The Use of Overloading in AvA Programs

Joseph (Yossi) Gl and Keren LenZ

! IBM Haifa Research Laboratory, Israel
2 Department of Computer Science, The Technion, Haifa, Israe

Abstract. Method overloading is a controversial language featunee@ally in
the context of Object Oriented languages, where its intenaevith overriding
may lead to confusing semantics. One of the main argumeatestgverloading
is that it can be abused by assigning the same identity toeqoually different
methods.

This paper describes a study of the actual use of overloadidgyA . To this end,
we developed a taxonomy of classification of the use of oaeéittg, and applied
it to a large AvA corpus comprising more than 100,000 user defined types.
We found that more than 14% of the methods in the corpus amoagkd. Using
sampling and evaluation by human raters we found that al@®td& overloaded
methods follow one of the “non ad hoc use of overloading pasteand that
additional 20% can be easily rewritten in this form. The nmshmon pattern is
the use of overloading as an emulation of default argumeantsggchanism which
does not exist inAVA.

1 Introduction

208,765,973, 875,851, the count of distincadmissiblddentifiers in early versions of

C [15], may seem a fairly large number. Still, as large asthisber is, it is infinitesi-
mally small when compared to itavh [1] counterpart. Yetadequatédentifier names
are hard to come by, both imda and in C, as anyone who tried naming a programming
entity—be it a variable, a function, or a newly introduceday—must have noticed: the
problem is not of finding the needle in the haystack, but thrgote truth that, no matter
how large the universe of discourse is, the competition enféfv scarce good names
remains fierce.

Striking a balance between the desire to make names degergrtd meaningful,
and the practical demand that these are not overly verbaseften wish to use iden-
tifiers such agri nt, cl ose, sort, execut e ordr awin reference to distinct entities.
Program blocks and scoping rules serve this wish in makipgssible to reuse a name
in differentcontexts in an orderly fashion. A common, yet controvensiathanism for
reusing a name within theamecontext, isoverloading an ad-hoc kind of polymor-
phism [5].

Several style guidesall but completely forbid the use of overloading. This preet
could be justified e.g., by the vigorous criticism by B. Mej/E8], expressed succinctly
with his, almost axiomatically-true, statement:

* On sabbatical from the Technion
% http://google-styleguide.googlecode.com/svn/trupgguide.xml
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| Different Things Should have Different Nanes

But, this statement could be (and often is) answered by aalkygelf-evident truth

‘ The Same Things Should Have the Same mee

which reveals the clumsiness in the encoding function sigea into their names, e.g.,
in the definition of a series of functions:

—printint(int i),
— print Bool ean(bool ean b),
— printChar(char c), etc.,

instead of straightforward use of overloadipgi nt (i nt i), print (bool ean b),
print(char c),etc.

Meyer and others [4] point a finger at the ambiguity innateviertoading—an am-
biguity which is exacerbated in the presence of inheritageaericity, coercion, and
language-specific mechanisms (e.g., map i ci t, single parameter constructors in
C++ [20], covariance in EEFEL [14], etc.). Arguably, setting the rules for resolving this
ambiguity may require a hefty load of language legalese,aandt so pleasant chal-
lenge to the unsuspecting programmer. Suffice to say that #ae semantics of the
trivial case of overriding one of two overloaded versionsadiunction is different in
Java and in C++.

Constructors pinpoint the difference in opinion between plarties to this debate:
JavA, C++ and & [13] programmers are not free to name constructors as tleagpl—
all constructors of a given class must bear its name. Singstagctors are not inherited,
at least the intricacies of interaction between overlogdind inheritance are saved.
Still, even supporters may see flaws in constructor oveitwado quote a &va World
article#

“With Java, the language design for constructors is quite elegant-esyaat,

in fact, that it's tempting to provide a host of overloadecdhswuctors. When
the number of configuration parameters for a component igdathere can
be a combinatorial explosion in constructors, ultimatedpding to a malady
known agconstructor madness”

1.1 This Work

In this paper, we contribute to the discussion between prepts and opponents of
overloading by a study of the use of overloading #val programs. For this study, we
developed a taxonomy of categories (which can also be ca#ltdrns and evemicro-
patterns[11]), for the classification of the use of overloading, lthsaostly on the
type of interaction between overloaded methods. This tawgnis also characterized
by stretching a spectrum of the use of overloading, from ad fatterns, in which
overloading is coincedental, to systematic patterns, iicivbverloaded methods are
semantically cohesive.

4 “Java Tip 63, Jerry Smith, Nov. 1, 1998”
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In order to estimate the prevalence of the various overluagiatterns in actual
code we conducted an empirical evaluation, in which we appihis taxonomy to a
large corpus of &vA applications using a new research method. This methoddeslu
randomly sampling the corpus, manually evaluating the $athipems and testing the
reliability of this evaluation, while employing techniquéaditionally used in social
sciences. Also of interest is the way in which the developroéthe taxonomy was
in tandem with the two batches of work by human raters, and theweliability of the
human classification was estimated. This research methtk best of our knowledge,
was not previously applied to the study of software.

In the empirical evaluation we sought to answer the follg\guestions:

1. What is the probability that a method, selected at random the corpus, is over-
loaded?

2. What is the probability that a constructor, selected atleen from the corpus, is
overloaded?

3. For each of the overloading pattern, what is the prohgititiat a method (or a
constructor), selected at random, follows this pattern?

The answers to these questions provide evidence that edénipis used extensively in
Java programs, and that, in contrast with the predictiorissapponents, overloading
is used mostly in a systematic fashion.

The use of overloaded functions to implement a similar, ligit8y different seman-
tics, does prove that programmers do not abuse the mechaiishe same time, even
systematic use of overloading is not so desired from a so&wengineering standpoint.
For the class’s author, this means a blown up interface wittaeode to document and
maintain. For the class’s client, this practice requiresifarity with different versions
of essentially the same method.

Moreover, the semantics of the interaction between ovditmpand overriding
varies between languages [4]. Understanding this suliiegquiered in order to make
sure that the intended method is indeed invoked. The exaimpligure 1, drawn from
[4], illustrates the problem.

ClassDown presented in this figure overloads methddandg introduced in its
super class. Now, consider the following invocations:

(new Down()).f(new Top());

(new Down()).g(new Botton());
Which methods get called? The answer depends on the languadech this model
is implemented. In AA, both calls invokeUup’s methods, while in C++ the first call
results in an error and the second invokesn’s g. The reason for these differences is
that in C++,Down’s methodshidethose ofup rather than overload them.

1.2 On Empirical Study of Programming Languages

The design of an object oriented programming languageagiaih extension of one, is
an artin many ways. In other ways, it is an exact science jmneguigorous analysis of
semantics, soundness, etc. and of course, exciting enigigég also involved. But, do
we really understand how this tool is really used, or abused?
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Both issues of data gathering and data analysis are whatsitaé#ficult to un-
derstand how the industry really uses a programming langugt, these difficulties
should not stop us from trying.

This paper offers, in a sense, one direction at which suclerstahding may be
gained. First, it uses Qualitas corpuan organized collection of software systems in-
tended to be used for empirical studies in software enginge©bserving the size
and the increasing acceptance of this corpus we can say ¢hatengetting closer to a
meaningful sample of the global concrete useasirl

The issue of data analysis remains. Exact static analydisigues are prohibitively
resource consuming, especially when applied to such a tamgeis. More importantly,
for our purposes, we need a classification which is concépdtizer than syntactic—
taking into consideration not only strictly adherence toafally defined category but
also close resemblance. For example, a method which invakather, can be rewrit-
ten without such invocation, by simple inlining and then Igpy local polishing. It
requires a human to reveal the fact that this inlined cahifct a case of (say) default
arguments.

(On a side note, recall that dynamic analysis is not easaar $itatic analysis. Itis a
great achievement to assemble a software corpus from so cwemngonents. But, it is
a much higher mountain to set out a running environment fasfahese components,
each with its own bugs, idiosyncratic reliance on exteritablies of very specific ver-
sions, and specific weird constraints on the execution enwiient. And, as if this is
not sufficiently difficult, the question of finding “typicafhputs or “runs” has to be
addressed.)

The alternative direction taken here is of a controlled hnmealuation. We some-
what compromise the preciseness of the definitions, andanmpimans to classify and
understand the studied body of software.

Of course, it is unrealistic to apply such human analysiatgd data corpus such as
Qualitas. But, it is possible, as we did here, to subject doemsample drawn from the

5 http://www.cs.auckland.ac.nzéwan/corpus/

cl ass Top{}
class M ddl e extends Top{}
cl ass Bottom extends M ddl e{}

class Up{
void f(Top t){/x.x/}
voi d g(Bottom b) {/*..x/}

}

cl ass Down extends Up{
void f(Mddl e m{/«.x/}
void g(Mddle m{/x.x/}
}

Fig. 1. Different behavior in different languages
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corpus to human analysis and then use statistical methadason about the reliability
of this analysis, and to deduce conclusions on the entineusprand through this, on
the illusive global programming practice.

Outline. The remainder of this paper is organized as follows. In $ac? we de-
scribe the setting of our empirical evaluation, the resoftthe automatic analysis, the
sampling and the employment of human evaluators. Sectiaiesepts the taxonomy
of the kinds of overloading that may be found in actual codajeveloped with the aid
of the human experimenters. The reliability of the clasatfian is studied in Section 5,
which also lays the foundation for deduction of conclusiceggarding the entire cor-
pus from the sample. The results of the classification adegrtd this taxonomy are
presented in Section 6. Section 7 concludes.

2 Research Method

This section describes the method of experimentation, &gtibmatic and manual, and
the AvA corpus in which it was carried out.

2.1 Definitions
The Java Language Specification [12] defines method overigad follows:

“If two methods of a class (whether both declared in the sala&scor both
inherited by a class, or one declared and one inherited) th@same name but
signatures that are not override-equivalent, then the agetlame is said to be
overloaded

Thus, overloading can occur betweaubl i c andpr i vat e methodsst ati c and
notst at i ¢ methodsabst ract andf i nal methods, etc.

1. We restrict our attention to method (and constructoryloagling, even though one
may argue that there are other kinds of overloading, e.genwdn class features
a data member and a function member of the same name. Similglexclude
overloading of the+’ operator, thef i nal keyword, etc.

2. Even though thea¥a semantics precludes a definition of two methods which are
different only in their return type, cases of this sort can&ed indeed are) found
in . cl ass files, e.g., as a means for implementing co-variance by icedte/A
compilers. Thisyntheticoverloading is ignored in our study.

A constructor cohoris the set of constructors of a class. Methods are grouped in
method cohortseach being the maximal set of methods sharing the same rzante,
available in the same user-defined type, that ¢3 ass, ani nt er f ace, anenumor
an annotation. In this paper we restrict attentionom-degenerateohorts, i.e., cohorts
with two or morepeers

The primary methods in a method cohort, are those which are ifitsbducedor
reimplementeéh the type. The remaining methods, i.e., those whichrareritedfrom
a parent, are callesecondary
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2.2 Data and Automatic Analysis

Our study started with the Qualitas corpus, consisting ad@&n-sourceAVa applica-
tions, which was used extensively in the literature (erg.[2, 3,17, 21, 23]) and con-
sidered to be well representing the standard programmiacfige in AvA. The corpus
was pruned to the most recent version of each applicatioh @werall, the remain-
ing data set consisted of 6,538 packages, with 128,482eda44,214 interfaces, 48
enumerated types, and 106 annotations.

Our evaluation began with an automated analysis, whichrezhthe entire corpus
for occurrences of overloaded methods and constructois.artalysis was carried out
on the bytecode representation with a precise implememtafithe above definition of
overloading in the Java Tools Language (JTL) [8].

Constructor Cohorts

There were 162,495 constructors in total in the corpus. mbimber includes also syn-
thetic constructors, which are generated automaticallthieycompiler when the pro-
grammer does not define any constructor for a given clasgpéxghen the class is
anonymouswhich do not have any constructors.
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Fig. 2. Distribution of cohorts’ size (semi-logarithmic scale).

Figure 2(a), depicting the number of classes defining eaafbeu of constructors,
shows the typical Zipf law distribution [24], that j§k) « &k~ where« > 1, as found
in many software metrics [7]. It can be seen that the majaitsll classes have only
one constructor. (the exact number is 83%). We also found36% of constructors
take part in non-degenerate cohorts. (Note that synthetisteuctors never participate
in non-degenerate cohorts.)

It is also evident there are a number of classes with a largebeun of constructors,
and even two classes with as many as 25 constructors. Yeyevage the number of
constructors per class is small: 1.264.
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In the corpus, we found 1,030,623 method definitions (a definbf a method as
abstract orin ani nt er f ace being counted); this number includes redefinitions of
methods. Of these, 148,192 methods are peers in 45,352egendrate cohorts, i.e.,
slightly over 14% of the methods are overloaded. It follotatt as might be expected,
overloading is much more prevalent among constructorswignmethods.

Method Cohorts

Figure 2(b) is the equivalent of Figure 2(a), but focusingwathod cohorts. It can be
inferred from the graph that method cohorts tend to be lattgen constructor cohorts.
In fact, the average non-degenerate method cohort siz27s 3.

The linear decrease, typical of Zipf distribution, is noteagdent here. With some
imaginative effort, we can discern here a Zipf like disttibn describing most cohorts’
sizes (note that the slope of the Zipf decrease in constrsiidanuch shallower than in
methods), combined with a cluster of giant cohorts with @@methods.

Clearly, the size of this cluster exceeds what might be ptediby the Zipf distri-
bution. A closer look at the 304 cohorts with 80 methods orenshows that almost
all of these are part of an implementation of thesMOR design pattern [10]. In fact,
the name of 268 giant cohorts is simpliysi t , while 31 cohorts are nameahdVi si t .
The remaining 5 giants can probably be explained by the taileZipf distribution.

2.3 Sampling and Human Classification
Pre-Test

The pre-test phase was designed to produce a taxonomy dbaslgrg, consisting of
clear and unequivocal definitions, which are not merely, thiatt also effective for clas-
sifying concrete use of overloading invh .

The development of taxonomy commenced in a brain stormisgj@e between the
authors, based on our owavh programming experience and on sporadic inspections
of cohorts found in the corpus.

This draft was then perfected using the following processardom sample of 100
method cohorts was selected from the ensemble of such sdbarid by the automatic
analysis of the corpus. The sample was restricted to colatisfying the following
conditions: (i) The cohort is associated witlkelaass. That is, we excluded cohorts of
i nterfaces (no cohorts were found ianuns nor in annotations). (ii) At least one
method in the cohort was nabst r act. Cohorts were then further trimmed down to
include only methods defined in the same class, i.e., primegyloading.

The sample was then subjected to human classification asv&lIFirst,cohorts
were classified by the second author, using the taxonomy. dinathe course of doing
so, the taxonomy was refined, definitions were clarified, giaies reorganized, etc.
The refined taxonomy was then explained to three voluntempater science gradu-
ate students, with a solid background in object orienteduages. (This explanation
involved examples taken from the corpus, but not from theg@amThe raters were
then asked to classify 50 specimens of the sample, 25 of whkék common to all
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raters, while the remaining 25 specimens were specific toates. (Other than these
conditions, the distribution of specimens among the rat@asrandom.)

The results were then manually inspected by the authomsgudiscrepancies for
further refinement of the definitions and the taxonomy.

Method Cohorts Categorization

Having gained our initial confidence in our taxonomy we pexied to experimentation
concerning reliability—that is the extent at which humatingaccording to it is repro-
ducible. To do so, we repeated the rating of method cohohis.time, with 10 recruits,
undergraduate- junior and senior students. All students Baccessfully completed the
Technion’sObject Oriented Programmingourse. They were each offered a monetary
reward for their efforts (200 NIS, roughly equivalent to 58D). The taxonomy and the
categories in it were then explained to the raters in a tworflrontal presentation (the
presented slides are available onfine

A newly selected sample of 100 method cohorts was then llis&il among the
participants, where the random distribution satisfied theditions that each rater was
assigned 40 cohorts and that each cohort was rated by foep&mtlent raters. To en-
courage seriousness, raters were promised (and paid) 2.&out $0.62) for each
correct categorization. The rating process lasted ab&uh@urs. It was carried out in
a supervised setting, in which the raters could not comnateiwith each other. In
addition, and independent of the student raters, all csheere rated by the second
author.

A battery of statistical tests was then applied to the rawlteof method cohorts
classification. As reported below, these tests indicatatttie rating of cohorts by the
second author is reliable with high confidence margins.

Constructor Cohort Classification

Relying on the reliability of the classifications of the sedauthor, we did not repeat
the same process for constructor cohorts classificatiateadl, this classification was
done solely by the second author. The sample consisted afal0 cohorts selected
at random from the constructor cohort base.

3 Taxonomy of Overloading

We now present the fruit of the experiments and process ¢égtimg a taxonomy of the
use of overloading inAVA . This section gives a high level survey of the main categorie
The next section elaborates, describing the specific pattargreater detail.

The primary question that our classification asks in congidean onverloading
incidence is how coincidental it is. An extreme case is, karmaple, a class representing
a cartoon cowboy, featuring an overload of methiodw. At the other end, will find
e.g., the overloaded methsdt Locat i on of classawt . Poi nt, whose partial view is
presented in Figure 3.

5 http://www.cs.technion.ac.i¥ssdl/pub/JavaMethodClassification/JavaOverloadirggifiaation. pdf
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class Point {
public int x;
public int vy;

public voi d setLocation(Point p) {
set Location(p.x, p.Yy);

}

public void setLocation(int x, int vy) {
move(x, y);

}

public void move(int x, int vy) {
this.x = x;
this.y =vy;

}
}

Fig. 3. An example of NTRINSIC overloading

A classification according to this criterion is important@® overloading is criti-
cized precisely because there is no enforcement of any serakelationship between
methods in the same cohort. Yet, in practice we find that suethods are often re-
lated, and that overloading is often used to capture a 8tu#t which the input to a
certain operation can be presented in different ways. Eigulraws a spectrum of the
relationship between the semantics of overloaded methods.

The boxes in the figure represeoverloading categoriegwhich we will inter-
changeably also catlatterns.

|
|

1

Pseudo-Generic Dummy-Argument

Accidental Visitor Placeholder| | Peer-Caller Potential Intrinsic

f
Ad-hoc | Systematic

Fig. 4. The overloading spectrum, from systematic to ad hoc.

As we move to the right from the central dividing line we meattprns which
are progressively more systematic, that is, patterns irclvttie semantics of peers is
progressively more related. Conversely, a move to the ®feals patterns in which
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overloading is of a more ad hoc nature. Boxes on the centralrépresent “neutral”
patterns, i.e., patterns in which overloading careltkeerad hoc or systematic.

Systematic overloading occurs e.g., when the body of onéaaged method is
in essence a transformation of its arguments, followed bglhte one of its cohort
peers. Cases of this sort fall into theTIRINSIC category (this category includes also
other kinds of overloading, as explained later). Tr@ErENTIAL category is similar in
that our human reviewers concluded that it can be brougbtie INTRINSIC category
with minimal effort. FEER-CALLERS are overloading instances in which a method calls
its peer, but it is not clear whether it can be rewritten in tRerINSIC form.

Atthe other end of the spectrum, the BIDENTAL category, refers to cases in which
no peer calls occurred, and no other relationship betweersp®uld be identified.

On the dividing line, we find, PACEHOLDERSIN which all methods in the cohort
have no body. The overloading kind can fall into any otheegaty, depending on
the implementation in the inheriting class or classes. @staf this patterns were ex-
culded from the sample since their classification is triv@h this line, we also find the
rather rare MMY ARGUMENT in which an extra, otherwise unused, argument distin-
guishes between peers (particularly constructors) wheddrihe same arguments’ type
sequence. (Think for example on distinguishing betweenlarpand cartesian- based
constructors to a clas®i nt ).

Notice that the above categories apply to a pair of peergef@ifit pairs selected
from the same cohort, do not necessarily fall into the sartegcaly. An exception is the
VIsITORS category, which represents the use of overloading forzegjithe MSITOR
design pattern. Usually, in a cohort which is classified itite VISITORS category,
most, if not all, peers fall into this category.

Finally, the BSEUDO-GENERIC category pertains to cases of use of overloading in
Java which were candidates to generic based implementationJhadgenerics been
applicable to primitive types, e.g., as in the different lempentations of/at h. r ound
for typesdoubl e andf | oat. Here again, we may expect several peers to fall into this
category.

4 Overloading Patterns Catalog

In this section we discuss the overloading patterns in grefgtail and exemplify their
use. Our presentation starts from the systematic end ofwbdaading spectrum and
progresses towards the ad-hoc patterns.

4.1 INTRINSIC Overloading

The INTRINSIC category refers to methods whose relationship with its npe®r is
semantical. Further breakdown of this category is offeng&igure 5.

In the figure we see that there are two main subcategories RESENDING in
which defines an asymmetric relation between two methodswhart and NDUCED
applies equally to all of the methods in a cohort
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Reducing ‘

Inter-class Unpacking Conversion Default Arguments|

‘ Packing ‘

Super-class

Intra-class

Fig. 5. Classification of intrinsic overloading patterns.

Induced Overloading

In the INDUCED category, overloading in one cohamducesan overloading in another
cohort. Suppose that the designer of a certain class see®ietjuip this class with two
constructors. Now, if this class is extended by way of infaece, then it is only natural
that the subclass will offer two constructors, each delegab a distinct constructor
in the base class. This situation occurs in many other gitaste.g., in design pat-
terns [10] such as @vpPosITEand DECORATOR and in general, in all cases in which
a class delegates duties to another. In all of these, theedegirovide a rich and consis-
tent interface brings about overloading (in the delegaidvich replicates overloading
in another cohort (the delegate).

The requirement in our natural language description of thai®gory was double
folded: (i) the delegator and its delegate have identical argumen(iljsthe delegator
invokes the delegate precisely once in any of its executithgy

The left hand side of Figure 5, shows a breakdownnaiUCcED based on the rela-
tionship between the delegator and the delegate:

1. INTRA-CLASS DELEGATION, in which each method invokes a method with a dif-
ferent name but same arguments of the same class, and ingbdhmcallee is
notst ati c, the call is tot hi s. One example of this pattern is the cohort named
renoveBundl e in Eclipse’s classRequi r eBundl eHeader which is located in
packageor g. ecl i pse. pde. i nternal . core.text.bundl e:

voi d removeBundl e(String id) {
removeMani f est El ement (i d);

}

voi d renoveBundl e( Requi r eBundl eQbj ect bundl e) {
renoveMani f est El erent (bundl e) ;
}

2. SUPERCLASS DELEGATIONtype in which each method invokes a method with the
same signature on tlruper class. This pattern is common in constructors, as can
be found in clas&unt i neExcept i on of the AvA standard library:

public class Runti neException extends Exception {
publ i c Runti meException() {
super();

}
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publ i c Runti meException(String nessage) {
super(message) ;

}

publ i ¢ Runti meException(String nessage, Throwabl e cause) {
super(nessage, cause);

}

publ i ¢ Runti meExcepti on( Throwabl e cause) {
super(cause);
}
}

3. INTER-CLASS DELEGATION, in which each method invokes a method with the
same signature on a member object. The cohort nampedt eSt ri ng in class
AS400JDBCRowSet (found in packageom i bm as400. access) drawn from the
open source version of the IBM toolbox for Java (JTOpen) destrates this pat-

tern:

public cl ass AS400JDBCRowSet i npl ement s RowSet, Serializable {
[x ... %l
private AS400JDBCResul t Set result Set _;
JE Y

voi d updateString (int columlndex, String columVal ue) {
val i dat eResul t Set () ;
resul t Set . updateString(col uml ndex, col ummVal ue);
event Support _. fi reRowChanged( new RowSet Event (t hi s));

}

voi d updateString (String columNane, String col umVal ue) {
val i dat eResul t Set () ;
resul t Set . updateString(col umNane, col umVal ue);
event Support . fireRowChanged( new RowSet Event (t hi s));
}
}

Resending

In the RESENDING category, one overloaded method carries out its missioresgrd-
ing its arguments to its peer after some preprocessing phésesay that a designated
caller method is RSENDING to a designated callee method when all four of the fol-
lowing conditions hold{(i) the caller invokes the callee precisely once in any of its
execution pathsyr there is a single call site, which is executed iterativély;the caller
does not call any other ped(ii) the returned type of the caller and the callee is the
same; andiv) if the caller returns a value, it is the value returned byemllunaltered.

Figure 5 distinguishes between five patterns @SRNDING, based on the process-
ing work carried out by the caller on the arguments it passe® the callee:

1. PACKING, inwhich the caller packs some of its arguments into a cotle®r an ar-
ray and then sends it to the callee. MetBed Val ue of classPr ef er enceConvert er
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of found in packager g. ecl i pse. j f ace. pr ef er ence of the Eclipse develop-

ment environment, illustrates this pattern:

voi d setVal ue(l PreferenceStore store, String nane, FontData val ue) {
set Val ue(store, nane, new FontData[] { value });

}

2. UNPACKING, in which the caller accepts a collection or an array, andkes the
callee on each element of the collection (array). One exarnplthis pattern is
methodconvert ToVect or of classDef aul t Tabl eModel which is located in
packagg avax. swi ng. t abl e:

Vect or convertToVector(Object[][] anArray) {
if (anArray == null)
return null;
Vector v = new Vector(anArray.|ength);
for (int i=0; i < anArray.length; i++)
v. addEl ement (convert ToVector (anArray[i]));
return v,
}

3. CoNVERSION in which the caller converts one or more of its argumentsitutiaer
type, to make it suitable for the callee to digest. Metlsed Locat i on of class
Poi nt depicted in Figure 3 is a case of this pattern.

4. REDUCING, in which the caller processes some of its arguments andsesabset
of the arguments to the callee, as is demonstrated byrthet e method of class
Bi di Or der which resides in packageom i bm as400. access of the Azureus
application:

Resour ceDownl oader create(URL url, bool ean force_no_proxy) {
Resour ceDownl oader rd = create(url);
if (force_no_proxy && rd instanceof ResourceDownl oader URLI npl)
((Resour ceDownl oader URLI npl ) rd) . set For ceNoPr oxy(f or ce_no_pr oxy);
return rd;
}

5. DEFAULT ARGUMENTSIn which overloading is used as a substitute to default ar-
guments mechanism, and the caller does nothing but reskoidtalarguments, as
well as some other default value or values, to the calleefdllmving constructors,
which belong to clasBoi nt , presented in Figure 3 fall into this category:

public Point() {
this(0, 0);
}

public Point(int x, int y) {
this.x = x;
this.y =vy;

}

4.2 POTENTIAL Overloading

The refinement of theNTRINSIC category as presented in Figure 5 is appicable in
principal also to the BTENTIAL category. However, the manual task of identifying
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“Potential Induce” overloading, that is, checking whetherertain method patould
be rewrittenby delegation to another such pair, which could be anywiretied system,
is formidable. We did not ask our raters to do that, and ircééd them to concen-
trate in finding cases in which one method could be rewritteteims of a name-peer,
whereby restricting the breakdown of thePENTIAL category into the various sorts of
RESENDING.

For example, the first version ekt Locat i on method in Figure 3, rewritten as
publ i c doubl e set Locati on(Poi nt p){
} nmove(p. x, p.y);
belongs to this category.

4.3 PEER-CALLER Overloading

A method is classified asEER-CALLER when it invokes one of its peers, but it is not
classified as RSENDING.

Methodf i ndResour ces, drawn from classt andar dPl ugi nCl assLoader , which
resides in packag® g. j ava. pl ugi n. st andar d illustrates such a case:
publ i c Enureration findResources(final String nane) {

List result = new LinkedList();

findResources(result, nanme, this, null);

return Coll ections.enuneration(result);
}
Since the return type of this method differs from that of theoked peer it cannot be
rewritten as an instance of theTRINSIC category.

4.4 VisiTOR Overloading

The VISITOR design pattern is a way of separating operations from the staticture
upon which they operate. This pattern is often realizedaivn oy an interface which
has avi si t () method for each class whose objects may reside in the datste.
Thus, this design pattern usually implies using overlogdiioreover, often the data
structure may contain objects of many different type, ané assult the number of
overloadedii si t () methods becomes very high.

One example of this category is the cohort nawiesi t of classGeneri cVi sitor,
foundin packager g. ecli pse.jdt.internal.core.domrewiteofthe Eclipse
framework. There are 83 methods in this cohort, each accsipgée parameter, which
represents a type of a node in the Abstract Syntax Tree reptaion of a &vA pro-
gram.

5 Statistical Analysis of the Experiment

The definitions of the various categories in the previouieetay seem more intuitive
than precise, and difficult to formalize. Take for example definition of the EEFAULT
ARGUMENTS category, which required that thedller does nothing but resend all of
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its arguments Then, it is not difficult to construct spiteful cases, whichallenge the
accuracy and even decidability of, say, the phrase, “do#smgy—by adding involved

computation, which would take tremendous resources faatssttal analyzer to prove
vacuous, or by throwing in a reduction of the halting problem

Instead of doing so, we restrict our classification to theitiie meaning, as in-
terpreted by humans, and devote this section to the retyabii this classification. We
start with some general figures. Recall that raters wherang®d based on their hit rate,
which was computed against the independent rating cara¢thypthe second author.
Scores ranged betwe@&8% and85%, and averaged av%.

As expected, there were many disagreements regardingfidasens in the some-
what loosely defined ®TENTIAL category. It turned out thatimost alldisagreements
were with regard to this category. In contrast, theHABULT ARGUMENTS category
raised the fewest disagreements, reaching a fully unarsmote casted i85% of the
cases.

The more important question which we explore next is theesystic statistical
reliability of this human classification. The analysis here shall detnatesthat the
results of the manual classification are indeed reprodegénld that the numerical value
that will be presented in thfellowing section are therefore significant. At the end of the
current section we remind the reader the notiorcahfidence intervalwhich should
help in deducing conclusions regarding the entire corpos fivhat was observed for
the sample.

5.1 Reliability of Human Classification of Overloading

Cronbach’sa-coefficien{9], or for shortq, is a statistic which is used in social sciences
to estimate the internal consistency of multiple items imith scale. It is employed in
cases, such as ours, in which the scale is nominal ratheraittmal or rational. The
value of this estimator ranges betweagand1, where a value of corresponds to the
case that items are uncorrelated, i.e., all variation istduandom fluctuations. A value
of 1 corresponds to the case that the items are in complete pomdsnce. For research
purposes it is customary to requiie> 0.8 [19].

Cohen’sk-coefficien{6], or for shortk, is a leading measure of agreement which
assesses the extent to whigho raters give the same ratings to the same objects, while
factoring out the probability of agreement between thersatieat would be expected
due to chance. The values range from -1, which means perfect disagreement to 1,
meaning perfect agreement, where 0 is interpreted as agraerohieved by chance. A
value of 0.6 or higher is considered as a strong agreement.

Table 1 presents the values of these two statistics in oeldt the classifications
carried out by the human raters in the experiment. The fisgtqorresponds to evalu-
ations of all cohorts which fell in the sample, while the settds restricted to cohort
samples of size 2.

Examining the table, we see that the high hit rate the evatsiachieved is far
from being accidental, and it cannot be attributed to chaRoeher, we see high cor-
respondence not only in classification according to toplleategories, but also to sub
categories.
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Tab. 1. Statistical estimators of manual classifications of owating

Experiment |Categories Cronbach «|Cohen’sx (averaged)
All cohorts all categories 0.877 0.731
top-level categories only 0.886 0.743

all categories 0.89(¢ 0.765

Size-2 COhortStop-Ievel categories only 0.892 0.768

Few words are in place in order to explain the method of commpart, which in-
volved data aggregation. Recall that ten raters partiegbat the experiment, each clas-
sifying a subset of 40 methods, while there was no singlegfaiters who classified
the same subset. However, calculatingdh@easure requires that all raters refer to the
same items. Thus, instead of considering a model in whiclateds evaluated 40 items
each, we switched to a model in which we consider only thegatof each item, with-
out taking into consideration who rated it. Our transfornmeodel therefore included
four sets of ratings, each referring to 100 cohorts.

Although thea measure is not originally designed to check inter-ratéabdlity,
there is evidence showing that its use for such purposeseiguade, and even desir-
able when multiple raters are involved [16]. Following tsansing of the data set, this
statistic was used to estimate the correspondence betWeatireys, rather than raters.

We used the same aggregated modekfoalculations as well. The measure was
used in this study to estimate inter-rater reliability beém the second author and each
of the aggregated rating sets. The table displays the awerge of the four values
that were obtained.

Finally, we should say that the excellent values reportediable 1 are relevant
only to the categories which were actually presented in #mapde. As we shall see
below, some of the categories in the taxonomy, althoughréiially interesting, did
not manifest in the sample.

5.2 Binomial proportion confidence interval

Now that we have established the statistical significandbefmanual classification, it
remains to determine what can be inferred about the entipusdrom the classification
of the specimens in the sample. Suppose that a fraction @psif the elements in a
sample fell into a certain category, then, we would like ta fanvalueAp such that
there is a vanishing probability that the true fraction adesin the corpus is not within
betweerp — Ap andp + Ap.

Thebinomial proportion confidence intervatovides this information precisely. It
uses the proportion estimated in a statistical sample dogsfor sampling error. There
are several ways to compute a confidence interval for a bialppndportion. We chose
the Wilson score interval [22] due to the good propertieshid test for even a small
number of trials or an extreme probability. To estimate #wagling error we calculated
95% confidence intervals using Wilson score method for arhiabproportion.
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Tab. 2. The 95% confidence intervals for a sample of size 77 (confielémerval is symmetric
for p and1 — p).

Proportion in Sample 0% 1% 5% 10% 20% 35% 50%
Confidence Interval n = 77|0%—6%0%—-8% 1%—-13%5%—19%12%—30%25%—46%39%—61%
Confidence Interval n = 65|0%—8%0%—9% 1%—15%4%—20%12%—32%25%—47%38%—62%

We calculated the confidence intervals based on a samplesof 8i(method cohorts
of size two) and 65 (constructor cohorts of size two), forimas proportions in the
sample. The results are presented in Table 2. As can be sé¢ea table, the values of
Ap are quite large, but still, if a certain pattern is infrequenthe sample, it is with
very high probability infrequent in the corpus. Converseltterns which are common
in the sample, are very likely to be common in the corpus.

6 Results

Now that we have established the reliability of our clasatfin system and understood
what can be inferred from its values to the full corpus, itiisd to present the actual
results of this classification.

6.1 Method Cohorts

Table 3 shows the distribution of sizes of cohorts that fethie sample of 100 cohorts.
As expected, a number of large cohorts were sampled. Evergthihe small cohorts,
with only two methods, were 77% of the samples, the methodisase were 64% of
the sample.

Tab. 3. Distribution of cohorts’ sizes in the 100 method cohorts gkem

Sizg 2 3| 4| 5/ 6| 7|Total

# Cohorts| 77| 13| 6| 1| 2| 1| 100
# Methods 154{ 39| 24| 5| 12| 7| 241
Fraction |64% 16% 10%) 2%|5%]| 3%|100%

Table 4 provides the results of manual classification ofétehorts. The numbers
in the table represent the results of the classification efsércond author. Note that a
cohort with more than two peers could fall into several categs. In the table, a cohort
was counted in a certain category if the pattern occurretlan least once. Categories
whose number of occurrences is zero are omitted.

In addition to the counts depicted in the table, 2 cohortsevgeich that none of the
methods were implemented, i.eLACEHOLDERS, 13 were classified ascCIDENTAL
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Tab. 4. Manual classification of the 100 method cohorts in the sarfgg values are omitted).

Category|Sub-categorySub-sub-category |# Cohorts
Default arguments 28

Resendin Conversion 17

(54) 9 |Reduction 5

Intrinsic Packing 3
(68) Unpacking 1
Inter-class delegatio 10

Inzjlu:)ed Intra-class delegatiom 3
Super-class delegatipn 1

Potential |Resending gg;iﬂ:sail;gnuments g
(18) (18) Unpacking 1

since none of their methods invoked any of their cohort pémarsould be implemented
as such), and 6 cohorts contained methods which invoke gbeh but did not match
any of the patterns and were therefore classified ’sRPFCALLERS. The sample did
not include any instances ofdMMY ARGUMENT, VISITOR and BSEUDO GENERIC.

The table reveals a strong tendency towards systematierrgthn ad hoc use of
overloading: More than half of the cohorts involve a resagdiattern. The most fre-
quent pattern of overloading that was observed is that afudeparameters, which was
observed in 28% of the cohorts and has the potential of beipigmented in additional
9%.

6.2 Method Pairs

The quadratic increase in the number of pairs of peers makkficult to analyze the
patterns of use of overloading in cohorts with more than 2hoes. Worse, inspecting
in isolation all possible pairs in a cohort is likely to praduconfusing information
which may need a bit of pondering before the underlying $tnecof the cohort can be
revealed.

Consider for example thei | | cohort in classAr r ays, which has 18 methods (2
for each of 4va’s primitive type and 2 fobj ect ) and 153 different pairs. These pairs
can be broken down as follows. The 9 pairs of the sort of

(fill(float[],int,int,float) ,fill(float[],float) )

are DEFAULT ARGUMENTS (replacing | oat in any other primitive type or ithj ect ).
The 36 pairs of the sort of

<fi||(f|0at[],int,int,float) ,fill(char[],int,int,char) >

(wheref | oat andchar can be replaced likewise) arssPBubo GENERIC. And, the 36
pairs of the sort of

(fill(byte[],byte) ,fill(Cbject[],vject) )
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Tab. 5. Results of manual classification of 77 method cohorts of size(zero values are omit-
ted).

Kind Sub-kind |Pattern # Cohorts

Default arguments 19

Resendin Conver;ion 9

a4 (34)hedu_ctlon 3

Intrinsic Packing 2

57% (44) Unpacking 1

Inter-class delegatiox 10

Induced |Intra-class delegatio 0

13% (10) |Super-class delegatipn 0

Potential |Resendin Jgiga\\g:s?(r)?]uments ;

19% (15)| 19% (15) Unpacking 1

Accidental 10
13% (10)

Placeholders 2
3% (2)

Peer-Callers 6
8% (6)

are also are ®EuDO GENERIC. The remaining 72 pairs, which constitute 47% of the
lot, do not fit into any of the categories.

Assigning appropriate weights to the different categdisesohorts with more than
2 peers can be complicated, But, even if this hurdle is ovesaequiring the human
raters to reveal the underlying structure would not onlyehaemplicated the exper-
iments, but also introduced unnecessary noise. Theredarenore in depth analysis
was restricted to the 77 cohorts in the sample which werezaf i Table 5 provides
a breakdown of the classification of these cohorts. Unlikeldd, each cohort occurs
precisely once in this table

As in Table 4, the most common pattern is thaD&FAULT ARGUMENTS, being
used by 24.6% of the cohorts, with additional 9% which haeepgbtential of using it.
Again, we see strong tendency towards systematic use oloaekng. This tendency is
further depicted visually in Figure 6, which portrays a bgrtam of the breakdown into
top level categories.

We see that 84% of the total weight falls in the right hand sifie figure. Six out
of seven of the pairs in our sample exhibit systematic oeglilog, and three out of five
fall in the INTRINSIC category. Also, summing up the values in Table 5 we determine
that in three out of five pairs of overloaded methods, one otktalls another. Relying
on the confidence intervals summarized in Table 2, we cahduitfer that with high
probability these estimates apply to the full corpus, tdimia+10% margin.

Finally, we remark that the tendency towards more systemste of overloading
should increase, or at the least stay the same, as the c@wihsreases. This is of
course with the exception of visitors, in which even thoulgé intended semantics is
similar, it is unclear whether the actual implementatiomiffierent visitors is likely to
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Fig. 6. Spectrum of systematic overloading in sampled method ¢slbsize 2.

show systematic repetition. Luckily, visitors are veryaaand we can therefore con-
clude that the use of overloading in the vast majority of sdsevery systematic, and
that programmers are not tempted to abuse this languagedeat

6.3 Constructor Cohorts

Table 6 displays the results of manual classification of @ dohorts in the construc-
tors sample.

Tab. 6. Results of manual classification of 100 constructor cohorts

Kind Sub-kind |Pattern # Cohorts
Default arguments 25
ResendingConversion 8
. (34) |Reduction 1
Intrinsic .
Packing 0
(59) d .
Inter-class delegatio 0
Induced . m
(25) Intra-class delegatio 3
Super-class delegatipn 22
Potential|ResendingDefault arguments 12
(23) (13) |Conversion 1
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As in Table 4, we did not count each pair of overloaded consbng separately,
instead, each cohort was counted once for each patternd¢batred at least once. In
32 constructor cohorts no particular pattern was identtiegiveen any of the pairs, and
hence, the entire cohort is classified aSADENTAL.

No constructor cohort was classified as vanilizeR-CALLER. In other words, there
was no constructor cohort in which a constructor invokegottonstructor and does
not match a more specific pattern. This is not very surprisitgce the language syntax
mandates that the inter-constructor invocation must befitee statement. The only
allowed computation, computing the actual arguments poidihe invocation, does not
admit much programming freedom or creativity.

Examining the table further, we see a clear tendency towaia®e systematic use
of overloading. But, in comparison with Table 4, it is evitémat this tendency is not
as forceful as it is with methods.

6.4 Constructor Pairs

In order to appreciate more accurately the tendency tonwgrsiematic overloading in
constructors, we now concentrate, as we did with methodxytworts of size 2. Table 7
shows the distribution of sizes in the sample of constructdiorts. We see that still, a
substantial portion of the constructors fell in the firstueoh of the table.

Tab. 7. Distribution of cohorts’ sizes in the 100 constructor caeasample (zero values are
omitted)

Size 2 3| 4| 5/ 6 Total
#Cohorts| 65 21| 9| 1| 1 100
# Methods| 130, 63| 36| 5| 6| 14| 8| 262
Fraction |50%]|24%]|14% 2%]| 2%)|5%)|3%)| 100%

~
(o]

N
[EEY

Table 8 presents a view of the results which contains claasifins of constructor
cohorts of size two.

Comparing the results of constructors classifications ts¢hof methods classifi-
cations it can be observed thatduceD overloading is more frequent in constructors
than in methods. and that the one of the most common patte&foAER CLASS DEE
EGATION. Again, this is what may be predicted by the language syrgaanstructor
with a non-empty parameters list in a base class often irslac@nstructor with the
same parameters list in its derived classes.

Finally, Figure 7 summarizes the spectrum of use of overtaaih restricted sam-
ple. The tendency towards systematic use of overloadingdeet, but it is also clearly
weaker than in methods (Figure 6).

We see that about three out of five cohorts with two constrsawhibit systematic
overloading at some level, and about one in two is a resenddo pgain, we have the
same reasons to believe that this tendency is not spoile& asowve to larger cohorts.
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Tab. 8. Results of manual classification of 65 constructor cohoftsize two (zero values are

omitted).
Kind Sub-kind |Pattern # Cohorts
Default arguments 13
ResendingConversion 4
.. | 26% (17)|Reduction 0
Intrinsic Packing 0
0,

46% (30 Induced Inter-class delegatio 0
20% (13) Intra-class delegatiom 0
0 Super-class delegatipn 13
Potentiall ResendingDefault arguments 10
17% (11) 17% (11)|Conversion 1
Accidental 24

37% (24)
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Fig. 7. Spectrum of systematic overloading in sampled construaihorts of size 2.

7 Conclusions and

Further Research

7.1 Summary of Results

We found that overloading is used extensively in the cor&%b of all constructors and
14% of all methods. Cohorts tend to be larger in methods, antlaverage cohort size
slightly greater than 3, while the average number of corsbing per class is about 1.3.
The distribution of cohort sizes is Zipf-like, except thagtmod cohorts feature cluster
of large cohorts attributed to thel$TOR design pattern.
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We developed a taxonomy for the classification of the use efloading in ac-
tual AvA programs. The taxonomy was refined and exacted in a prooessiimg two
stages of subjecting sized samples to human rating in aat@tdrenvironment. The re-
liability of the classification was validated, at least foe tmajor categories, by engaging
statistical tests traditionally used in social sciences.

Statistical analysis also showed that at least six out adrseases of use of method
overloading are more systematic than ad hoc. The fact theataading is mandatory in
the definition of multiple constructors probably explaing inding that the systematic
overloading is somewhat less frequent in constructorgity in about three out of
five cases. These results (whose error margin is about 1096 amswer the allegation
that overloading is likely to be abused.

It was determined that the most frequent use of overloadirfgri simulating de-
faults arguments. This use pattern occurring in about atgquaf overloaded methods,
while additional 10% of these can probably be rewritten &b s8imilarly, about a third
of the cases in which overloading is used with constructimes,or can be, expressed as
a form of overloading.

7.2 Further Research

It is interesting to study the smaller categories which werecaptured by our sample.
This can be done e.g., by employing refined sampling teclesiqu

We are intrigued by theNDUCED category, which suggests that overloading is
viral—the use of overloading in one class leading to ovetiogin another. There may
be room for checking whether generics could address thifahtion.
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