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 ABSTRACT  
 

Many human diseases relating to central nervous 
system (CNS) are mimicked in animal models to 
evaluate the efficacy of stem cell therapy. The 
therapeutic role of stem cells in animal models of 
CNS diseases include replacement of diseased or 
degenerated neuron, oligodendrocytes or astrocytes 
with healthy ones, secretion of neurotrophic factors 
and delivery of therapeutics/genes. Scaffolds can be 
utilized for delivering stem cells in brain. Sustained 
delivery of stem cells, lineage specific differentiation, 
and enhanced neuronal network integration are the 
hallmarks of scaffold mediated stem cell delivery in 
CNS diseases. This review discusses the therapeutic 
role, challenges and future perspectives of stem cell 
therapy in animal models of CNS diseases. 

 
 Keywords  
Animal models, Cell replacement, Challenges, CNS 
diseases, Scaffold, Stem cell therapy 
   

Received 02 May 2014,  Revised: 20 May 2014,  
Accepted : 21 May 2014, Published online: 03 June 2014. 
 

 INTRODUCTION 
 

Treatment of central nervous system (CNS) injuries had 
been a challenge for medical and veterinary clinicians. 
It was in the naïve stage until early 20th century 

(Schmidt and Leach, 2003) as the recovery in CNS is 
limited by the insufficient self–repair and regeneration 
abilities of the brain tissues (Bjorklund and Lindvall, 
2000). Main challenges in the treatment of brain 
diseases include blood brain barrier (bbb) with tight 
intercellular junctions, and absence of fenestrations 
(Brightman and Reese, 1969). These prevent the uptake 
of majority of therapeutics (Pardridge, 2003), active 
drug efflux pumps in the bbb (Golden and Pollack, 
2003), which pumps out the drugs from the brain, high 
intercellular fluid pressure due to space occupying 
lesions that limits diffusion (Ali et al., 2006; Navalitloha 
et al., 2006), and the sensitivity of brain tissue that 
emphasizes the need for appropriate and precise 
dosing of chemotherapeutic agents (Roger et al., 2011).  
 

Unrelenting reports on therapeutic uses of stem cells 
for CNS diseases have led to their wider acceptance 
and importance in the present scenario. According to 
the early school of thoughts, neurons of adult CNS of 
mammals have limited regeneration capacity, but later 
studies have confirmed that subgranular zone and 
dentate gyrus of hippocampus and lateral ventricles of 
forebrain are regions of potential neurogenesis in adult 
mammalian brain (Kempermann and Gage, 1999; 
Gross, 2000; Lie et al., 2004). This endogenous 
regeneration potential of CNS could be stimulated to 
aid the repair of damaged brain tissue (Nakatomi et al., 
2002). Even from the areas of adult CNS where 
neurogenesis is not apparent, stem cells and their 
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progenitors can be extracted, expanded and 
differentiated into neurons and glia in vitro (Aboody et 
al., 2011), which could be later implanted in vivo. 
Innumerable CNS diseases including stroke, brain 
tumors, epilepsy, Parkinson’s Disease (PD), 
Huntington’s disease (HD), Alzheimer's disease (AD), 
multiple sclerosis (MS), amyotrophic lateral sclerosis 
(ALS) and spinal cord injuries could benefit from stem 
cell therapy (Chu et al., 2004; Carri et al., 2006; Ziv et 
al., 2006; James and Cavenne, 2009; Jiang et al., 2011; 
Cohen, 2013; Kim et al., 2013; Roper and Steindler, 
2013; van Gorp et al., 2013; Mochizuki et al., 2014).  
 
The term stem cell is a broader concept. The stem cell 
types which are used for treating CNS diseases include 
adult neural stem/neural progenitor cells, bone 
marrow derived mesenchymal stem cells, adipose 
derived mesenchymal stem cells, umbilical cord blood 
mesenchymal stem cells, embryonic/fetal mesen-
chymal stem cells, and induced pleuripotent stem cells 
(Chu et al., 2004; Ziv et al., 2006; Chen et al., 2010; Jiang 
et al., 2011; Gu, 2013; Razavi et al., 2013; Yang et al., 
2013). Among the various types of stem cells, induced 
pleuripotent stem lines are derived from reprogram-
ming the adult somatic cells to an embryonic stem cell 
state. They have proved themselves to be a potential 
autologous source of stem cells (Hu et al., 2010), and 
could be differentiated even to neurons (Kuo and Lin, 
2013). The therapeutic role of stem cells in animal 
models of CNS diseases include cell replacement, as 
vehicle for delivery of genetically engineered genes and 
drugs (Roger et al., 2011), release of neurotrophic 
factors and vasoactive factors like anti–inflammatory 
cytokines which provide neuroprotection (Martino and 
Pluchino, 2006). This is only a bird’s eye view of the 
topic. Here, the role of animal models seems to be 
noteworthy in that the therapeutic efficiency of stem 
cells for human CNS diseases is primarily evaluated by 
conducting laboratory animal trials. 
 

 STEM CELLS FOR CELL REPLACEMENT 
 

Neural stem cells (NSCs) are the most logical stem cell 
type to be scrutinized in neural tissue engineering as 
they have the ability of self-renewal, and can be 
differentiated into neurons, astrocytes, and oligo-
dendrocytes (Zhao et al., 2013). A schematic representa-
tion of their differentiation potential is given in Figure 
1. NSCs are mostly harvested from subventri-cular 
zone (SVZ) region of brain and if meant for generation 
of dopaminergic neurons, from the ventral midbrain 
(Gu, 2013). ALS is a neurode-generative disease of the 
CNS causing abnormal function and degeneration of 

motor neurons in human spinal cord, cerebral cortex 
and brainstem resulting in rapidly progressing muscle 
weakness and death due to respiratory failure in a few 
years (Lunn et al., 2011; Vishwakarma et al., 2013). ALS 
may benefit from stem cell therapy especially in the 
earlier stages of disease by providing support and 
enrichment to existing motor neurons (Lunn et al., 
2011) along with the concurrent replacement of lost 
motor neurons (Thonhoff et al., 2009). 
 

Multiple sclerosis (MS) is a chronic inflammatory 
disease of CNS resulting in symptoms like 
musculoskeletal weakness, cognitive impairment 
which are sequale to axonal demyelination. Oligoden-   
drocytes are the glial cells in CNS concerned with 
myelination of axons and hence stem cell derived 
oligodendrocytes could be a promising therapeutic 
option for MS. Research has shown that NSCs upon 
differentiation into oligodendrocytes can remyelinate 
axons in an experimental autoimmune encephalo-
myelitis mouse model of multiple sclerosis (Pluchino et 
al., 2003). NSCs could differentiate into cholinergic 
neurons, astrocytes, and oligodendrocytes and helped 
in amelioration of the learning/memory deficits in 
animal models of AD (Abdel–Salam, 2011). PD is a 
progressive, idiopathic neurodegenerative disorder of 
the CNS where there is dysfunction and loss of 
dopamine secreting neurons in the substantia nigra, 
leading to the characteristic symptom of debilitating 
motor impairments. Stem cell therapy could aid in its 
cure by serving as a source of dopaminergic neurons 
(Emerich et al., 2013). When dopaminergic neurons 
generated from stem cells were transplanted into 
primate models of PD, it diminished symptoms 
observed in this neurodegenerative disorder 
(Manganas and Maletic– Savatic, 2005).  
 
 
 

 
 

Figure 1: Differentiation potential of NSC. 
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Stem cells have found a role in successful treatment of 
stroke as there are reports on migration of neural 
progenitor cells (NPC) towards the lesion with 
formation of new neurons (Kelly et al., 2004), and 
reestablishment of neural connections with functional 
recovery (Hayashi et al., 2006). When human 
embryonic stem cell derived oligodendrocyte progeny-
tors and motor neuron progenitors were transplanted 
into the transected spinal cord of adult rats immedia-
tely after the injury, they could differentiate into 
oligodendrocytes, astrocytes and neurons. In addition 
to this, there was improvement in locomotor functions 
without teratoma formation (Erceg et al., 2010). This in 
turn corroborates cell replacement role of stem cells in 
spinal cord injury. Though the bone marrow stem cells 
could give rise to only a lesser proportion of neuron 
like cells in comparison to brain derived neural stem 
cells, they could be an assuring therapy for CNS injury 
and neurodegenerative diseases (Song et al., 2007).  
 

 STEM CELL MEDIATED GENE THERAPY  
 

Gene therapy is the concept and procedure for transfer 
of therapeutic genetic material into the cells to cure 
diseases (Moirano and Emburg, 2006). Using stem cells, 
an ex vivo gene therapy is performed, which means 
that the genetic material is transferred into the cultured 
cells prior to transplantation (Loscher et al., 2008). In ex 
vivo gene therapy, mostly embryonic stem cells or 
neural stem cells are used owing to their expanding 
capabilities and differentiation potential to various 
types of neural cells. However, the chances of genetic 
incorporation into the brain to generate the desired 
neural phenotype is limited (Van Dycke et al., 2011). 
Genetically engineered stem cells have proven as 
useful in animal models of Parkinsonism (Anton et al., 
1994); brain ischemia, spinal cord injury (Park et al., 
2006; Kusano et al., 2010); gliomas (Aboody et al., 2000), 
ALS (Suzuki et al., 2007), and HD (Olson et al., 2012).  
 
Genetic modification of NSCs with neutrotrophin-3 
(NT–3) has been reported to promote myelination and 
to reduce astroglial scarring after transplantation in 
rodents with either injury of spinal cord or ischemic 
brain injury (Park et al., 2006; Kusano et al., 2010). 
Transplantation of genetically modified embryonic 
stem cell derived cells overexpressing neuroprotective 
factors results in functional recovery in animal models 
of ischemia (Shinozuka et al., 2013). Genetically 
engineered stem cells expressing cytokines have 
reported promising results in glioma models following 
intracranial administration (Ehtesham et al., 2002; Yang 
et al., 2004; Yuan et al., 2006). GDNF (glial cell derived 
neurotrophic factor) – over expressing neural stem/ 

precursor cells delayed the degeneration of motor 
neurons in the spinal cord of rat model of ALS (Suzuki 
et al., 2007); whereas, they increased the survival of 
neuronal cells for up to 3 months post–transplantation 
in the striatum of presymptomatic transgenic mouse 
model of Huntinton’s disease (Ebert et al., 2010).  
 
Huntington’s disease is caused by mutation of gene 
coding for protein mHTT (mutant huntingtin protein) 
resulting in cellular toxicity.  Research in several HD 
animal models had shown that neuronal survival could 
be prolonged by enhancing the degradation/clearance 
of this protein from affected neurons. Patient derived 
induced pleuripotent stem cells (iPSC) were used for 
studying gene manipulation strategies for achieving 
this. Genome editing approaches directly targeting 
DNA for reducing mHTT protein has shown success in 
patient iPSC– derived neuronal models. But this has to 
be validated further in in vivo models (Yu et al., 2014). 
Small interfering RNAs can reduce mHTT and studies 
regarding safety and efficacy of siRNA delivery system 
using human MSCs are underway (Olson et al., 2012).  
 

RELEASE OF TROPHIC FACTORS AND 
OTHER PARACRINE EFFECTS OF STEM 
CELLS 
 
MSC and NPC secrete immune modulatory or 
neurotrophic paracrine factors which may have 
therapeutic benefits in treating experimentally induced 
CNS diseases in animal models (Drago et al., 2013; 
Lavoie and Rosu–Myles, 2013). In experimental studies 
of PD, NPC transplants secreting GDNF, and vascular–
endothelial growth factor (VEGF) have shown positive 
outcome and are being assessed in pre–clinical trials for 
the treatment of the disease (Akerud et al., 2001). 
Upregulation of stromal cell-derived factor-1 (SDF–1), 
VEGF, and transforming growth factor beta (TGF β) 
were noticed in MSC transplanted spinal cord injury 
models of beagle dogs (Jung et al., 2009). Many recent 
studies focus on utilizing paracrine effects of stem cells 
in the therapy of CNS disease. Here, instead of going 
for implanting stem cells, the biologics secreted by stem 
cells termed as ‘secretome’ are used for repairing 
injured brain (Drago et al., 2013).  
 
Human umbilical cord blood–derived mesenchymal 
stem cells delivered intracranially, in a mouse model of 
AD, improved spatial learning and memory decline 
possibly by neuroprotective effect (Lee et al., 2012). 
Yang et al. (2013) reported that single intracerebral 
injection of neuron–like cells, differentiated from 
human umbilical cord derived mesenchymal stem cells 
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(hUMSC–NC) could ameliorate memory deficits in 
mouse model of AD by alternative activation of 
microglia cells. These “alternatively activated” 
microglia (M2–like microglia) played protective roles in 
AD by phagocytizing Aβ (amyloid β–peptide – the key 
pathogenic factor of AD and reducing neuroinflamma-
tion. Yang et al. (2013) here emphasizes the paracrine 
effects of transplantation of hUMSC–NC. The paracrine 
effect has resulted from increased expression of an 
antiinflammatory cytokine namely, IL–4, which in turn 
led to M2–like microglial activation. As already 
mentioned, elevated amyloid β–peptide deposition is 
the key pathogenic factor for neuronal loss in AD. In 
another study utilizing human umbilical cord derived 
mesenchymal stem cells (hUMSC) in beta–amyloidosis 
mouse model of AD, amyloid plaques were reduced by 
secretion of a soluble intercellular adhesion molecule–1 
(sICAM–1). This molecule exerted its effect by inducing 
Aβ degrading enzyme. This again outlines the 
paracrine mode of action of hUMSC (Kim et al., 2012).  
 

STEM CELLS AS VECTOR FOR DRUG 
DELIVERY 
 

Stem cell therapy combined with nanotechnology 
could be a promising tool to efficiently deliver drugs to 
brain tumors (Roger et al., 2011). Glioblastoma, is a 
lethal malignant tumor where even the standard 
protocols like surgical resection followed by 
concomitant chemotherapy and fractionated 
radiotherapy (Stupp et al., 2005; Stupp et al., 2009) 
could only prolong the life span by near about one 
year. Advances in the field of nanotechnology have led 
to the development of nanoparticles loaded with 
chemotherapeutics. The therapeutic agent is entrapped 
in, adsorbed or chemically coupled onto the 
nanoparticle surface. By this technique the therapeutic 
agents are protected from enzymatic and chemical 
degradation, thereby ensuring it’s sustained and 
controlled release (Roger et al., 2011).  
 

Stem cells can be used to carry these drug bound 
nanoparticles (Figure 2) to the lesion site. Neural stem 
cells, owing to their tropism towards glioma cells and 
ability to cross bbb, are excellent carriers for cytokines, 
viral particles and prodrugs (Aboody et al., 2000). 
Mesenchymal stem cells also have homing properties 
around glioma which could be utilized for glioma 
therapy. This homing is due to mechanisms mediated 
by several factors like epidermal growth factor (Sato et 
al., 2005), SDF–1 (Wynn et al., 2004), platelet–derived 
growth factor (Fiedler et al., 2002), matrix 
metalloproteinase–1 (Ho et al., 2009), and macrophage 
chemoattractant protein–1 (Xu et al., 2010). First step in 

stem cell mediated delivery of drug loaded 
nanoparticles is the incorporation of chemotherapeutic 
loaded nanoparticles into the stem cells in–vitro either 
spontaneously or via passive/active endocytosis.  
Secondly, these stem cells are injected intracranially 
into the tumor mass. The nanoparticle loaded stem cells 
will localize in the border between tumor cells and 
normal brain parenchyma and slowly release the 
chemotherapy drugs as depicted in Figure 2. This 
concept is already demonstrated by Roger et al. (2011), 
using MIAMI (Marrow–Isolated Adult Multilineage 
Inducible) cells, a subpopulation of human MSCs. NSC 
mediated delivery of secreted soluble variant of TRAIL, 
[Tumor Necrosis Factor –related apoptosis–inducing 
ligand (TRAIL) can selectively induce apoptosis in 
glioma cells] in combination with therapeutics like 
proteasome inhibitor, bortezomib (Balyasnikova et al., 
2011) and kinase inhibitor, PI–103, in mice models of 
glioma (Bagci–Onder et al., 2011) increased 
survivability of mouse by inhibition of tumor growth 
and proliferation. This is yet another example of the 
role of stem cell as vector. 
 
 

 
 

Figure 2: Stem cells acting as vector to release drug 
bound nanoparticles to the site of brain lesion. 

 
Stem cells also have a role in treatment of epilepsy by 
delivery of adenosine (Van Dycke et al., 2010), which is 
a purine ribonucleoside with neuromodulator and 
neurotransmitter functions (Sachdeva and Gupta, 
2013). Antiseizure and neuroprotective potentials of 
adenosine are known for long (Lee et al., 1984; 
Fredholm, 1997). The role of adenosine in seizure (Van 
Dycke et al., 2011) results from its binding to the 
presynaptic A1 receptors which inhibits the release of 
excitatory neurotransmitters like glutamate. Systemic 
use of adenosine has severe side effects like decreased 
blood pressure and heart rate which emphasizes the 
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need for its local delivery into the brain via stem cells 
(Boison, 2005). According to Van Dycke et al. (2010), 
astrocytes derived from NPC and undifferentiated 
NPC of adenosine kinase deficient mice released thera-
peutically relevant amounts of adenosine under in vitro 
conditions. In case of brain tumors therapeutic delivery 
may be needed for short time duration only whereas 
epilepsy, which is a chronic disorder, needs lifelong 
local delivery of therapeutics. In the latter context, cell 
or gene therapy sounds theoretically a successful 
strategy, as long term release can be ensured without 
replacement or refilling (Van Dycke et al., 2011).  
 

SCAFFOLDS FOR STEM CELL DELIVERY 
IN CNS DISEASES  
 

Scaffolds aid cell proliferation and differentiation, by 
allowing diffusion of nutrients and exerting mechanical 
and biological influences on the cell. Delivery and 
duration of action of stem cells could also be prolonged 
by use of suitable scaffolds. In addition to these, they 
can be used for sustained release of lineage–specific 
inductive factors or small interfering ribonucleic acids 
(siRNAs) which can act as molecular mediators of 
neuronal differentiation. The efficacy of transplantation 
of NPC can be improved in CNS injury by the co–
administration of biomaterial scaffolds (Potter et al., 
2008). Biomaterials made of nanofibers, nanotubes and 
nanoparticles have been widely used in manipulating 
the fate of stem cells (Zhao et al., 2013). Carbon nano-
tubes can provide support, direct the differentiation of 
stem cells to neural lineages and promote signal 
transmission among neurons (Pastorin, 2011).  
 

A nano–biohybrid system created by NSC progeny and 
graphene showed that graphene films can not only 
support neural network without affecting its structure 
and function but also could amplify the network 
activity and efficacy of neural signals (Tang et al., 
2013). In ICC construct, i.e., inverted colloidal crystal 
scaffold comprising chitin, chitosan and gelatin, mouse 
iPSC can remain viable. Also it can accelerate 
differentiation of iPSC to neurons (Kuo and Lin, 2013). 
The knowledge of down regulation of RE 1 silencing 
transcription (REST) factor upon differentiation to 
neurons in NPC can be utilized to enhance in vitro 
neuronal differentiation of stem cells. Low et al. (2013), 
investigated the possibility of scaffold mediated gene 
silencing by delivering small interfering RNA/ 
transfection agent complexes via mussel– inspired 
polydopamine modified electrospun polycaprolactone 
nanofibre scaffolds and concluded that it could be a 
future promise for therapy as enhanced neuronal 

commitment of primary mouse neural progenitor cells 
and decreased glial cell differentiation was seen.  

 
 CHALLENGES AND PERSPECTIVES 
 
The main limitations of stem cell therapy are with 
regard to the higher cost of commercialization, and the 
difficulties in approval of clinical trials. Another major 
problem related to NSC mediated regeneration in CNS 
trauma is due to the upregulation of inhibitory 
immune factors around the site of lesion resulting from 
the inflammatory process that ensues (Dooley et al., 
2014). A recent study by Kyritsis et al. (2014) suggests 
that in mammals, acute inflammation is followed by 
chronic inflammation, which prevents functional 
recovery of brain tissue. Survival of the implanted 
differentiated neurons is to be ensured after transplan-
tation for successful outcome. In ALS, though it had 
been shown that motor neurons derived from stem 
cells can be grafted safely without any rejection, the 
microenvironment remains hostile for their survival 
because of neuroinflammation, oxidative stress and 
glutamate excitotoxicity (Thonhoff et al., 2009).  
 
As dysfunctional astrocytes also have a role in the 
survival of dying motor neurons in ALS, new studies 
are aimed at transplanting stem cell derived astrocytes 
for protecting the diseased motor neurons (Lindvall et 
al., 2012). The beneficial effects of NSC transplantation 
are limited by the unfriendly microenvironment at the 
site of CNS injury/degeneration (Lu et al., 2011). Hence 
stem cell transplantation together with enrichment of 
microenvironment with trophic factors is under 
investigation. In vivo tumorigenic potential of mesen-
chymal stem cell exosome (Zhu et al., 2012), NSC 
(Shinozuka et al., 2013), embryonic stem cells 
(Thonhoff et al., 2009; Mothe and Tator, 2012) and 
induced pluripotent stem cells is another impeding 
factor in progress. However, many studies with the 
above stem cell sources have shown positive 
therapeutic outcomes without tumor formation. 
Further research on tumorigenic potential of stem cells 
revealed that the presence of undifferentiated 
pluripotent cells as contaminants in neural committed 
transplants is the cause for teratomas.  This tumor 
transformation can be halted by incorporating suicidal 
gene into these stem cells.  
 
It is important to rule out any existing tumors by 
functional imaging modalities before stem cell infusion 
into brain or spinal cord (Olson et al., 2012). The 
homing tendency of MSC to hypoxic regions around 
tumor margins and its potent revascularization potency 
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has the flaw of supporting the survival of existing 
tumors, if given alone. A dark side to the use of human 
embryonic stem cells is the activation of immune 
responses. A way out has evolved by short term 
immune dampening treatment of these cells which 
could prevent post–transplantation rejection 
(Mochizuki et al., 2014). Undifferentiated iPSC are also 
immunogenic but are seldom used in transplantation 
studies without differentiating them into desired cell 
lines (Yamanaka, 2012).  
 
Presently preclinical cell therapy trials are being carried 
out in animal models of CNS diseases. Though the 
predictive clinical outcome of such therapies seems to 
be encouraging, controlled clinical trials in large animal 
models are to be undertaken before evaluating the 
feasibility of stem cell therapy in human beings. Even 
in those CNS diseases where the clinical phase trials 
have started or culminated the diagnostic techniques 
for accurately predicting the cell integration and 
survival in live patients is underway. A solution to this 
has evolved from the finding that NSCs may be 
labelled with superparamagnetic iron oxide before 
administration and their distribution in the body can be 
noninvasively monitored by MRI. This is awaiting FDA 
approval for implementation in clinical trials (Aboody 
et al., 2011). 
 
Certain other issues need to be addressed in the future 
and one of them is how the survivability of 
transplanted stem cells can be augmented. Studies have 
shown that the survival, growth and function of the 
neurons can be enhanced by trophic protein factors and 
hence combining differentiated neurons with these 
factors could be a concept for future research (Emerich 
et al., 2013). The optimal dose of stem cells to be used, 
route of administration and sex of the donor/recipient 
vary with the stem cell type being used (Shinozuka et 
al., 2013) and future trials should be aimed at 
standardizing these factors with regard to different 
stem cell types for various CNS diseases. When to give 
stem cell therapy after disease onset is yet another 
issue. Most of the CNS diseases that gained benefit 
from stem cell therapy had shown that an early 
intervention is necessary for successful outcome. 
Though there are reports of improvement of locomotor 
function following immediate stem cell therapy, 
optimal time period for stem cell transplantation 
following spinal cord injury is 1–2 weeks after injury. 
The immediate post–traumatic microenviroment does 
not support the survival and differentiation of neural 
stem cell/progenitor cells. In chronic stage, there is 

glial scar formation at the site of injury which inhibits 
axonal regeneration (Nakamura and Okano, 2013). 
 
A recent progress in the field of cell therapy is the 
invention of technology for cell reprogramming and 
development of iPSC. Induced pluripotent stem cell 
lines derived from patients suffering from PD, AD, 
Autism, Rett syndrome (a paediatric neural 
development disease) and Schizophrenia are now used 
as cell models for studying pathogenesis, and to 
develop assays for drug discovery (Yuan and Shaner, 
2013). They can serve as autologous stem cell sources 
with more controlled methods of reprogramming. This 
new technology provides scope for a diversion from 
the use of animal models as a primary step for lab 
evaluation of new treatment strategies. 
 

 CONCLUSIONS 
 

The therapeutic effects of stem cells in animal models 
of CNS diseases are discussed in this review. Majority 
of the research outputs from different laboratories are 
encouraging and these results are extrapolated to 
predict the possible outcome in human beings. In this 
context, one main lacuna is that there is absence of 
complete recapitulation of the human CNS disease in 
these lab animal models. Here, we conclude this review 
by stating that research in animal models of CNS 
disease is currently in progress for developing new 
treatment options of which stem cell seems to be 
promising. The broad arena of stem cell biology in 
neuroscience provides an ample scope for future 
research in pet animal diseases like CNS related 
paralysis/seizures. 
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