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Abstract. We investigate the thermal denaturation of DNA hairpins using molecular dynamics simulations
of a simple model describing the molecule at a scale of a nucleotide. The model allows us to analyze the
different interacting features that determine how an hairpin opens, such as the role of the loop and the
properties intrinsic to the stem.

PACS. 87.15.Aa Nonlinear dynamics and nonlinear dynamical systems – 87.15.He Dynamics
and conformational changes – 05.45.-a Nonlinear dynamics and nonlinear dynamical systems

1 Introduction

Understanding the physics of DNA is a challenge, and sim-
ple models of the molecule can help because they allow
us to determine what are the essential features that are
necessary to generate its remarkable properties. Due to
its large amplitude motions, which are involved in many
biological processes, DNA is a laboratory for nonlinear
physics [1] and the models can also be used to analyze
some of its biological properties [2]. However, such studies
are only useful if the models can be validated by compari-
son with experiments, which requires a well-controlled ex-
perimental situation where precise results can be obtained.
DNA melting, i.e. its thermal denaturation by separation
of the two strands, is a purely physical process that can
be accurately tracked by UV absorbance, and this is why
it has been used to calibrate the parameters of a simple
nonlinear model for DNA denaturation [3]. More recently,
a new class of experiments has started to deliver very ac-
curate results on DNA: in particular, we refer to studies
of DNA hairpins that possess, at their ends, a fluorophore
and a quencher [4]. These molecules are made of a sin-
gle strand of DNA which carries sequences of bases that
are complementary to each other in each of its two ter-
minal regions. As a result, when the base pairs of these
two sequences are formed, the molecule takes the shape
of a hairpin (see a schematic picture in Fig. 1) made of
a stem, which is a short segment of a DNA double helix,
and a loop, which is a single strand carrying bases that
are not paired. Such molecules exist in two states. Above
a temperature Tm, called the “melting temperature”, the
double helix of the stem is denaturated and the molecule
behaves like a standard polymer chain, which generally
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has its two ends far from each other. As a result, the flu-
orophore and the quencher, each bound to one end of the
strand, are far from each other and the molecule is fluo-
rescent. At temperatures significantly lower than Tm, the
stem is formed. The two ends of the hairpin are close to
each other so that the quencher prevents the fluorescence
of the chromophore. Therefore, the fluctuations of the flu-
orescence, recorded with confocal microscopy, can be used
to investigate the structural dynamics of these peculiar
DNA samples [4].

The interest of these “molecular beacons” is double:
first, as discussed above, they can be used to provide data
on DNA denaturation and self-assembly; and second, they
can be used as highly sensitive probes to detect some short
sequences with a high specificity [5]. While the experi-
ments can provide accurate measurements on the melt-
ing temperature Tm as a function of some properties of
the beacon, such as the length of the loop or its rigid-
ity (rigidity is determined by the bases in the loop), the
understanding of the experimental results would be signif-
icantly improved if we had a precise idea of all the physical
processes involved in the fluctuations of the hairpin.

Our aim in this study is to introduce a simple model
that allows us to identify the basic phenomena involved in
the statistical and dynamical properties of DNA hairpins.
We use molecular dynamics simulations to investigate its
properties. As the typical time scales of the fluctuations
of DNA hairpins vary from ns to µs an all-atom simu-
lation is extremely computationally demanding. To our
knowledge, the only simulation of a hairpin which was
able to follow a trajectory long enough to observe opening-
closing events was a massively parallel stochastic simula-
tion using 40 000 processors [6]. Very simple models that
nonetheless preserve the basic physics of the system are an
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essential complement to these studies, to allow statistical
studies and provide a fundamental understanding of the
basic phenomena governing hairpin fluctuations. We con-
sider a generalization of a simple model for DNA denatu-
ration [7–9], which turned out to allow some quantitative
analysis of DNA melting curves [3] and biological pro-
cesses [2]. For the study of DNA hairpins the simple model
has to be significantly modified. Although it cannot pre-
tend to give a full quantitative picture of the fluctuations
of the hairpin, such a model can be useful to understand
the processes that lead to the experimental observations
because, although they are performed at the scale of a
single molecule, experiments that detect the quenching of
fluorescence are not sufficient to precise the microscopic
structure of the molecule. Comparison with the experi-
ments can also validate the model and tell us what are
the appropriate values of its parameters, opening the way
to other applications of this model in different contexts.

2 Description of the model

Our model, schematically shown in Figure 1, is based on
the PBD model [7,8], which has been used by several au-
thors to study denaturation because it is very simple but
nevertheless gives results that can be quantitatively com-
pared with experiments [2,3]. However, in order to model
the denaturation of a hairpin, the PBD model must be
significantly extended.

The original PBD model does not care about the ge-
ometry of the DNA strands because it only describes the
base pair opening through the relative distance between
the two bases of a pair. The molecular structure only en-
ters through a stacking interaction between adjacent base
pairs, which depends on the stretching of the two inter-
acting base pairs, not on the actual position of the bases;
the actual positions are irrelevant for the analysis of the
denaturation.

From the PBD model we keep the basic unit at the
level of a base, or more precisely a nucleotide, which com-
prises a base, a sugar and a phosphate group, represented
as an entity with a mass m = 300 a.m.u. (atomic mass
unit). To study a hairpin we need to specify the actual
geometry of the strand. Therefore, the strand is described
as a chain of particles, the nucleotides, which are coupled
by a stiff harmonic potential allowing small fluctuations
around the average interparticle distance r0, equal to 6 Å,

Vh = Ks [|ri+1 − ri| − r0]
2 (1)

where ri is the spatial position of particle i, and Ks is the
coupling constant set to 0.18 eV Å−2. In order to speed
up the calculations, the dynamics is assumed to be two-
dimensional and each nucleotide therefore has two degrees
of freedom in a plane. This could appear as a severe re-
striction because it does not allow for the description of
the helicoidal structure of the stem. For the denaturation
of long DNA molecules, the helicoidal shape is indeed im-
portant [11] because a local opening, which eliminates the
torsion in some region of the helix, transfers this torsion

Fig. 1. Schematic view of the model and its interaction po-
tentials. The model has been drawn using Pymol by DeLano
Scientific [10].

to other parts, thereby affecting the opening rates in these
parts. For a stem of a few bases such an effect is expected
to be much weaker for two reasons: (i) the local opening
can at most extend over a few bases, so that the torsion
to be transfered on other sites is small; (ii) the free end
of the stem allows it to rotate, relaxing the extra torsion.
Therefore it is neglected in our model, which allows us
preserve the simplicity of the model which, as explained
in the introduction, does not pretend to be fully quanti-
tative.

Short DNA structures have been found to show highly
sequence-dependent conformational dynamics where the
flexibility associated with the base stacking plays an im-
portant role in the melting transition [4]. This is a point
that we would like to understand in this study and there-
fore this aspect must be included in the model. It can be
done by introducing a “rigidity potential” which couples
three consecutive nucleotides and is minimum when the
angle θ̂i between the two vectors joining nucleotides i and
i−1 and nucleotides i and i+1 is equal to π. This potential
has been chosen as

Vr = Kr

[
1 + cos θ̂i

]
. (2)

The rigidity constant Kr plays a very important role be-
cause it determines the shape of the loop and strongly
influences the deformations of the stem. However, at the
mesoscopic scale of the present model, the actual value of
Kr is very difficult to determine because what appears as
a local bending of the strand occurs in the actual DNA
structure through a complicated process. The strand can
be bent by changing some angles between the covalent
bonds, which has a high energetic cost, but also by a
sequence of rotations around the bonds, which requires



S. Cuesta-López et al.: Model for DNA hairpin denaturation 237

much less energy. The relative contributions of these mo-
tions to the actual bending of the DNA strand depends on
the motion that is performed. In order to understand the
physical role played by the rigidity of the strand, we have
varied Kr in a very broad range, from 10−6 eV to 0.35 eV.
As discussed below, the comparison with the experiments
leads to an estimate of the appropriate value of Kr, which
could not be made a priori.

The two potential energies, (1) and (2), are sufficient
to describe the properties of the strand in the loop, which
can be viewed as a particular polymer. But for the stem,
in which the base are assembled in pairs, we need to take
into account additional energy terms. The first one is the
potential that links two nucleotides in a pair. From the
PBD model, it can be taken as a Morse potential VM ,
which has the proper qualitative shape: a strong rise when
the two nucleotides are pushed together closer than their
equilibrium distance, and a rise followed by a plateau (cor-
responding to a vanishing force) when the nucleotides are
pulled apart from each other,

VM = DM

[
e−α[|ri−rN−i+1|−do] − 1

]2

, (3)

where DM represents the depth of the Morse potential,
having a value of 0.22 eV and do is the equilibrium bond
distance equal to 10 Å. For α, we have chosen a value of
4.45 Å−1 in agreement with the usual value for an AT base
pair taken in previous studies [3,8,9]. It should be noticed
that, like all the potentials in this model, VM is an effective
potential that describes a set of microscopic interactions.
It includes the hydrogen bonds between the paired bases,
but also the repulsion between the heavily charged phos-
phate groups in the base/sugar complex, as well as the sol-
vent effects. As already pointed out for Kr, such effective
potentials are difficult to calculate a priori but the value
of DM is however much better defined than Kr because
the order of magnitude of the energy required to break
a DNA base pair is known (and has for instance been
evaluated for the PBD model); and moreover, it can be
estimated from the comparison with experiments in order
to get a correct thermal denaturation temperature for the
stem. The Morse potential has the same qualitative shape
as the Lennard-Jones potential, more often used in molec-
ular dynamics simulations. Its choice for the PBD model
was motivated by the possibility that it offered to carry
some calculations analytically, but the studies of the PBD
model show that the difference between the Morse and the
Lennard-Jones potential is not significant for the statisti-
cal results that we are seeking in such a study.

Finally, an additional potential term is necessary to
stabilize the geometry of the stem against shear distor-
tion. It can be written as a Yukawa repulsive potential
between a nucleotide and its two nearest neighbors of the
complementary strand in the stem (see Fig. 1):

VY uk = KY uk

[
e−CY uk|ri−rN−i|

|ri − rN−i|
]

+ KY uk

[
e−CY uk|ri−rN−i+2|

|ri − rN−i+2|
]

. (4)

Such potentials are appropriate to describe the screened-
charge coulombic repulsion between the phosphate groups
in the nucleotide entity. The values of CY uk in equa-
tion (4) has been set to 0.4 Å−1 which is the inverse
of a typical Debye length for an ionic solution, while
KY uk = 50.0 eV Å have been chosen in order to keep
the VY uk small with respect to the other energies in the
system, in particular the rigidity potential (see Fig. 7).

The calculations have been done with a stem having
6 base pairs, labeled BP1. . . BP6; BP1 is the base pair
at the free end of the hairpin. BP6 is next to the loop:
its nucleotides are attached to the two ends of the part
of strand that makes the loop, and moreover each of its
2 nucleotides is linked by a Yukawa potential term to the
nucleotide at the end of the loop on the opposite side of the
hairpin. The model is comparable to the molecular bea-
cons investigated experimentally [4]. To derive equations
of motions from these potentials, one must also specify
the boundary conditions. The two ends of the strand are
free, i.e. the end nucleotides only have interactions with
one other nucleotide along the strand, and, whenever base
pair BP1 is formed, with the nucleotide of the opposite
strand through the Morse potential VM .

Finally, let us conclude this part by saying that al-
though nature is much more complicated than this simpli-
fied vision, we have tried to design the model to take into
account the main biophysical properties of DNA. In real
molecules, loops have been shown to be quite flexible while
the stem remains more rigid due to the pairing between
complementary bases in a helical conformation [12]. Note
that this feature is well represented in our model by the
interactions present in the stem. One difficulty in such a
modeling approach is the proper choice of the parameters.
Fortunately, not all parameters are of equal importance.
The precise value of the harmonic coupling constant Ks

and the parameters of the Yukawa potential only have a
small effect on the thermodynamics of the hairpin because
the conformational changes that play a role when the base
pairs open are only weakly coupled to the stretching of the
strands or to the shear motion of the stem. These two po-
tentials are only required to determine the geometry of the
molecule. On the other hand, the depth DM of the Morse
potential has a very strong influence on the denaturation
temperature because it measures the energy that has to
be spent to open a base pair. This provides a convenient
way to evaluate a proper value of DM because the denatu-
ration temperature is known. Similarly, in agreement with
the experiments, the rigidity coefficient Kr is very impor-
tant. This study will show that this coefficient influences
denaturation through different effects. There is one role of
Kr that is immediately clear: it controls the cooperativity
of the denaturation because when one base moves out of
the stacks, it tends to pull out its neighbors due to the
rigidity of the strand.

3 Discussion of the simulation method

DNA hairpins fluctuate mainly between two families of
states: low enthalpy ones, due to the base pairing in the



238 The European Physical Journal E

stem in the closed state; and high entropy states, the open
states, which have many different conformations. As ob-
served experimentally [4], the closing transition, i.e. the
formation of the hairpin, is a long process that evolves
through a path of partially folded or misfolded states be-
fore reaching the final, properly closed state. Closure oc-
curs only after one particular collision of the two arms of
the hairpin followed by the nucleation and the propaga-
tion of a base-paired stretch [13]. Therefore the closing of
the hairpin, which typically requires a few µs, is beyond
the time scales of molecular dynamics simulations–even
with a simple model–unless exceptional computing facil-
ities are used [6] or if the model is biased to avoid mis-
matches. Our model has such a bias because the bases
of the stem, linked by the Morse potential never lose the
memory of the corresponding base in the pair. The force
between them may become vanishingly small when the
hairpin is open, but only the correct closing is allowed. It
would be a limitation to study the dynamics of the fluctu-
ations that open and close the hairpin and compare it with
experiments. But, as this dynamics occurs on time scales
that are beyond simulation, we focused our investigation
on the opening temperature of the hairpins, for which a
proper description of the dynamics of the closing is not
required. We did occasionally observe closing, but the ob-
servation only corresponds to the last part of the actual
closing, when the two legs of the hairpin approach each
other with a correct matching of the base pairs, followed
by a fast zipping of the stem. On the contrary, the melting
transition of the hairpin is accessible to simulations with
a simple model because it only requires an energy fluctu-
ation large enough to unzip all the base pairs of the stem.
Melting occurs in a time scale that is is compatible with
simulations. Although the model is not sufficient to allow
a complete analysis of the fluctuations of DNA hairpins,
its investigation is however important because it allows us
to understand one of the two phenomena that determine
the fluctuations, the opening event. As shown below, MD
simulations clarify for instance the role of the loop in the
opening and they exhibit some features that had not been
inferred from the experiments.

A study of the thermally-induced denaturation tran-
sition requires a precise control of temperature. It can be
achieved by coupling the system to a Nosé-Hoover chain of
thermostats, which gives canonically distributed positions
and momenta [14]. This method, which is a modification
of the original Nosé dynamics [15,16], ensures a proper
exploration of the phase space for small or stiff systems.
Moreover we also noticed in our simulations that it leads to
a faster relaxation to equilibrium than a single-thermostat
calculation.

The process followed in our study is simple: after an
initial heating and equilibration at a temperature well be-
low the opening-transition temperature, we heat up the
system step by step, choosing temperature intervals of
5 K. Each temperature variation is performed as a linear
ramp lasting 50 ps, followed by 50 ps of equilibration at
the new temperature before the MD trajectory is recorded

and analyzed during 50 ns. We have checked that this time
is sufficient to observe any relevant evolution in the model.

During the simulation carried out at each stabilized
temperature, properties like energy and distance between
Morse pairs are recorded and analyzed. This allows us to
calculate some thermodynamic quantities like the specific
heat, and to determine whether the hairpin is denaturated
or not.

This determination raises however some technical dif-
ficulties because, in a small system such as the hairpin,
a true thermodynamic transition between a closed and
an open state does not exist. Instead of a sharp denatu-
ration temperature, one expects a smooth evolution be-
tween a state in which the fluctuating hairpin is closed
most of the time, and a state in which it is open most
of the time. This is a typical problem of single-molecule
studies, whether they are experimental or numerical. Be-
sides these true opening and closing events, the dynamics
of the model can pass through intermediate stages which
can easily be wrongly interpreted as opening and closing,
such as

– large amplitude fluctuations of a closed state which
bring the system near full opening without actually
breaking the base pairs may be wrongly analysed as
an opening event. Such very large fluctuations are pos-
sible with the nonlinear interaction potentials of the
nucleotides;

– in an open state, if the loop has a very small stiffness,
it tends to take a rather compact globular shape due to
entropic effects. This keeps its ends, hence the hairpin
legs, close to each other altough they are not paired.
This could be wrongly interpreted as a closed state.

In order to avoid this kind of artefacts, we have monitored
the pairing of the bases from the distance between the
complementary bases of the stem and we assign a state as
denaturated when all the Morse pairs have been broken
for a period of time greater than 1 ps.

4 Influence of the rigidity
on the denaturation temperature

DNA hairpin denaturation temperature has been shown
to be highly dependent of the loop’s characteristics, like its
sequence and its length [4]. The experimentally measured
melting temperature Tm of designed structures has been
found to decrease as the length of the loop increases. On
the other hand, a poly(A) hairpin denaturates at lower
temperature than a poly(T ) one. This suggests a rigid-
ity dependence because poly(A) can be expected to be
more rigid than poly(T ). A purine base like A is made
of two organic rings instead of one for a pyrimidine base
like T . As a result, the stacking interaction between As is
larger, reducing the flexibility of the strands. The spread
of Tm with loop length is stronger in the case of adenine,
where Tm drops from 54.1 C down to 29.8 C for loops from
12 to 30 bases than for thymine, where it varies in the
range 58.1 C to 42.2 C.
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Fig. 2. Typical snapshots of a fluctuating hairpin, showing
different states of a moderately flexible (left) and highly flexible
loop (right).

Fig. 3. Evolution of the denaturation temperature Tm in func-
tion of the rigidity parameter Kr for hairpins with different
loop length.

In experiments Tm results from the equilibrium be-
tween opening and closing, so that the role of the proper-
ties of the loop in the opening events is difficult to assess,
although kinetic studies can give some data [13]. Numer-
ical simulations of the model can provide detailed results
on the opening and its dynamics.

A first series of studies has been made by assuming
a homogeneous rigidity along the whole strand. We have
estimated the denaturation temperature Tm for different
loop lengths and for a wide range of values for the rigidity
potential. Figure 2 shows typical aspects of the loop, de-
pending on its rigidity. Figure 3 summarizes the results,
which are presented in greater details in Figures 4a and 4b.
Due to the difficulty of determining Tm as discussed in the
previous section, each point on the figure results from an
average of 7 calculations (requiring 25h CPU per point
with a 2.0 GHz workstation). Even with such an averag-
ing, large fluctuations subsist in the plot of Tm versus Kr

but the general evolution is nevertheless clearly visible.
As shown in the graphs, the variation of the denat-

uration temperature versus the rigidity of the stem and
the length of the loop is complex. When the rigidity in-
creases, Tm exhibits a minimum at intermediate rigidities,
which suggests a competition between different processes.
At very low rigidity (see Fig. 4b) Tm depends only weakly

(a)

(b)

Fig. 4. Detailed view of the rigidity zones explored in our
study. (a) shows polynomial fits for the evolution of Tm cal-
culated in the case of high rigidity for different loop sizes.
(b) magnifies the flexible zone corresponding to low values
of Kr.

on Kr. Then, as Kr increases by almost two orders of mag-
nitude (from 10−4 to 10−2 eV), the denaturation temper-
ature shows a slow decrease of about 20 K until it reaches
the minimum located around Kr = 0.05 eV. After that,
a very sharp rise appears as Tm increases by more than
50 K in a short range of rigidity from 0.05 to 0.15 eV. This
rise can be related to the energy needed for a cooperative
breaking of Morse pairs in the stem. But, instead of keep-
ing on rising, Tm stabilizes for high rigidity values, which
suggests that other phenomena come into play at higher
rigidities.

It should also be noted that the influence of the loop
size on Tm is itself complex. According to the polynomial
fits shown in Figure 4b, for low values of Kr a bigger loop
makes the opening transition easier, while for fairly rigid
structures the open state appears to be more accessible
for short loops (Fig. 4a).
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Besides the determination of Tm, simulations also
allow us to examine how the denaturation starts and
evolves. Three different situations have been observed.
High values of Kr, lead to an opening of the base pairs
starting from the loop side and propagating quickly along
the stem until it reaches the free end. On the contrary,
when Kr is small, i.e. when the loop is very flexible, large
amplitude motions can very often be seen on the stem in
the form of denaturation bubbles. These modes, in cooper-
ation with an opening of the base pair at the free end of
the stem, lead to a regime where the base pairs that are
close to the loop are the last ones to break. Finally, for an
intermediate range of stiffness, the denaturation is the re-
sult of an opening that starts from both sides, sometimes
with a clear predominance of one of the two.

All these data suggest that there is an interplay of sev-
eral physical phenomena that determines how DNA hair-
pins denaturate. In the following sections we will try to
clarify and quantify their influence through several numer-
ical experiments that are designed to separate the different
phenomena.

5 Analysis of the results

5.1 Properties intrinsic to the stem

Let us begin with the influence of the characteristics inher-
ent to the stem, which is obviously the part of the molecule
which plays the predominant role in denaturation.

In order to precise the role of the rigidity of the chain
we have carried out two different calculations to determine
the behavior of an isolated stem. First we examined the
6-base-pair stem of the hairpin alone, i.e. with both ends
free. At very low rigidity Kr, the stem transition temper-
ature Tc is almost independent of Kr. On the contrary,
when Kr reaches 0.05 eV, Tc rises quickly with Kr.

However, the simulation of the isolated stem does not
correctly reflect properties that are intrinsic to the stem
because the denaturation is strongly affected by boundary
effects. In order to avoid these perturbations, for a second
series of calculations, we designed a simulation of a stem
with protected ends. A stem of 20 base pairs thermalized
at temperature T , is surrounded by two regions (of 20 base
pairs) maintained at a temperature T ′ < T (in most of the
calculations T ′ = T − 20 K) by separate thermostats. A
buffer zone of 5 base pairs –simulated without thermostat,
i.e. as a microcanonical domain– is introduced between
two regions maintained at different temperatures to allow
for a temperature gradient. The domain in which we study
the denaturation of the stem is a section of 15 base pairs
in the center of the region maintained at temperature T
(Fig. 6). In such a configuration the denaturation of the
domain of interest is not forced by the fluctuations of free
ends, but reflects more accurately the intrinsic properties
of the stem. Figure 5 shows that its denaturation occurs
about 20 K above the denaturation of a stem with free
ends. The variation of Tm as a function of the stiffness is
however very similar whether the stem has free boundaries
or not.

(a)

(b)

Fig. 5. Denaturation temperature of the stem versus rigidity.
Squares: six-base-pair stem with free ends, circles: stem with
ends protected by a domain maintained at a lower temperature.
(a) log-lin scale (b) log-log scale, showing that, for Kr > 0.05
the denaturation temperature rises approximately as Kα

r with
α = 0.129 or α = 0.142 in the case of a stem with free or
protected ends, respectively.

Fig. 6. Schematic picture of the configuration used to sim-
ulate the denaturation of the stem with protected ends. The
shaded rectangles at both ends correspond to regions that are
maintained at a temperature slightly lower than the domain
of interest. The two smaller rectangles shaded in light grey are
buffer zones, simulated without a thermostat. The central rect-
angle is the domain in which we study the stem denaturation.
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Fig. 7. Percentage of contribution to the global potential en-
ergy estimated both for the Yukawa and Rigidity potentials
as a function of the stiffness parameter Kr. The Yukawa con-
tribution to the potential energy dominates for Kr < 0.01 eV,
and becomes negligible for Kr > 0.01 eV.

The increase of Tm versus Kr can be understood in
terms of an increasing cooperativity of the transition: if
several bases have to open at once, the barrier to overcome
is higher and this drives the melting temperature up. A
similar phenomenon has been noted earlier for the PBD
model, where an analytical calculation of Tc is possible
and shows that Tc grows as the square root of the cou-
pling constant [17]. Here, for Kr > 0.05, the denaturation
temperature rises approximately as Kα

r with α = 0.129
or α = 0.142 in the case of a stem with free or protected
ends, respectively.

The plateau observed for the very low values of Kr

arises from another contribution to the rigidity of the
stem, the Yukawa potentials introduced to stabilize the
stem against shear distortions. They are weak, but be-
come nevertheless dominant when Kr becomes too small
as shown in Figure 7.

The investigations of the stem alone show that the
large increase of the melting temperature Tm of the hair-
pin, observed for Kr in the range Kr = 0.05–0.15 eV can
be assigned to a similar increase of the transition temper-
ature Tc of the stem.

5.2 Role of the loop

The loop is another structural component that has a
strong influence on the dynamics and thermodynamics of
the hairpin. The simulations distinguish three major ef-
fects, depending on the characteristics of the loop:

(i) the loop protects one end of the stem and limits its
fluctuations,

(ii) a rigid loop may exert a mechanical effect that tends
to stretch the base pairs of the stem,

Fig. 8. Schematic picture of the shape of the loop: (a) glob-
ular loop. (b) Distances d1, d2, d3 recorded to evaluate the
fluctuations of the shape of the loop.

(iii) a long fluctuating loop applies a random force to one
end of the stem, which tends to denaturate it.

Let us discuss separately these three possible effects of the
loop.

5.2.1 Protective effect and shape fluctuations of the loop

For very low values of the rigidity, the loop takes a highly
distorted globular shape, which has a higher entropy than
an extended configuration (Fig. 2).

This compact conformation, linked to the last base pair
of the stem, tends to maintain the two bases close to each
other, isolating this end of the stem from the fluctuations
of the solvent. As a result, this prevents an opening of
the stem from one of its ends, raising the denaturation
temperature.

In order to quantitatively follow the evolution of the
shape of the loop and its fluctuations, we recorded the
time evolution of the three characteristic distances, d1,
d2, d3 defined in Figure 8: d1 and d2 are the lengths of the
segments that connect the particle situated in the middle
of the loop with the last pair of bases closer to the loop,
while d3 is a diametral distance between the bases situated
at 1/4 and 3/4 of the length of the loop. Note that these
distances grow as the loop evolves from a compact globular
shape to the almost circular shape that one would expect
for a loop behaving like a bent rigid rod. Then, when this
regular shape is reached, d1, d2, d3 can be expected to stay
approximately constant, except for small fluctuations.

Figure 9 shows the evolution of d1, d2, d3 versus Kr,
recorded in a series of simulations for different rigidities.
Each simulation is performed at a temperature that is
slightly below the denaturation temperature that corre-
sponds to this particular rigidity, so the results reflect the
behavior of the loop when the hairpin is close to opening.
Therefore, these calculations give information on the pro-
cesses that lead to the denaturation. In addition to the
values of d1, d2, d3 giving the shape of the loop, we have
computed their Root Mean Square Deviation (RMSD) (or
standard deviation) from their mean values, which mea-
sures the fluctuations of this shape. This value is defined as
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usual by RMSD(dx) =
√

[
∑N

i=1 (dxi − 〈dx〉)2]/N , where
dxi is the value of the distance x at some time ti, 〈dx〉 its
average along the calculation, and N is the total number
of data points taken into account.

The monotonic increase of d1, d2, d3 when the rigidity
increases reflects the expected evolution toward an almost
circular loop. It should be noted that the range of Kr

for which the distances d1, d2, d3 stay very small corre-
sponds to the range in which the melting temperature of
the hairpin decreases when Kr increases (Fig. 3), which is
consistent with a protective role of a highly flexible globu-
lar loop. The variation of their RMSD is more interesting
because, as Kr increases, it falls from a high value on the
order of d3/2 to a very small value, showing a fairly sharp
change of behavior from a distorted globular state to a loop
that only has small fluctuations. This evolution is sharper
for longer loops. This suggests a collective behavior and,
as expected, the transition occurs for a higher value of Kr

when the length of the loop increases.

5.2.2 Mechanical stretching

When Kr is large enough, the loop adopts an annular
shape (Fig. 2), as shown by the values of d1, d2, d3, and
behaves like an elastic rod that is kept bent by the stem,
which keeps its two ends at a distance smaller than the
persistence length of the strand that makes the loop. This
generates a mechanical force that tends to separate the
hairpin legs. This force is inversely proportional to the size
of the loop. For large values of Kr this force is the main
cause of denaturation. This is demonstrated by observ-
ing the dynamics of the denaturation for different lengths
of the loop, at fixed Kr. Figure 10 shows a gray plot
of the time evolution of the vibrational amplitude of the
bases pairs at the transition temperature Tm, for two rigid
molecules (Kr = 0.15 eV) with a loop composed of 12 and
30 bases, respectively.

Note how the denaturation starts in both cases from
a high amplitude vibration located at the base pair clos-
est to the loop (the sixth one) and propagates along the
stem to unzip all the complementary pairs. This opening
is slower in the case of a longer loop as expected because
the elastic force generated by a bent rod decreases as its
length increases.

5.2.3 Forces induced by the Brownian motion
of the loop

Up to now, the effects of the loop that we have discussed
are essentially static in the sense that they depend on its
equilibrium shape, whether it is globular or similar to a
bent rod. But the loop also has an influence on the stem
through its dynamics. A hairpin loop can be seen as poly-
mer with both ends attached to a pair of complementary
bases part of the stem. This filament immersed in a fluid
undergoes random fluctuations. As a result it applies a
Brownian force on the stem, which favors the opening of
the base pairs.

Fig. 10. Denaturation of two hairpins with different loop
lengths and the same rigidity. The evolution of the Morse pairs’
vibrating amplitude is presented in a gray plot as a function
of the simulation time and the pair’s position in the stem.
Base-pair 6 is the base pair adjacent to the loop. The rigidity
parameter is Kr = 0.15 eV and the temperature is T = 295 K
for the 12-unit loop and T = 300 K for the 30-unit loop.

In order to evaluate this effect, we have determined
the melting temperatures of modified hairpins in which
the loop has been cut in the middle, leaving two dangling
strands. This prevents the mechanical effect discussed in
the previous section for the high rigidity case. Figure 11
shows that, when the loop is cut, the melting temperature
does not depend on the length of the dangling strands.
This indicates that the Brownian forces applied to the
stem by the fluctuations of the loop play a negligible role
in the denaturation of hairpins.

A direct measurement of the Brownian force exerted
by a dangling strand coupled to a thermal bath can be
made by simulating such a strand and recording the forces
that it exerts on its attachment points. The results are
shown in Figure 12 for a 6-base and a 15-base strand. The
forces increase linearly with temperature, as one would
expect from the Brownian dynamics of the strands, but
it is not affected by the value of the rigidity constant Kr

throughout a very broad range of rigidity. These numerical
experiments indicate that the experimental observation of
a variation of Tm when the rigidity of the loop changes
cannot be related to the Brownian forces exerted by the
loop on the stem.

This result is consistent with the observation of Fig-
ure 11 that Tm does not depend on the length of the loop
when it has been cut into two dangling strands.
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(a) (b)

(c) (d)

Fig. 9. Evolution of the loop shape ((a) and (c)) and of its fluctuations ((b) and (d)) versus the rigidity parameter Kr, determined
from the measurement of the three characteristic distances d1, d2, d3 and their root mean square deviation (RMSD). (a) and
(b) represent the study of these quantities for a loop of 12 bases, while (c) and (d) repeat the same analysis for a 30-base loop.
The small fluctuations around smooth evolutions are not significant because the results are sensitive to the exact value of the
temperature T < Tm that has been used in the simulations.

5.3 Inhomogeneous rigidity model

The studies of previous sections have been performed with
a rigidity of the strand that is homogeneous along the
whole hairpin, whether we consider the loop or the stem.
This reduces the number of free parameters but, in order
to compare with the experiments [4], we must vary the
rigidity of the loop while keeping the properties of the
stem unchanged. This result suggests that we complete
our investigations by studying an inhomogeneous model,
providing different degrees of stiffness for the loop and the
stem.

Therefore, we have carried out a study assigning a con-
stant value of K

′
r to the bases taking part in the stem, and

exploring the influence of a loop having different rigidities.

For the stem, the value K
′
r = 0.15 eV has been chosen

because it leads to dynamical properties of the stem that
are in qualitative agreement with the observations. Exci-
tations below the melting temperature are present in the
stem but they are not large enough to strongly distort
the double helix structure. Lower values of K

′
r lead on the

contrary to very large distortions of the double helix, even
for T < Tm.

Figure 13 shows the variation of the melting temper-
ature for various loop lengths. First one notices that the
melting temperature is monotonically decreasing as the
rigidity of the loop increases, in contrast to the results
presented above. This indicates that the rise observed at
large rigidities was entirely due to the increase of the stem
denaturation temperature with increasing strand rigidity.
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Fig. 11. Melting temperatures of modified hairpins, in which
the loop has been cut in the middle, versus the rigidity of
the strands, for 3 different loop lengths. The inset shows the
variation in logarithmic scale for the low values of Kr.

Second, the polynomial fits show that the effect of the
loop length is different for low and high rigidities. For
Kr > 0.05 eV, the simulation shows that increasing the
length of the loop raises the melting temperature Tm while
the reverse is true for low values of Kr. Combined with
the experimental results, this observation gives some use-
ful informations on the melting process of DNA hairpins,
as discussed in the next section.

6 Discussion and conclusion

In this section let us summarize what we have found, how
it compares with experiments, and what it tells us about
DNA hairpin denaturation.

We are now in a position to explain the full curves of
Figures 3 and 4 in the light of the studies performed to in-
vestigate the different phenomena that enter into the melt-
ing of the hairpin. For the very low rigidity range shown
in Figure 4b, the loop takes a globular shape that pro-
tects the stem from denaturation, and, as we have seen.
For Kr < 0.03 eV, the denaturation of the stem does
not depend on the rigidity, which explains why Tm stays
approximately constant for Kr < 10−3 eV. In the range
10−3 < Kr < 0.05 eV, the loop gradually loses the glob-
ular shape that protected one end of the stem, while the
stem transition temperature is still very weakly sensitive
to the rigidity, as shown in Figure 5a. This explains the de-
crease of Tm observed in Figure 4a. Beyond Kr = 0.05 eV,
an increase in rigidity starts to play two opposite roles: a
more rigid loop tends to mechanically open the hairpin,
while a more rigid stem becomes harder to denaturate be-
cause the denaturation is more cooperative. In the range
0.05 < Kr < 0.15 eV, the effect of the stem dominates
because the loop has not yet fully taken its rigid shape as
shown in Figure 9. Beyond Kr = 0.15 eV, the effect of an
increasing rigidity in the loop compensates the effect of

(a)

(b)

Fig. 12. Estimated force for polymers different in length, with
variable rigidity potentials as a function of the temperature:
(a) 15-base strand, corresponding to a 30-base loop; (b) 6-base
strand, corresponding to a 12-base loop.

the increasing stem rigidity, and Tm stays approximately
constant.

Let us now consider the simulations with a given stem
and variable loop rigidities. This situation corresponds to
the experiments of [4] which show that a longer loop de-
creases the melting temperature, whatever the rigidity of
the loop. This indicates that the loop does not have a
mechanical effect on the opening because, if it were the
case, a longer loop would be easier to bend, reducing the
mechanical force on the stem, so that the melting tem-
perature would on the contrary increase together with
the length of the loop. Therefore, the experiments indi-
cate that the rigidity of the loop must be in the low Kr

range of our studies, i.e. Kr < 0.05 eV. In order to precise
the value of Kr we have initiated a series of simulations
of the hairpin using an all-atom model of DNA [18]. By
comparing the statistics of the fluctuations of the strands
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(a)

(b)

Fig. 13. Evolution of the denaturation temperature Tm for a
hairpin with a fixed rigidity in the stem (K′

r = 0.15 eV) and
variable loop rigidities, for different loop lengths: (a) linear
scale for Kr; (b) logarithmic scale for Kr to show the variation
at very low loop rigidity. The response to variations in the
loop rigidity has been calculated both for cases of high and
low rigidity values of Kr according to different loop sizes.

(defined for instance by the segments joining neighboring
phosphates) in the full model and in the reduced model
with different values of Kr, one can evaluate the range
of Kr that gives the best agreement. Preliminary results
based on Gaussian fits lead to values of Kr in the range
0.001 < Kr < 0.005 eV, which are consistent with the
conclusions of the above discussion.

Moreover, studies combining the measurement of Tm

with observations of the fluctuations of fluorescence [4]
concluded that the opening is not influenced by the loop
rigidity. This is in good agreement with our results: as soon
as we chose Kr small enough to have Tm that decreases for
increasing loop length, we find that the rigidity of the loop

only has a small influence on the opening of the hairpin
(see Fig. 13a).

This suggests that the model is consistent with the
melting of actual hairpins, but it also tells us something
more about the role of the loop. In this range of Kr, the
loop has a highly fluctuating, mostly globular shape. We
have seen that it can have a stabilizing effect on the stem.
This is a scenario that was not considered in [4].

At a first glance, our conclusions for the appropriate
value of Kr may seem inconsistent because when we ex-
amined the case of a fixed stem rigidity, we noted that
the value K

′
r = 0.15 eV was appropriate for the stem,

while the discussion leads us to Kr < 0.05 eV for the
loop. In fact, this is perfectly consistent with the structure
of DNA, as well as the conclusions of earlier models. As
noted earlier, most of the flexibility of the strands comes
from rotations around covalent bonds; these bonds allow
large changes of the angle between the segments that make
up the stands, without having to change the angles be-
tween two bonds connected to a given atom, which would
have a high energetic cost. In other words, the flexibility
of the strands comes from variations of dihedral angles
rather than bond angles. But when the bases are paired,
as is the case in the stem, the rotational freedom of the
segments that make up the stem is drastically reduced.
The dihedral angles are no longer free, and, in our simple
model that does not explicitly include the dihedral angles,
this translates into a higher rigidity parameter Kr in the
stem than in the loop.

It should be noted that the statistical physics of
DNA thermal denaturation with a simple model [19] leads
to the same conclusion because a sharp transition, in
agreement with experiments, can only be obtained if the
base stacking interaction is nonlinear, and such that the
effective interaction between open bases is significantly re-
duced with respect to the interaction between bases be-
longing to closed pairs. In the present model the coupling
between bases along the strand is achieved by the strand
rigidity. Thus, a lower rigidity for the bases belonging to
the loop could be expected not only from DNA structure
but also from the thermodynamics of its denaturation. In
fact, to be more realistic our model should have a rigidity
parameter Kr that depends on the state of the bases, so
that when a base pair in the stem opens up, Kr switches
to a smaller value. But this would introduce an additional
complexity, and more parameters. This is not essential as
long as we consider the opening of very short stems. Non-
linear base stacking, essentially leads to entropy effects,
which only become significant for the denaturation of long
DNA helices.

This study to analyze the fluctuations of DNA hair-
pins is not complete because we only investigated the
opening. In order to analyze the experimental studies of
hairpin fluctuations, the closing step must also be consid-
ered. Investigations in this direction are in progress but
they must rely on a completely different approach because
the time scales are very different, and the role of mis-
matches, which are partial closings of the stem, is crucial.
The dynamical model that we have proposed is certainly
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oversimplified but the basic phenomena that we have ex-
hibited (such as the role of the loop shape and its fluc-
tuations) do not rely on specificities of the model. A
more accurate model could certainly give more quanti-
tative results, but we think that the ideas would be pre-
served. Moreover there are now studies that show that
simple models can give quantitative results for the struc-
ture of DNA hairpins. Recently, a model describing single-
stranded DNA as a continuous, unshearable, unstretchabe
and flexible thin rod has been shown to be very fruit-
ful [20]. Although this model is more complex than our
model and limited to the static structure, it demonstrates
that simplifying DNA models may be a fruitful research
path that is not restricted to qualitative studies.
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