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Abstract
Flying snakes use their entire body as a continuously morphing ‘wing’ to produce lift and
shallow their glide trajectory. Their dominant behavior during gliding is aerial undulation, in
which lateral waves are sent posteriorly down the body. This highly dynamic behavior, which is
unique among animal gliders, should have substantial effects on the flight dynamics and stability
of the snakes, resulting from the continuous redistribution of mass and aerodynamic forces. In
this study, we develop two-dimensional theoretical models to assess the stability characteristics
of snakes in the pitch direction. Previously measured force coefficients are used to simulate
aerodynamic forces acting on the models, and undulation is simulated by varying mass. Model 1
is a simple three-airfoil representation of the snake’s body that possesses a passively stable
equilibrium solution, whose basin of stability contains initial conditions observed in
experimental gliding trajectories. Model 2 is more sophisticated, with more degrees of freedom
allowing for postural changes to better represent the snake’s real kinematics; in addition, a
restoring moment is added to simulate potential active control. The application of static and
dynamic stability criteria show that Model 2 is passively unstable, but can be stabilized with a
restoring moment. Overall, these models suggest that undulation does not contribute to stability
in pitch, and that flying snakes require a closed-loop control system formed around a passively
stable dynamical framework.
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List of Symbols

A Jacobian matrix

b damping coefficient

Bu angular damping coefficient

̇( )tc x x, , vector of Coriolis, centripedal and damping
terms

Cl, Cd lift and darg coefficients

d distance between airfoils in Model 1

e objective function

f1, f2 forces acting between the airfoils and the
middle link in Model 2

f
1
, f

2
the magnitudes of those forces

̇( )f x x, forcing term due to undulation

Fl , Fd lift and drag forces

F the net external force
*F the modified force for a variable mass system

g acceleration of gravity

tg x( , ) vector of elastic and gravitational terms

G the linear momentum

Hc the angular momentum about CoM
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Ii moment of inertia of the middle link

I the identity matrix

j subscript used for numbering in summations

k elastic coeffiicient

Ku angular elastic coefficient

l half of the length of the middle link

lSV the snake’s snout-vent length

ma airfoil mass

mi the middle link’s mass

mj mass of the jth airfoil

mtot total mass

Mc moment about the CoM

Mu restoring moment

tM x( , ) the mass matrix

p a parameter

q
j

a generalized force

̇( )tq x x, , vector of the generalized forces

r1, r2 distances of the airfoils from the center of the
middle link in Model 2

rc, rc position of the CoM

R the dissipation energy function

Sa airfoil area

t time

T kinetic energy

u, u speed of the mass traveling between the
airfoils

v airfoil speed

v airfoil velocity

V potential energy

W work of the nonconservative forces

x position variable

xj a generalized coordinate
x vector of the generalized coordinates

y vector of the state coordinates

y
0

a periodic solution

ỹ a perturbation

Ỹ the solution matrix to the perturbed system

z position variable

αb body angle of attack

β summation of the pitch angle and the glide
angle

γ the glide angle

δ the variational operator

Δm the undulating mass

ζ the nondimensional undulating mass

η
1
, η

2
the nondimensional airfoil masses

θ the pitch angle

μ the nondimensional moment of inertia of the
middle link in Model 2

ρ
air

density of air
σ the initial phase
τ period of y

0

φ the airfoil angle

Φ the monodromy matrix

ω frequency of undulation

1. Introduction

All flyers require the ability to alter flight speed, trajectory,
and body orientation to meet performance objectives such as
efficiency and control for straight flight, maneuvering, and
landing. Flight control is usually accomplished through
asymmetric deployment of aerodynamic surfaces about dif-
ferent body axes (Dudley 2002). From aircraft to animals that
have evolved the ability to fly, the use of symmetrically
paired wings is an almost universal feature. Elevators, wing
flaps, spoilers and a horizontal tail are used in aircraft as
control devices, but flying and gliding animals must use their
wings, tail and other morphological features both to generate
aerodynamic forces and to control the trajectory (Biew-
ener 2003, Alexander 2003).

For most animal gliders, flight control is augmented by
the ability to selectively apply forces to counteract rotations,
usually by altering wing characteristics (such as camber) or
by shifting the position of appendages. However, flying
snakes of the genus Chrysopelea lack conventional wings and
appendages, and possess no specialized anatomy for control.
Despite a design that would appear disadvantageous for flight,
the glide performance of flying snakes is comparable to that
of other gliders (Scholey 1986, McGuire 1998, Socha
et al 2005), with one species that is even capable of aerial
maneuvers (Socha 2002, Socha et al 2005, 2010). In contrast,
some nonflying snakes are known to tumble when dropped
from a height (Heyer 1970), and no other species can glide,
demonstrating that the physical or physiological mechanisms
of control used by Chrysopelea are not present in all snakes.
However, the specific mechanisms that enable Chrysopelea
snakes to remain stable while gliding, or to turn on command,
are unknown.

Recent studies have helped to elucidate the basic kine-
matic features of glide trajectories of flying snakes
(Socha 2002, 2011, Socha et al 2005, 2010, Socha and
LaBarbera 2005). After a jumping take-off, the snake passes
through a ballistic dive phase, in which the glide angle (the
angle of the glide path relative to horizontal) is steep
(∼50–70°, depending on species) and on the order of 2 m of
height is lost. This is followed by a shallowing glide phase in
which the glide angle decreases due to lift generation and the
glide behavior of the snake develops fully. By the start of this
phase, the snake has dorsoventrally flattened its whole body
and undulates laterally in an S-like shape, sending traveling
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waves posteriorly down the body (figure 1(D)). During the
shallowing phase, the snake maintains a staggered config-
uration, with the anterior body oriented roughly level to the
ground and the overall body angled upward in the range of
25° from the glide path (figure 1(C)). Recent experimental
and computational modeling studies show that the snake’s
body cross-sectional shape can maintain high lift at angles of
attack as large as 35°, with lift coefficients reaching as high as
1.9 (figure 1(E)) (Miklasz et al 2010, Holden et al 2014,
Krishnan et al 2014). Moreover, high lift and lift-to-drag
ratios can be maintained over a large range of angles of attack

(figure 1(F)), helping to explain how the snake begins to
generate significant aerodynamic forces even during the steep
ballistic dive portion of the trajectory.

Despite our growing understanding of the kinematics and
aerodynamics of flying snakes, their ability to maintain flight
control remains a mystery. How does an undulating glider
produce stable gliding in the absence of obvious control
surfaces? An important step toward solving this problem is to
understand the snake’s stability characteristics in the pitch,
roll and yaw directions. The simplest hypothesis is that a
flying snake is passively stable in all directions; at the other
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Figure 1. Kinematic (A)–(D) and aerodynamic (E), (F) data that were used in this study. (A) Observed rotation angles between an inertial
frame and the principal axes of inertia of the snake show that the snake undergoes relatively small roll and pitch angles during gliding. (B)
Summary of body posture of C. paradisi, in the trajectory reference frame and normalized by SVL from the front view, indicate that the
snakes undergo small roll displacement. (C) The side view shows the staggered configuration of flying snakes during glide. These data are
composed of the 3D position of five landmarks relative to the CoM of the snake body. (D) The sinusoidal movement of all five landmarks is
shown in the overhead view of a trajectory, where the y-axis is expanded relative to the x-axis to better reveal side-to-side movements. The
kinematic data in (B)–(D) are from late-phase gliding trajectories of eight glide trials performed by two C. paradisi snakes (Socha et al 2010).
The box plots indicate the mean, and first and third quartiles, with whiskers representing 10% and 90% percentiles. (E) Steady-state lift and
drag coefficients measured for a straight airfoil having the same cross-sectional shape as the flattened snake; and (F) lift-to-drag ratio for the
same configuration. The aerodynamic data (E), (F) are adapted from (Holden et al 2014).



extreme, the snake requires active control to counteract
rotations about all axes.

Here, we develop new theoretical models as tools to
address the stability characteristics of flying snakes for the
first time. As a first-order study of a highly complex system,
we chose to simplify the problem by considering the snake as
a series of 2D airfoils, and focus only on stability in the pitch
direction. We conducted simulations of glide trajectories
using the aerodynamic characteristics of the snake’s cross-
sectional shape, with undulation simulated by periodically
varying the mass and area of the airfoils. The models were
examined for pitch stability by obtaining the eigenvalues of
the linearized system about the steady-state solutions.

Overall, we aim to understand the fundamental control
mechanisms that snakes employ during a glide, contributing
to our broader goal of discovering the minimum set of
parameters necessary to reproduce the glide performance of
flying snakes. Such work will lend insight to the morpholo-
gical and behavioral requirements to evolve gliding in snakes,
and can also contribute to design principles for future flying
snake-inspired air or water vehicles. For example, this work
could serve as the basis for a staggered-wing micro-air vehicle
that operates in the same Reynolds number regime as the real
snake. This vehicle would draw inspiration from the undu-
lating movement of the snake’s body, allowing the staggered
foils to change their relative spacing in order to achieve a
desired aerodynamic performance.

2. Methods

Several approaches have been used to assess flight stability of
animal flyers. One of the most common methods is to
examine the static stability criterion (Etkin 1972, McCor-
mick 1976). When a system experiences a small perturbation
from equilibrium, this criterion determines if the acting forces
would restore the system back to the equilibrium state. In
recent years, the static stability criterion has been used to
analyze animal flyers, including the testing of physical
models in wind tunnels to understand flying frogs
(McCay 2001) and theoretical analyses of how the pitching
moment about the center of mass (CoM) changes with angle
of attack in birds (Thomas and Taylor 2001). Other studies
have examined dynamic stability using kinematics of the
moving animal, as has been used to assess insects (Taylor and
Thomas 2003) and flying squirrels (Bishop 2006). Compu-
tational or robotic models have been used to analyze the
passive dynamic stability of hovering fruit flies (Gao
et al 2011) and hawkmoths (Cheng et al 2011).

Most such studies involve the simplifying assumption of
bilateral symmetry (but see Gao et al 2011), which allows the
motions in the longitudinal direction to be decoupled from
those in the lateral direction. This enables pitch stability to be
considered as a simple one-dimensional problem. McCay
(2001) and Thomas and Taylor (2001) additionally con-
sidered equilibrium gliding and determined whether dis-
turbances from equilibrium would be passively counteracted.

However, neither of these assumptions can be employed
to simplify the problem of gliding in snakes. First, the S-like
posture of the snake endows it with a complete lack of
bilateral symmetry, which means that the longitudinal and
lateral dynamics cannot be decoupled. Second, due to the
snake’s dynamic undulating motion, whose effect acts like a
periodic inertial force, it is unlikely that flying snakes glide in
equilibrium. In fact, most recorded glide trajectories consist of
transient motion, and equilibrium gliding has rarely been
observed (Socha 2002, Socha et al 2005, 2010, Socha and
LaBarbera 2005). The undulatory motion must periodically
change the locations of the center of pressure (CoP) and CoM
via redistribution of area and mass, which leads to the
hypothesis that the stability characteristics of the snakes are
influenced by undulation. Overall, these characteristics sug-
gest that understanding how flying snakes glide requires
analyses of both static and dynamic stability.

In this study, we examined the dynamics and stability of
gliding flight in snakes by developing two theoretical models,
beginning with a simple model and progressing to a more
complex and realistic model. As a first-order modeling
approach, we ignored the effects of coupling between the
longitudinal and lateral dynamics. This can also be viewed as
a specific case of a straight glide with negligible roll, for
which the longitudinal dynamics are independent from lateral
motions.

How justifiable is this approach given real snake glide
dynamics? The existing kinematic data are insufficient to
appraise the decoupling of longitudinal and laterally dynam-
ics, but lateral motions are indeed negligible under certain
conditions. For a straight glide, sideslip and yaw are negli-
gible, and if we also assume that roll is not pronounced, the
coupling effects are further diminished. According to
figure 1(A), which shows the rotation angles of the body
relative to an inertial frame estimated from experimental data
(Socha et al 2010) for approximately two undulation periods,
the assumption of small roll motion is reasonable, at least
during late-phase gliding in Chrysopelea paradisi. The angles
in figure 1(A) are defined as the consecutive rotation angles
that transform the inertial frame into the principal axes of
inertia of the snake body as a whole; these were calculated
from the moments of inertia in the x-y-z coordinates, which
were estimated by assuming that the snake consisted of four
line segments of equal masses determined by the 3D coor-
dinates of five landmarks (figure 1(C)). Figure 1(A) shows
that for the majority of the time, deviations in roll are less
than 10°. Small roll angle could also be inferred from
figure 1(B), where the relative displacements of different
landmarks on the body are shown in the vertical and lateral
directions.

2.1. Modeling of forces

We considered gravity and the aerodynamic forces of lift and
drag in our two models. To calculate aerodynamic forces, we
used lift and drag coefficients (Cl andCd , respectively) from an
experimental study of the 2D cross-sectional shape of C.
paradisi, which assumed steady-state lift and drag (Holden
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et al 2014). These coefficients (figures 1(E), (F)) represent
values over a range of Reynolds numbers that have been
reported for C. paradisi (Socha et al 2005). Based on an
average glide speed of 8.9 ± 1.4 m s−1 (Socha et al 2005) and
a characteristic length of 2.2 cm (chord length, Miklasz
et al 2010), we chose Cl and Cd values corresponding to
Re = 11 000.

The use of steady-state aerodynamic force coefficients to
model undulating snakes is not ideal, but these coefficients
are a reasonable approximation to use in our first-order
modeling. As explained in detail by Holden et al (2014), the
speed of the snake’s forward motion in gliding is much
greater than the motions of undulation, which suggests that
the freestream velocity should dominate the local airflow
patterns over the body. This suggests that it is reasonable to
use these force coefficients in a first study. Future modeling
should incorporate unsteady and tandem aerodynamic effects
on the snake, when such results become available.

2.2. Model 1

In the first model, we considered the snake as three evenly
spaced airfoils (figure 2). These airfoils represent sections of
the snake’s body whose long axis (span) is roughly perpen-
dicular to the direction of motion. The distance d between the
airfoils (figure 2(A)) can be characterized as half of the
undulation wavelength (figure 2(B)). We restrict the airfoils to
remain coplanar. The previously measured kinematics of
body movements (Socha et al 2010) justifies this restriction,
showing that total displacements of several landmarks on the
snake’s body, perpendicular to the ‘mean’ body orientation,
are about 10% of the snout-vent length (figure 1(C)). Because
no data are available about the local angles of attack along the
snake body, as a reasonable first approximation we assumed
that the airfoil orientation could be differentiated from the
pitch angle θ by the same constant angle φ for all of the
airfoils (figure 2(A)). The angle φ represents the angle
between the chord line of each airfoil and the line that defines
the whole-body orientation (i.e., the three-foil system). Fur-
ther, we assumed that mass and pressure are uniformly dis-
tributed along the ‘wings’. The basic assumption for the
aerodynamics of this model is that the main contribution to
producing force comes from those parts of the body that are
perpendicular to the air flow, and that the curved portions
contribute negligible force.

To simulate undulation, we allowed the masses and,
proportionally, areas of the segments to vary as the following
functions of time:

Δ ω

Δ ω

= +
= −
= −

⎧
⎨⎪
⎩⎪

m t m m t
m t m m
m t m m t

( ) cos
( ) 2
( ) cos

(1)
a

tot a

a

1

2

3

where ω is the frequency of undulation and mtot is the total
mass of the snake, with + + =m t m t m t m( ) ( ) ( )1 2 3 tot. The
constraint Δ <m ma applies to equation (1).

The equations of motion of Model 1, whose kinematics
are shown in figure 2(C), are written as:

∑

Δ ω

θ θ θ θ θ θ θ θ

γ γ

γ γ

̈ + ̈ −

× ̈ + ̇ + − ̈ + ̇

= −

+ + −

⎡⎣ ⎤⎦( ) ( )
( )
( )

( )m x z md t

F F

F F m g

i j

i j

i

j

2 cos

sin cos cos sin

sin cos

cos sin (2)

lj j dj j

lj j dj j j

tot

2 2
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Figure 2. (A) 2D structure of Model 1, which is composed of three
coplanar airfoils; the distance between the airfoils is constant. (B)
Correspondence between the airfoils and parts of the undulating
snake body that are perpendicular to the airflow. (C) Kinematics of
the model showing the asymmetric effect of pitch velocity on the
velocity of airfoils. Resulting from this asymmetry, each airfoil
experiences a different glide angle γ

j
. The middle airfoil is used as

the positional reference point.



∑

Δ ω θ

θ γ θ γ

− ̈

= + + +

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

( )( ) ( )

m

m
m

m
t m d

d F F

2 cos 2

cos sin (3)

a

j lj j dj j

tot tot

2

tot
2

where g is the gravitational acceleration, dj is the position of
airfoils relative to CoM along the longitudinal axis of the
body, and γ

j
is the glide angle of each airfoil. See the sup-

plementary materials (available at stacks.iop.org/BB/9/
025014/mmedia) for the detailed derivation of these
equations. The lift and drag forces were calculated as:

ρ
ρ

=
=

⎪

⎪

⎧
⎨
⎩

F C v S

F C v S

2

2
(4)

lj lj j aj

dj dj j aj

air
2

air
2

where Clj and Cdj are the force coefficients, and Saj is the area
of each airfoil.

Equations (2) and (3), together, determine the trajectory
of the model when released from any initial position. In the
simulations, we set φ equal to the value given in table 2 (see
section 2.6 for details).

To study the steady-state behavior of Model 1, we first
observe that the equations of motion are nonautonomous, i.e.
they explicitly depend on time. Although nonautonomous
systems are not usually expected to have equilibrium solu-
tions, we note that with θ ̇ = 0, the airfoils have the same
velocity and experience the same angle of attack (see sup-
plementary materials, available at stacks.iop.org/BB/9/
025014/mmedia). By substituting equation (4) into the right-
hand side of equation (3), it can be readily shown that, in this
case, CoP coincides with CoM; therefore, the net moment
about CoM vanishes and equation (3) is identically satisfied.
Also, equation (2) reduces to:

γ γ
γ γ

̈ + ̈ = −
+ + −

( ) ( )
( )

m x z F F

F F m g

i j i

j

sin cos

cos sin (5)
l d

l d

tot

tot

where Fl and Fd are the net lift and drag forces acting on the
model and are not explicitly time-dependent.

Equation (5) is equivalent to the equations of motion for
a fixed-shape glider, resulting in definite values for equili-
brium speed and glide angle. The stability of the equilibrium
solution depends on the initial conditions from which the
trajectory starts; therefore, the equilibrium is locally stable.
Additionally, it is passively stable because stability is inherent
in the model’s behavior without using closed-loop feedback
control.

2.3. Model 2

Model 2 was developed based on the idea that the snake
maintains a staggered configuration in mid-air, but different
parts of the body move relative to one another. In this 2D
model, illustrated in figure 3, two airfoils are connected
through a rigid link by means of multiple springs and dam-
pers. The airfoils and the long axis of the middle link are
restricted to remain collinear, but they are free to move with
respect to each other under the action of gravity, aerodynamic
forces, and the springs and dampers. The effect of the springs
and dampers is shown in figure 3(A) by the forces f1 and f2,
which have magnitudes:

= − + ̇
= − + ̇

⎪

⎪

⎧
⎨
⎩

( )
( )

f k r l br

f k r l br
(6)1 1 1

2 2 2

where l is half of the length of the middle link and the free
length of the connecting springs.

Figure 3(B) depicts a top view of Model 2. Compared to
Model 1, the middle link is added in this model to represent
the role of the parts of the body of the snake that are almost
parallel to the direction of motion (figure 3(C)), which pro-
vides rotational inertia. Based on the assumption that aero-
dynamic forces are mainly produced by segments that are
perpendicular to the flow, we ignored the aerodynamic con-
tribution from this streamwise middle link. Another mod-
ification in Model 2 is that only two airfoils are used, in
contrast to three airfoils in Model 1. Because the middle
airfoil in Model 1 had no role in the equations of motion, it
was removed in Model 2 for the sake of abstraction. The two
remaining airfoils were sufficient to produce external forces
and moments; therefore, the dynamics of the snake could be
adequately approximated by Model 2.

Two more assumptions are present in the construction of
Model 2, which are also used in Model 1: (i) the airfoils are
constrained to move only along the orientation of the middle
link, and (ii) the airfoils have the same angle of attack. Similar
to Model 1, the effects of undulation were modeled by
allowing the mass of the airfoils to change sinusoidally, such
that the total mass of the system remains constant:

Δ ω σ
Δ ω σ

= + +
= − +

⎧⎨⎩
m t m m t
m t m m t

( ) cos ( )
( ) cos ( )

(7)a

a

1 1

2 2

where σ is some phase angle and is considered to account for
the phase within the undulation cycle at the starting point.
Application of equation (7) is subject to the restriction that
Δ <m m m,a a1 1. The mass of the middle link mi is held fixed.
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Table 1. Initial conditions used for simulations resulting in
figures 4–6.

Variable Figure 4 Figure 5 Figure 6(A)

x (m) 0 0 0
z (m) 10 0 10
θ (deg) −30, −10, 0 −8.85 −30–60
r1 (m) l l
r2 (m) l l

̇x (m s-1) 1.7 6.91 1.7
̇z (m s-1) 0 −5.06 0

θ ̇ (deg s-1) 0 −25.6 −120–120
̇r1 (m s-1) 0 0
̇r2 (m s-1) 0 0

http://stacks.iop.org/BB/9/025014/mmedia
http://stacks.iop.org/BB/9/025014/mmedia
http://stacks.iop.org/BB/9/025014/mmedia
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We further assume that the areas of the airfoils are propor-
tional to their masses.

In the previous section, Model 1 was shown to possess
locally stable equilibrium solutions, because its structure
allowed a uniform distribution of aerodynamic forces. How-
ever, in Model 2, presence of the middle link, which does not
produce any aerodynamic forces, makes it impossible that
such a solution be obtained. Therefore, active control is
required in Model 2 to stabilize the trajectories. We used a
restoring moment in Model 2 to represent the overall effect of
control movements. Based on kinematic observations show-
ing that the snake’s body remains roughly level with the
ground in mid-glide (Socha et al 2010), a linearized form was
considered for the restoring moment, which would maintain
the pitch angle θ close to zero. Similar to expressions that
have been commonly used to stabilize models of flying ani-
mals (see e.g. Cheng et al 2011), we let:

θ θ= + ̇M K B (8)u u u

It is important to note that the proportionality term θKu

might not be sufficient for control, because it could over-
compensate to disturbances and lead to divergent oscillations.
Therefore, a damping term θ ̇Bu was also included to dissipate
the unwanted pitching motion.

2.4. Equations of motion for Model 2

Before deriving the equations of motion, a few definitions are
presented for convenience of notation. We select

θ= ⎡⎣ ⎤⎦x z r rx
T

1 2 (see figure 3(A)) as the vector of

generalized coordinates of the system. Among these
variables, x and z define the position of the model as a
whole in the plane of motion and are called the
position variables, while r1, r2 and θ determine the relative
position of model segments and are called the configuration

Bioinspir. Biomim. 9 (2014) 025014 F Jafari et al

7

Figure 3. (A) Model 2 from side view, showing that it is composed of two airfoils connected through a middle link by means of springs and
dampers. A restoring moment Mu is used to control the orientation angle θ about zero. The center of the middle link is used as the positional
reference point. (B) Overhead view of Model 2. (C) The middle link is included in the model to represent the encircled parts of the snake
body. These parts are assumed to not contribute to aerodynamics forces, but do provide rotational inertia.



variables. Additionally, we define the state vector as:

θ θ= ̇ ̇ ̇ ̇ ̇⎡⎣ ⎤⎦r r x z r ry (9)
T

1 2 1 2

The reason for excluding the position variables from the
state vector is that, unlike state variables, they will not settle
to periodic motions, and prevent obtaining a periodic steady-
state solutions (see section 2.6 for more details).

The equations of motion are derived using a Lagrangian
formulation, and are written in the following matrix form:

ω σ
̈ ̇

̇ ̇
+ +

= + +
( )

( ) ( )
t t t

t t

M x x c x x g x

q x x f x x

( , ) , , ( , )

, , , sin ( ) (10)

where tM x( , ) is the mass matrix, ̇( )tc x x, , is a vector
containing the centrifugal, Coriolis and damping terms,

tg x( , ) contains the gravitational and elastic terms, and

̇( )tq x x, , is the vector of generalized force. Also, ̇( )f x x, is a
forcing term produced by the transport of mass between the
airfoils, whose harmonic behavior is shown in equation (10).

Upon integration of equation (10) from any initial con-
dition, the glide trajectory of the model can be determined. A
detailed derivation of equation (10) including explicit for-
mulae for the terms is provided in the supplementary mate-
rials (available at stacks.iop.org/BB/9/025014/mmedia).

2.5. Determination of parameters for Model 2

It can be seen from figure 3 and equations (6)–(8) that Model
2 involves multiple parameters, including the inertial para-
meters ma1, ma2, Δm, mi and Ii; biomechanical parameters k
and b; geometric parameters l, σ and φ; and control para-
meters Ku and Bu. Among these, determining Ku and Bu

required fitting the model to observed glide trajectories of
snakes, by formulating it as an optimization problem (see
below). This approach has been commonly used when control
system parameters are dealt with; for example, Cheng et al
(2011) determined the characteristic coefficients of the feed-
back control system of a hawkmoth model using a similar
approach. Because direct measurement of other parameters
from live specimens of flying snakes was not possible for this
study, we chose to use a data fitting procedure to find model
parameters by requiring that the resulting model would
reproduce the observed glide trajectories as close as possible.

We chose to use glide trajectory data from a previous
study (Socha et al 2010), using a representative snake 42.0 g
in mass and 74.0 cm in snout-vent length (SVL). Based on
another study (Socha et al 2005) and following Miklasz et al
(2010), we estimated that this snake created an airfoil with a
chord of 2.2 cm by flattening its body.

To simplify the formulation, the following non-
dimensionalized inertial parameters were used in the process:

η
η
ζ Δ

μ
=
=

=
=

⎧
⎨⎪
⎩⎪

m m

m m

m m

I

m l
,

3
(11)

a tot

a tot

tot

i

i

1 1

2 2 2

Equation (7) could then be rewritten as:

η ζ ω σ
η ζ ω σ

= + +
= − +

⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

m t m

m t m

cos ( )

cos ( )
(12)

tot

tot

1 1

2 2

We thus obtain the mass and moment of inertia of the
middle link as:

η η= − −( )m m a1 (13 )i tot1 2

μ η η= − −( )I m l b1
1
3

(13 )i 1 2 tot
2

Using the assumption that the projected areas of the
airfoils are proportional to their masses, we could also find the
airfoil area Sa from equation (12):

= =S
m

m
l c j, 1, 2 (14)aj

j
SV

tot

where lSV and c are SVL and airfoil chord, respectively. Sa is
used along with the aerodynamic coefficients to calculate the
lift and drag forces.

Finally, the error between the recorded trajectory and the
theoretical trajectory obtained by integration of equation (10)
is defined in the least squares sense as:

∫= − + −⎡⎣ ⎤⎦( ) ( )e x t x t z t z t t( ) ( ) ( ) ( ) d (15)
t

t

r m r m
2 2

1

2

where the subscripts r and m denote the recorded and model
trajectories, respectively. The model parameters are the
solution to an optimization problem in which the error in
equation (15) is considered as the objective function to be
minimized.

It is important to note that the discretized form of
equation (15) was used here, because the measured data
existed at a series of discrete time steps. We used the initial
conditions based on the previous trajectory data (table 1). We
chose initial values of x, z and θ from the measured data,
whereas the initial values of ̇x, ̇z and θ ̇were calculated using a
finite difference formula. Because no measured data existed
for r1 and r2, we simply integrated these variables from rest
(r1 = r2= l and ̇ = ̇ =r r 01 2 ).

2.6. Stability analysis

To analyze the stability characteristics of a system in the
sense of dynamic stability, we first need to determine its
steady-state response. Model 2, as described by equation (10),
is nonautonomous and periodically forced with the frequency
of undulation. Hence, the steady-state response of Model 2 is
periodic in state space and has the same frequency. As a side
note, it should now be clear that in order to be able to obtain
periodic solutions, we had to define the state vector as in
equation (9), because the trajectory in the x-z plane is not
periodic. We can assess the stability of the periodic solution
by applying the Floquet theory (Nayfeh and Balachan-
dran 2004), which is described below.

Due to the complexity of the equations of motion of
Model 2, analytical solutions were not attempted; instead, we
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employed a finite difference method to determine the solution
to equation (10). First, a sufficiently small step size was
selected to construct a dense set of time steps spanning one
period of undulation. Then, a central difference formula was
used to approximate the time derivative of the state vector at
the midpoint of each interval. By imposing the periodicity
condition, a set of algebraic equations was obtained in terms
of discrete states at the steps, sufficient to solve for discrete
states, determining the periodic solution (Nayfeh and Bala-
chandran 2004). This periodic solution is called ty ( )

0
, and we

denote its period by τ.
To examine the dynamic stability of ty ( )

0
, equation (10)

is first rewritten in the following state space form:

̇ ̇= t py y y( , ; ) (16)

where p could be any parameter. A disturbance ˜ ty( ) is
superimposed on ty ( )

0
, so that:

˜= +t t ty y y( ) ( ) ( ) (17)
0

Next, equation (17) is substituted into equation (16), a
Taylor series expansion is used about ty ( )

0
, and linear terms

in the disturbance are retained. It follows that:

̇ ̇ ˜ ˜˜ = ∂
∂ = t py
y
y

y A y( ; ) (18)
y0

where t pA ( ; ) is the Jacobian matrix. The linearly indepen-
dent solutions of equation (18) are collected in a matrix form
as below:

˜ ˜ ˜ ˜= ⋯⎡⎣ ⎤⎦t t t tY y y y( ) ( ) ( ) ( ) (19)1 2 8

˜ tY( ) is the fundamental matrix solution and satisfies the dif-
ferential equation:

̇ ˜˜ =t t p tY A Y( ) ( ; ) ( ) (20)

When integrated from the initial condition ˜ =Y I(0) , the
fundamental matrix solution evaluated at the period τ is called
the monodromy matrix; i.e.

Φ τ˜= Y( ), (21)

The eigenvalues of the monodromy matrix, Φ, are called
Floquet multipliers. The Floquet theory states that stability of

ty ( )
0

is determined by the following condition: if all of the
Floquet multipliers are within the unit circle in the complex
plane, the periodic solution is stable (Nayfeh and
Balachandran 2004).

The effect of parameter p on the stability of ty ( )
0

can be
determined by examining whether changes in the value of p
cause a Floquet multiplier to enter or exit the unit circle. For
the case of Model 2, parameters of interest are Ku and Bu, and
Δm (or equivalently ζ , which is a measure of undulating
amplitude and could be used to determine the effect of
undulation on the pitch stability of the model). A previous
study of flying snake kinematics (Socha and LaBarbera 2005)
found no correlation between undulation frequency and any
glide performance variable. Therefore, we do not consider

this parameter here. Among the parameters of interest, the
amplitude of undulation, ζ , requires further elaboration,
because the forcing term ̇( )f x x, is proportional to it; see
equation (S21). As this parameter goes to zero, the steady-
state response continuously transforms from a periodic to an
equilibrium solution, for which the Floquet theory can no
longer be applied. In this case, the eigenvalues associated
with the linearized equations of motion have to be obtained;
for an equilibrium solution to be dynamically stable, all of
these eigenvalues must have negative real parts (Nayfeh and
Balachandran 2004).

Here, for an equilibrium solution of Model 2 with ζ = 0
(i.e., without undulation), we instead applied the static sta-
bility criterion, which determines the ability of a system to
produce a restoring effect after receiving a disturbance, and is
a necessary condition for dynamic stability. In planar motion,
the analysis of static stability in the pitch direction reduces to
determining the slope with which pitching moment, Mc, varies
with angle of attack, αb. If the slope is negative, i.e.

α
∂
∂ <M

0, (22)c

b

this means that a disturbance from equilibrium passively
induces an opposing pitching moment, and the system is
statically stable (Taylor and Thomas 2002). This criterion was
applied to Model 2 without undulation as follows:

We kept the pitch angle θ constant, integrated equation
(10) with respect to other generalized coordinates, giving
sufficient time to let them reach steady-state. Then, the
reference angle of attack was found as:

α θ= − ̇ ̇− ( )z xtan (23)b
1

Also, the pitching moment was obtained as:

β β
β β θ

= − +
− + + −

( )
( )

M r r F F

r r F F K

( ) cos sin

( ) cos sin (24)

c c l d

c l d u

1 1 1 1 1

2 2 2 2 2

with β =j, 1, 2
j

defined in equation (S15), and rc being the

position of CoM with respect to the center of the middle link,
calculated as:

= −r m r m r m( ) (25)c tot1 1 2 2

By repeating the above procedure while changing the
pitch angle, a curve is constructed displaying the relation
between the pitching moment and angle of attack. The sta-
bility criterion of equation (22) was applied to this curve. For
comparison, this criterion was also applied to the model with
undulation. For this case, the reference angle of attack and the
pitching moment had to be averaged over one period of
undulation. Finally, we varied Ku to examine the effect of the
control term on the static stability properties of the system.

2.7. Simulations

We used custom-written programs in MATLAB (version
2010a) to integrate the equations of motion (using ode
functions), to solve the parameter-fitting problem (formulated

Bioinspir. Biomim. 9 (2014) 025014 F Jafari et al

9



as an optimization problem and solved using the fmincon
function) and to perform the subsequent simulations. The
sequential quadratic programming algorithm was employed to
solve the optimization problem and to find the unknown
model parameters within a definite range determined by lower
and upper bounds. These bounds were imposed on the solu-
tion to ensure a biomechanically realistic solution. The opti-
mization process resulted in several local minima of the error
function, among which we selected the solution associated
with the least error value.

We carried out several simulations with the developed
models, using initial conditions that are summarized in
table 1. In addition, we used =m m 4a tot and Δ =m m 4tot for
Model 1. The fitted parameters for Model 2 are given in
table 2 along with the lower and upper bounds against which
they were obtained. For consistency, the value of φ obtained
for Model 2 was used for both models in all simulations.

3. Results

3.1. Trajectory simulations

To investigate how the developed theoretical models predict
the transition from the ballistic phase to the shallowing phase,
the trajectories and corresponding glide angles starting from

̇ ̇ = −( ) ( )x z, 1.7, 0 m s0 0
1 were compared to the experimental

trajectories in Socha et al (2005) (figures 4(A) and (B)).
Because no data exist on the initial pitch angle of the snake,
we assumed reasonable values for the simulations.
Figure 4(A) shows that Model 1 with θ = − °100 produced a
trajectory that followed the experimental data; it also shows
that the trajectories predicted by Model 1 do not change
monotonically with θ0. When the initial pitch angle is
decreased from zero to θ = − °100 , the distance traveled
increased by about 20%; but if θ0 is further decreased to
θ = − °300 , the traveled distance is less than halved.
Figure 4(B) shows that no shallowing phase exists for Model
1 with θ = − °300 , but the glide angle tends to an equilibrium
value of about 70°. It can be also observed that the trajectory

of Model 1 with θ = °00 reaches equilibrium in less than 1.5 s,
while the experimental glide angle continues to decrease even
after 2 s. On the other hand, the trajectories predicted by
Model 2 change monotonically with θ0, and do not seem to
reach equilibrium by the end of the simulation time; however,
they underperform in horizontal distance traveled relative to
both Model 1 and the experimental data.

The reason for the nonmonotonic behavior of Model 1
may be readily explained if we recall the following equation
for the equilibrium glide angle:

γ α= =C

C
ftan ( ) (26)d

l

where α is the angle of attack, and αf ( ) is a nonmonotonic
function (see figure 1(F)).

The vertical and horizontal components of the velocity
are also plotted in figures 4(C) and (D), respectively. As with
the other performance metrics, it is clear that the simulated
velocities do not closely match the experimental velocities.
The velocities predicted by Model 2 have relatively similar
trends to those of real snakes, for which the vertical velocity
starts to increase in magnitude for roughly one second, after
which sufficient airspeed is achieved and lift is generated to
provide a positive vertical acceleration. Moreover, the hor-
izontal velocity shows a positive acceleration during the
whole time, although the acceleration starts to diminish after
1.5 s. However, the simulated velocities are considerably
smaller in magnitude than the experimental data; whereas the
largest vertical speed of snakes is ∼6 m s−1, the simulated
vertical speeds reach a maximum of ∼4.5 m s−1 (figure 4(C)).
The velocity magnitude deficit is particularly obvious in the
horizontal component of the velocities, which leads to the
steep shallowing trajectories of Model 2 (figure 4(D)). The
same discrepancies exist in the results of Model 1, in addition
to the aberrant behavior of the vertical speed with θ = °00 ,
where positive acceleration is never attained.

Figure 5 compares the recorded trajectory and pitch angle
of a flying snake to the simulated ones obtained by integrating
equations of motion of Model 2 from the same initial con-
ditions. The experimental trajectory of the CoM, shown in
figure 5(A), was calculated based on the 3D kinematic data of
five landmarks on the snake body, recorded from the mid-to-
end portion of the glide (Socha et al 2010). The experimental
pitch angle, which was originally calculated using the same
kinematic data, is repeated from figure 1(A). It can be seen
that the simulated trajectory closely follows the recorded data;
the maximum position difference between model and
observed results was 13 cm over a total distance of more than
12 m traveled, resulting in a relative difference of 1.0%. On
the other hand, the simulated pitch angle deviates largely from
the recorded data. In particular, it seems that a phase shift
exists between the two time series, although they exhibit the
same dominant frequency, which is equal to the frequency of
undulation. In addition, the amplitude of oscillations of the
experimental pitch angle is roughly twice that of the simu-
lated one.
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Table 2. The model parameters fitted to experimental data along with
the lower and upper bounds used in the optimization process.

Parameter Fitted value Lower bound Upper bound

η
1

0.379 0.2 0.4
η

2
0.380 0.2 0.4

ζ 0.319 0.25 0.35
l c 2.981 1 4
μ 0.495 0 2
k (N m-1) 0.198 0 2
b (Ns m-1) 0.199 0 2
Ku (Nm rad-1) 0.119 0 2
Bu (Nms rad-1) 0.099 0 2
φ (deg) −5.39 −30 30
σ (deg) 3.92 −180 180



3.2. Stability analysis

Model 1 was shown to have an equilibrium solution, although
its equations of motion were nonautonomous. A trial-and-
error investigation of the initial conditions revealed that the
equilibrium of Model 1 is locally passively stable. The blue
region in figure 6(A) shows the basin of stability of the
equilibrium in the θ θ− ̇

0 0 plane, with the initial velocities set
as the same as those of the experimental trajectories (see
figure 4). It is clear that many of the snake-related initial
conditions lie within the basin of stability of equilibrium. The
trajectories that start from the initial conditions in blue go to
the equilibrium state, whereas the initial conditions in red
result in nongliding trajectories similar to those of a pure
projectile (figure 6(B)).

To explore the stability properties of Model 2, the static
stability criterion was first applied. As stated previously, this
criterion provides a necessary condition only for stability of
equilibrium solutions of a system. However, the steady-state
response of Model 2 is periodic unless Δm is nullified; in other
words, undulation effects had to be eliminated from the model
for the stability criterion to be properly applied. Here, for the
sake of comparison, we also examined the model with undu-
lation by averaging its steady-state response over one period
and applying the criterion to the averaged response. Finally, the
effect of the controlling term Ku on stability of the model was
examined by varying it from zero to its fitted value (table 2).

The results of the above analysis are given in figure 7(A).
It is clear from the positive slope of the α−Mc b curves with

=K 0u that the model is unstable when no restoring moment
acts on it. However, in all other cases, the slopes of the curves
are negative, indicating that the restoring moment is capable
of stabilizing the pitch dynamics, at least in the static sense. It
is also important to note that undulation somewhat affects the

α−Mc b curves; it slightly changes the slopes near the equi-
librium point at α ≈ °26b , and adds an unstable equilibrium
point to the curve with =K 0.02u Nm rad. However, it does
not change the qualitative behavior of the curves near the
stabilized equilibrium; therefore, the static stability analysis
predicts that pitching stability cannot be achieved in Model 2
with =K 0u just by switching undulation on or off.

The dynamic stability analysis of the periodic motions of
Model 2 was also carried out using the Floquet theory.
Figures 7(B)–(D) show all of the Floquet multipliers asso-
ciated with six periodic solutions (each one resulting in eight
Floquet multipliers) obtained by gradually changing a para-
meter of the model. The parameters of interest were the
undulating amplitude index ζ and the control indices Ku and
Bu. We examined the effects of these parameters by varying

them in the ranges ζ ζ ζ< <0.1 opt opt, < <K K K0.2 u
opt

u u
opt,

and < <B B B0.3 u
opt

u u
opt, one at a time. All other parameters

of the model were kept fixed at their fitted values (table 2).
When varying ζ , we used =K K0.2u u

opt instead of =K Ku u
opt;

this choice was made to test if undulation could compensate
when the control parameter was too small to provide stability
on its own.
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Figure 4. Comparison of the simulations with an assemblage of experimental data, from Socha et al (2005). (A) Trajectories and (B)
associated glide angles produced by the theoretical models. The trajectories given by Model 1 (dashed lines) reach equilibrium earlier than
real snakes, as can be seen in the glide angle data. In contrast, Model 2 (solid lines) produced trajectories that resemble experimental data, but
underperform in terms of glide ratio. (C) and (D) show vertical and horizontal components of the velocity, respectively. Whereas both models
are incapable of reaching velocities as high as seen in the snakes, Model 2 better predicts the trends in the velocities.



Figure 7(B) shows that one of the Floquet multipliers
enters the unit circle through +1 by increasing the undulation
amplitude with ζ ζ> 0.1 opt, but the same multipliers later exits
the unit circle through +1 when the undulation amplitude is
further increased with ζ ζ> 0.9 opt. This means that undulation
with amplitude bigger than a threshold could in fact compensate
for the insufficient control parameter, but when the undulation
amplitude increases beyond another threshold, it makes the
model unstable again. Figures 7(C) and (D) show the effect of
the control indices on the stability characteristics of the periodic
motions. In figure 7(C), one of the Floquet multipliers enters the
unit circle through +1 with >K K0.2u u

opt and, in figure 7(D),
one of the Floquet multipliers enters the unit circle through −1
with >B B0.3u u

opt. This means that both control terms are
required for a stable motion; also, there exist threshold values
for these terms below which stability cannot be achieved.

4. Discussion

4.1. Stability analysis of the models

To investigate the theoretical stability characteristics of a
flying snake during a glide trajectory, we developed two

dynamical models. Model 1 was a simple representation of
the staggered configuration of a gliding snake’s body. Our
analysis shows that the nonautonomous equations of motion
of Model 1, indeed, had an equilibrium solution, which was
locally passively stable. This counterintuitive result was an
inherent feature of the model’s structure, in which the uniform
distribution of mass and pressure over the airfoils would
cause the CoP and CoM to coincide and, therefore, the pitch
equation to be identically satisfied. More interestingly, many
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Figure 5. (A) Model 2 with the fitted parameters successfully
reproduced the experimental average trajectory (Socha et al 2010).
Because the data were from the late-phase gliding trajectory, no
specific origin was selected for the plot, but only the displacements
in the horizontal and vertical directions are shown. (B) The
simulated pitch angle deviated from the experimental data. However,
the two time series have the same dominant frequency, which is
equal to the frequency of undulation.

Figure 6. The equilibrium solution of Model 1 is passively stable,
with (A) basin of stability in the θ θ− ̇

0 0 plane, the initial velocity
being ̇ ̇ = −( ) ( )x z, 1.7 , 0 m s0 0

1. The trajectories starting from an
initial condition within the blue region converge to equilibrium,
whereas the initial conditions in red result in trajectories that do not
shallow and are similar to those of projectiles. (B) Two
representative trajectories starting from the initial conditions
singularized in (A). See movies 1 and 2 for animations of the
trajectories shown.



of the take-off conditions of flying snakes correspond to the
initial conditions within the basin of stability of the equili-
brium solution of Model 1. However, the structure of Model 1
requires that all parts of the virtual body contribute equally to
producing aerodynamic forces, which is not possible in real
gliding snakes due to variation of angle of attack and sweep
angle along the body. Model 2 was developed to provide a
more sophisticated representation of flying snake’s behavior
in mid-air. The airfoils were allowed to move with respect to
each other; additionally, to account for potential control
movements, a restoring moment was included to keep the
pitch angle close to zero. This model was unstable in the pitch
direction, but could be stabilized with the restoring moment.

An essential feature of snake gliding behavior that was
incorporated into the models was undulation. A priori,
undulation should affect the dynamics of flying snakes
through at least three mechanisms: (i) continual changes in
areas of the upstream and downstream airfoils, which in turn
alters the aerodynamic forces; (ii) continual redistribution of

body mass, which changes the position of the CoM; (iii)
inertial couplings between the translational and rotational
motions (see equation (S21)). There are other possible effects
of undulation; for instance, it may cause 3D unsteady aero-
dynamic interactions that are not observed in static mea-
surements, and it has been postulated that it enables stability
in the rolling direction (Socha and LaBarbera 2005), but this
was not modeled here. These mechanisms motivated the
hypothesis of this study that undulation contributes to stability
in the pitch direction, which was tested by applying the
Floquet theory to Model 2. As shown by figure 7(B), undu-
lation with an amplitude properly adjusted between two limits
can provide stability in the absence of sufficient control.
However, the periodic solution was found to be unstable with

<K K0.2u u
opt or with <B B0.3u u

opt regardless of the influences
from undulation. This shows that undulation has a limited
capability for providing stability.

The results of Model 2 suggest that flying snakes require
active control to perform stable glides. Although the actual
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Figure 7. Results of the static (A) and dynamic (B-D) stability criteria applied to Model 2. (A) Plots of the pitching moment about the CoM,
Mc, against the body angle of attack, αb, with different values of the control parameter Ku. The dashed lines and solid lines correspond to the
model with no undulation (ζ = 0) and the model with undulation, respectively. These plots show that the model with =K 0u is passively
unstable, but becomes statically stable with a positive restoring moment. The Floquet multipliers (relative to the unit circle in the complex
plane) associated with the periodic motions of Model 2 when (B) ζ ζ ζ< <0.1 opt opt, (C) < <K K K0.2 u

opt
u u

opt, and (D) < <B B B0.3 u
opt

u u
opt.

The superscripts denote the fitted values of the parameters (table 2). The arrow in (B) shows that one of the Floquet multipliers enters the unit
circle through +1 with ζ ζ> 0.1 opt , meaning that undulation compensates for a small control and stabilizes the motion (in this case, we set

=K K0.2u u
opt). The arrows in (C) and (D) show that one of the Floquet multipliers enters the unit circle through +1 with >K K0.2u u

opt and
>B B0.3u u

opt, respectively, meaning that an unstable motion could be stabilized using the restoring moment.



control mechanisms that provide stability are not yet known,
here we describe some possibilities. The asymmetric effect of
pitch velocity on the airspeeds and angles of attack experi-
enced by the upstream and downstream airfoils could be
exploited to produce the restoring moment. This might be
accomplished (see figure 3(A)) either by actively modifying r1
and r2, or by actively oscillating the airfoils out of the model
plane (i.e. the plane defined by the line connecting the air-
foils). Both of these mechanisms would change the magnitude
and direction of the airfoils’ velocities and could be used as
means of control. Another potential mechanism could take
advantage of the dynamic changes of the aerodynamic load
distribution along the snake body. This is in part supported by
the results of preliminary tandem model manipulations, which
suggest that changing the horizontal gap and vertical stagger
affects the lift and drag forces on both airfoils (Miklasz
et al 2010). In some configurations of the tandem models, the
lift and drag coefficients of the downstream airfoil are about
half of those of the upstream airfoil, but the force coefficients
approached those of a solitary airfoil when moved apart by
multiple chord lengths. Thus, a ‘nose-down’ pitching moment
could be produced in Model 2 by moving the downstream
airfoil farther downstream (increasing r2), while a ‘nose-up’
pitching moment requires the opposite movement. Although
damping could also be obtained with a similar strategy, it
should be recognized that some amount of damping is
inherent in the dynamics of Model 2, which originates from
the asymmetric effect of pitching velocity on the velocities of
the upstream and downstream airfoils. This gives rise to a
force asymmetry and a counteracting moment is thereby
produced.

Recalling that the flying snakes produce lift using their
entire body as a morphing wing, it becomes clear that one
functional consequence of the S-shape is that it creates
‘upstream’ and ‘downstream’ airfoils. In fact, Miklasz et al
(2010) found that an enhancement in overall lift-to-drag ratio
might be achieved with certain configurations. Thus, forming
the staggered S-shape may enable such aerodynamic inter-
actions. Moreover, it is well known that no aircraft could be
made with a single positively cambered wing, because it
would be unstable in the pitching direction (Etkin 1972). In
practice, such wings may be used only in conjunction with an
auxiliary surface that provides a nose-up moment when the
wing is at zero lift. This may explain another possible func-
tion of the aerial snake’s S-shape.

4.2. Implications about gliding snakes

The seemingly contradictory results of our two models, when
viewed together, render a deeper insight of how the control
system of flying snakes works. Model 1 indicates that there
exists a passively stable equilibrium state to which the tra-
jectories converge, provided that they start from proper initial
conditions within the basin of stability. Therefore, flying
snakes would be able to glide without need for closed-loop
feedback control if they could reconfigure their body
according to the kinematics of Model 1. However, closed-
loop feedback control is likely necessary, resulting from

several idealizations in Model 1: (i) the couplings between the
longitudinal and lateral motions have been neglected, (ii)
mass and aerodynamic forces were distributed uniformly over
the body area and, (iii) segments of the body are rigidly
coherent. These criteria can never be met by an animal glider.
Nonetheless, the ideally passively stable trajectory predicted
by Model 1 provides an underlying ‘dynamical skeleton’ for
closed-loop control to work with. A similar framework has
been developed for walking in bipeds, which was believed to
require active control. However, passively stable gaits have
been found in theory, and these have been used to develop
passive biped walkers (e.g. Garcia et al 1998, Collins
et al 2005).

The results of Model 2 provide the basis for predictions
of how a snake’s sensory system should provide feedback on
body position and orientation while airborne. The success of
Model 2 in predicting stable glide trajectories with a restoring
moment proportional to the pitch angle, along with the
observation that flying snakes tend to remain level with the
ground during gliding, supports the idea that the snakes use
pitch angle as a feedback variable in a closed-loop control
system. Indeed, both the vestibular and/or visual systems are
viable candidates for providing the primary sensory infor-
mation needed for such control. Boistel et al (2011) observed
that dimensions of the vestibular system in species of squa-
mates capable of descent in the air were different from those
in species with only a climbing or terrestrial lifestyle, and
suggested that these modifications might be related to the
maintenance of stability. Interestingly, the vision of flying
snakes has been implicated as being particularly acute com-
pared to that of other snake species (Socha and Sidor 2005),
which may suggest a role in providing visual input to the
animal’s control system.

This does not exclude the possibility of other measures of
position and orientation being utilized as feedback signals; for
example, proprioception and pressure distribution information
from the skin could provide sensory information. Nonflying
snakes are known to possess mechanoreceptors that include
rapidly adapting receptors and slowly adapting receptors
(Proske 1969). However, rapidly adaptive receptors have high
mechanical thresholds and restricted receptive fields. If flying
snakes use skin pressure for feedback, they would require fast
responses to small changes in air pressure. Assuming an
ability to sense differences in flow speed on the dm s−1 scale,
this would require mechanoreceptors with a sensitivity on the
order of 10−2 Pa.

4.3. Gliding trajectories

The theoretical models of this study were based on experi-
mental data from the developed stage of the glide. Our
simulations of gliding trajectories (figure 4) were conducted
with the assumption that the models represented the behavior
of flying snakes both in the ballistic dive and shallowing
phases. However, the initial ballistic dive involves postural
configurations whose effects have not been quantitatively
studied. Starting with a straight body, during this phase the
snake forms the S-shape and pitches downward (Socha 2002),
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bringing itself to the staggered configuration shown in
figure 1(C). Therefore, it is likely that the aerodynamic forces
acting on the snake are different in the ballistic dive phase.
This might explain why both models predicted trajectories
with speeds whose magnitudes are much less than those
achieved by gliding snakes (figures 4(C) and (D)). Further-
more, Model 2 predicted trajectories that became closer to the
measured data when the initial pitch angle was changed from
0° to −30° (figures 4(A) and (B)). By decreasing the initial
pitch angle, the model would benefit from smaller angles of
attack in the ballistic phase to decrease drag and to obtain
greater glide speed by the beginning of the shallowing phase;
greater speed would result in greater lift production. Because
the restoring moment would increase the angle of attack by
making the pitch angle tend to zero, smaller initial pitch
angles should produce trajectories that are more realistic.

4.4. Conclusions

This study presents two new first-order dynamical models
developed to understand the gliding performance of flying
snakes, in particular, the stability of the snake about the pitch
axis. Model 1, which was a simple two-dimensional repre-
sentation of the airborne snake as three rigidly attached air-
foils, resulted in equilibrium glide trajectories that were
locally passively stable. However, with relaxation of the
rigidity assumption and other essential features of the gliding
snake incorporated into Model 2, the passive stability was
lost. It was then shown that the trajectories of Model 2 could
be stabilized with a simple control mechanism using the pitch
angle and pitch velocity as feedback. Although the modeling
in this study was motivated as an attempt to understand how
flying snakes glide, these results may be broadly applicable to
a wide array of staggered, multi-winged flyers, at least within
the low Reynolds number regime used by the snakes. Our
initial first-order modeling also suggests that flying snakes
require active control for stable gliding, but caution is war-
ranted in over-extending these results to real gliding flight.
Verification of the theoretical models using physical experi-
ments is needed, and a full exploration of the parameter space
should be conducted to probe the limits of the system. Fur-
thermore, the biomechanical properties of the snake’s body,
as well as body orientation angles and muscle activity during
gliding, must be measured to understand its control para-
meters. If experimentally justified, Model 2 would become a
powerful tool to study the dynamics of flying snakes, and can
be used to examine those aspects of gliding that are difficult,
if not impossible, to study experimentally.
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