohorts that fell in the sample of 100 cohorts.
As expected, a number of large cohorts were sampled. Even though the small cohorts,
with only two methods, were 77% of the samples, the methods inthese were 64% of
the sample.

Tab. 3. Distribution of cohorts’ sizes in the 100 method cohorts sample

Size 2 3 4 5 6 7 Total
# Cohorts 77 13 6 1 2 1 100
# Methods 154 39 24 5 12 7 241
Fraction 64% 16% 10% 2% 5% 3% 100%

Table 4 provides the results of manual classification of these cohorts. The numbers
in the table represent the results of the classification of the second author. Note that a
cohort with more than two peers could fall into several categories. In the table, a cohort
was counted in a certain category if the pattern occurred in it at least once. Categories
whose number of occurrences is zero are omitted.

In addition to the counts depicted in the table, 2 cohorts were such that none of the
methods were implemented, i.e.,PLACEHOLDERs, 13 were classified as ACCIDENTAL
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Tab. 4. Manual classification of the 100 method cohorts in the sample(zero values are omitted).

Category Sub-categorySub-sub-category # Cohorts

Intrinsic
(68)

Resending
(54)

Default arguments 28
Conversion 17
Reduction 5
Packing 3
Unpacking 1

Induced
(14)

Inter-class delegation 10
Intra-class delegation 3
Super-class delegation 1

Potential
(18)

Resending
(18)

Default arguments 9
Conversion 8
Unpacking 1

since none of their methods invoked any of their cohort peers(or could be implemented
as such), and 6 cohorts contained methods which invoke each other, but did not match
any of the patterns and were therefore classified as PEER-CALLERs. The sample did
not include any instances of DUMMY ARGUMENT, V ISITOR and PSEUDOGENERIC.

The table reveals a strong tendency towards systematic rather than ad hoc use of
overloading: More than half of the cohorts involve a resending pattern. The most fre-
quent pattern of overloading that was observed is that of default parameters, which was
observed in 28% of the cohorts and has the potential of being implemented in additional
9%.

6.2 Method Pairs

The quadratic increase in the number of pairs of peers makes it difficult to analyze the
patterns of use of overloading in cohorts with more than 2 methods. Worse, inspecting
in isolation all possible pairs in a cohort is likely to produce confusing information
which may need a bit of pondering before the underlying structure of the cohort can be
revealed.

Consider for example thefill cohort in classArrays, which has 18 methods (2
for each of JAVA ’s primitive type and 2 forObject) and 153 different pairs. These pairs
can be broken down as follows. The 9 pairs of the sort of

〈

fill(float[],int,int,float) , fill(float[],float)
〉

are DEFAULT ARGUMENTS; (replacingfloat in any other primitive type or inObject).
The 36 pairs of the sort of

〈

fill(float[],int,int,float) , fill(char[],int,int,char)
〉

(wherefloatandchar can be replaced likewise) are PSEUDOGENERIC. And, the 36
pairs of the sort of

〈

fill(byte[],byte) , fill(Object[],Object)
〉
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Tab. 5. Results of manual classification of 77 method cohorts of sizetwo (zero values are omit-
ted).

Kind Sub-kind Pattern # Cohorts

Intrinsic
57% (44)

Resending
44% (34)

Default arguments 19
Conversion 9
Reduction 3
Packing 2
Unpacking 1

Induced
13% (10)

Inter-class delegation 10
Intra-class delegation 0
Super-class delegation 0

Potential
19% (15)

Resending
19% (15)

Default arguments 7
Conversion 7
Unpacking 1

Accidental
13% (10)

10

Placeholders
3% (2)

2

Peer-Callers
8% (6)

6

are also are PSEUDO GENERIC. The remaining 72 pairs, which constitute 47% of the
lot, do not fit into any of the categories.

Assigning appropriate weights to the different categoriesfor cohorts with more than
2 peers can be complicated, But, even if this hurdle is overcome, requiring the human
raters to reveal the underlying structure would not only have complicated the exper-
iments, but also introduced unnecessary noise. Therefore,our more in depth analysis
was restricted to the 77 cohorts in the sample which were of size 2. Table 5 provides
a breakdown of the classification of these cohorts. Unlike Table 4, each cohort occurs
precisely once in this table

As in Table 4, the most common pattern is that ofDEFAULT ARGUMENTS, being
used by 24.6% of the cohorts, with additional 9% which have the potential of using it.
Again, we see strong tendency towards systematic use of overloading. This tendency is
further depicted visually in Figure 6, which portrays a histogram of the breakdown into
top level categories.

We see that 84% of the total weight falls in the right hand sideof the figure. Six out
of seven of the pairs in our sample exhibit systematic overloading, and three out of five
fall in the INTRINSIC category. Also, summing up the values in Table 5 we determine
that in three out of five pairs of overloaded methods, one method calls another. Relying
on the confidence intervals summarized in Table 2, we can further infer that with high
probability these estimates apply to the full corpus, to within a±10% margin.

Finally, we remark that the tendency towards more systematic use of overloading
should increase, or at the least stay the same, as the cohort size increases. This is of
course with the exception of visitors, in which even though the intended semantics is
similar, it is unclear whether the actual implementation ofdifferent visitors is likely to
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Fig. 6. Spectrum of systematic overloading in sampled method cohorts of size 2.

show systematic repetition. Luckily, visitors are very rare, and we can therefore con-
clude that the use of overloading in the vast majority of cases is very systematic, and
that programmers are not tempted to abuse this language feature.

6.3 Constructor Cohorts

Table 6 displays the results of manual classification of the 100 cohorts in the construc-
tors sample.

Tab. 6.Results of manual classification of 100 constructor cohorts.

Kind Sub-kind Pattern # Cohorts

Intrinsic
(59)

Resending
(34)

Default arguments 25
Conversion 8
Reduction 1
Packing 0

Induced
(25)

Inter-class delegation 0
Intra-class delegation 3
Super-class delegation 22

Potential
(13)

Resending
(13)

Default arguments 12
Conversion 1
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As in Table 4, we did not count each pair of overloaded constructors separately,
instead, each cohort was counted once for each pattern that occurred at least once. In
32 constructor cohorts no particular pattern was identifiedbetween any of the pairs, and
hence, the entire cohort is classified as ACCIDENTAL.

No constructor cohort was classified as vanilla PEER-CALLER. In other words, there
was no constructor cohort in which a constructor invokes other constructor and does
not match a more specific pattern. This is not very surprising, since the language syntax
mandates that the inter-constructor invocation must be thefirst statement. The only
allowed computation, computing the actual arguments priorto the invocation, does not
admit much programming freedom or creativity.

Examining the table further, we see a clear tendency towardsmore systematic use
of overloading. But, in comparison with Table 4, it is evident that this tendency is not
as forceful as it is with methods.

6.4 Constructor Pairs

In order to appreciate more accurately the tendency towardssystematic overloading in
constructors, we now concentrate, as we did with methods, incohorts of size 2. Table 7
shows the distribution of sizes in the sample of constructorcohorts. We see that still, a
substantial portion of the constructors fell in the first column of the table.

Tab. 7. Distribution of cohorts’ sizes in the 100 constructor cohorts sample (zero values are
omitted)

Size 2 3 4 5 6 7 8 Total
# Cohorts 65 21 9 1 1 2 1 100

# Methods 130 63 36 5 6 14 8 262
Fraction 50% 24% 14% 2% 2% 5% 3% 100%

Table 8 presents a view of the results which contains classifications of constructor
cohorts of size two.

Comparing the results of constructors classifications to those of methods classifi-
cations it can be observed that INDUCED overloading is more frequent in constructors
than in methods. and that the one of the most common pattern isSUPER CLASS DEL-
EGATION. Again, this is what may be predicted by the language syntax:a constructor
with a non-empty parameters list in a base class often induces a constructor with the
same parameters list in its derived classes.

Finally, Figure 7 summarizes the spectrum of use of overloading in restricted sam-
ple. The tendency towards systematic use of overloading is evident, but it is also clearly
weaker than in methods (Figure 6).

We see that about three out of five cohorts with two constructors exhibit systematic
overloading at some level, and about one in two is a resend to peer. Again, we have the
same reasons to believe that this tendency is not spoiled as we move to larger cohorts.



22 Joseph (Yossi) Gil and Keren Lenz

Tab. 8. Results of manual classification of 65 constructor cohorts of size two (zero values are
omitted).

Kind Sub-kind Pattern # Cohorts

Intrinsic
46% (30)

Resending
26% (17)

Default arguments 13
Conversion 4
Reduction 0
Packing 0

Induced
20% (13)

Inter-class delegation 0
Intra-class delegation 0
Super-class delegation 13

Potential
17% (11)

Resending
17% (11)

Default arguments 10
Conversion 1

Accidental
37% (24)
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7 Conclusions and Further Research

7.1 Summary of Results

We found that overloading is used extensively in the corpus:35% of all constructors and
14% of all methods. Cohorts tend to be larger in methods, withan average cohort size
slightly greater than 3, while the average number of constructors per class is about 1.3.
The distribution of cohort sizes is Zipf-like, except that method cohorts feature cluster
of large cohorts attributed to the VISITOR design pattern.
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We developed a taxonomy for the classification of the use of overloading in ac-
tual JAVA programs. The taxonomy was refined and exacted in a process involving two
stages of subjecting sized samples to human rating in a controlled environment. The re-
liability of the classification was validated, at least for the major categories, by engaging
statistical tests traditionally used in social sciences.

Statistical analysis also showed that at least six out of seven cases of use of method
overloading are more systematic than ad hoc. The fact that overloading is mandatory in
the definition of multiple constructors probably explains our finding that the systematic
overloading is somewhat less frequent in constructors, occurring in about three out of
five cases. These results (whose error margin is about 10%) may answer the allegation
that overloading is likely to be abused.

It was determined that the most frequent use of overloading is for simulating de-
faults arguments. This use pattern occurring in about a quarter of overloaded methods,
while additional 10% of these can probably be rewritten as such. Similarly, about a third
of the cases in which overloading is used with constructors,are, or can be, expressed as
a form of overloading.

7.2 Further Research

It is interesting to study the smaller categories which werenot captured by our sample.
This can be done e.g., by employing refined sampling techniques.

We are intrigued by the INDUCED category, which suggests that overloading is
viral—the use of overloading in one class leading to overloading in another. There may
be room for checking whether generics could address this duplication.

Acknowledgments.We thank Itay Maman for his thoughtful comments, and pay great
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