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Abstract. Code duplication in a program can make understanding and
maintenance difficult. The problem can be reduced by detecting dupli-
cated code, refactoring it into a separate procedure, and replacing all the
clones by appropriate calls to the new procedure. In this paper, we re-
port on a confirmatory replication of a tool that was used to detect such
refactorable clones based on program dependence graphs and program
slicing.

1 Motivation

With the discussion about the extent to which code clones are harmful for soft-
ware readability, maintainability and ultimately quality, still ongoing, there is
still significant evidence on cost increases being caused by code duplication in
at least some scenarios [5,18]. For simplicity, we intend to adopt that view and
look a step further. Once clones are identified, ideally we would like to provide
advanced support for programmers or maintenance engineers to remove them
— that is, to use refactorings [4] to “de-clone” source code by merging identical
code fragments and parametrising similar ones [17].

The sheer number of code clone detection techniques and tools is immensely
overwhelming [15,16,13]. In section 2, we will give a very brief overview of the
field and explain terminology needed to understand the rest of the paper. One
of the promising family of methods which is not too complex for a final Master’s
project yet also not too much of a beaten track in code clone research, is graph-
based. Given two programs, we automatically build a graph-like structure with
known properties, employ some slicing and/or matching and based on that can
diagnose them with duplication.

Eventually we have converged to a relatively well-known paper of Ragha-
van Komondoor and Susan Horwitz [8] and dedicated ourselves to replicating it.
Some details about that project can be found in section 3, but in general they
propose to use program dependence graphs [11] (PDG) and program slicing [19].
The authors of the original study were able to find isomorphic subgraphs of
the PDG by implementing a program slicing technique using a combination of
backward slicing and forward slicing. Basically they search for sets of syntacti-
cally equivalent node pairs and perform backward slicing from each pair with a
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single forward slicing pass for matching predicates nodes. The theoretical foun-
dation behind this method mostly lies in plan calculus [14] and an advanced
graph partitioning algorithm [6,7] and essentially allows to detect clones seman-
tically, regardless of various refactorings that may have been applied to some of
the copies but not to others. This leads to reporting only those clones that can
indeed be refactored — as we show on Table 1.

We modified the original study in several ways: some were forced upon us by
technicalities, for others we had our own reasons — all explained in section 4.
We report our results, compare them to the original study and try to explain
the differences in section 5 and conclude the paper with section 6.

2 Background

Several studies show that 7–23% of the source code for large programs is du-
plicated code [2,9]. Within a project, code duplication will increase code size,
and make maintenance difficult. Fixing a bug within a project with a lot of du-
plicated code is becoming a challenge because it is necessary to make sure that
the fix is applied to all of the duplicated instances. Lague et al [10] studied the
development of a large software system over multiple releases and found that
programmers often missed some copies of the duplicated code when performing
modification. Similar results have been observed by Geiger et al [5] and Thum-
malapenta et al [18] who observe the already expected negative impact of clone
co-evolution on software maintenance effort.

In code duplication studies we usually distinguish among the following types
of clones [13,15]:

– Exact clones (type 1) — identical duplicates with some variations allowed
in whitespace and comments;

– Parametrised clones (type 2) — variations are allowed in identifier names,
literals, even variable types;

– Near miss clones (type 3) — statements are allowed to be changed, added
or removed up to some extent;

– Semantic clones (type 4) — same computation with a different syntax and
possibly even different algorithms;

– Structural clones — higher level similarities, conceptually bottom-up-detected
implementation patterns;

– Artefact clones — function clones and file clones;
– Model clones — duplicates over artefacts other than code;
– Contextual clones — code fragments deemed duplicate due to their usage

patterns.

Out of these, type 2 and type 3 are the most well-researched ones, with model
clones quickly getting more and more attention every year.

Techniques and tools can be roughly classified into these groups [13,16] (in
the parenthesis we show a software artefact category in the terms of parsing-in-
a-broad-sense megamodel [20]):



Procedure 1 Rewritten Procedure 1

int foo(void) { int foo(void) {

++ int i = 1; bool w = false;

bool z = true; int t = 10;

int t = 10; ** return new_procedure_bar();

++ int j = i + 1; }

++ int n;

++ for (n=0; n<10; n++) {

++ j = j + 5;

}

++ int k = i + j - 1;

return k;

}

Procedure 2 Rewritten Procedure 2

int bar(void) { int bar(void) {

++ int i = 1; bool w = false;

bool w = false; int t = 10;

int t = 10; ** return new_procedure_bar();

++ int s; }

++ int b = a + 1;

++ for (s=0; s<10; s++) {

++ b = b + 5;

}

++ int c = a + b - 1;

return c;

}

Newly extracted procedure:

int new_procedure_bar(void) {

++ int i = 1;

++ int j = i + 1;

++ int n;

++ for (n=0; n<10; n++) {

++ j = j + 5;

}

++ int k = i + j - 1;

return k;

}

Table 1. Two functions with duplicated code and a refactoring result. In the left col-
umn, the duplicated code is marked with ++; in the right column clones are replaced
with calls to a newly extracted function. This example demonstrates that not every-
thing that has the same structure or the same syntax is reported as clones (e.g. int t

= 10; which has no shared predecessor).



– Text based (Str) such as Simian — blazingly fast methods usually looking for
exact clones, quite often in a language-independent, -parametric or -agnostic
manner;

– Token based (TTk, Lex) such as CCFinder — somewhat more sophisticated
lexical tools;

– Tree based (Ptr, Cst, Ast) such as Deckard — looking for clones in parse
trees, suffix trees or abstract syntax trees;

– Graph based (Ast, Dia) such as Duplix — making decisions based on control
flow graphs, data dependency graphs, program dependence graphs or partite
sets and vertices;

– Model based (Dia) such as ConQAT — metamodel-specific representation,
usually graph-like;

– Metrics based such as Covet — using metrics, fingerprinting and/or clus-
tering to work on text or ASTs;

– Hybrid such as CloneMiner — independent component analysis, some vari-
ants of semantic indexing and longest subsequence methods that require
reasoning over trees, memory states, vector spaces, etc.

Following the original paper [8], we use CodeSurfer3, a commercial tool that
can be used to generate program dependence graphs (PDGs) from C programs.
It provides an API that can be used from Scheme programs [1]. In general, PDG
nodes represent program statements and predicates, while PDG edges repre-
sent data and control dependencies. PDG provides an abstraction that ignores
arbitrary sequencing choices made by a programmer, and instead captures the
important dependences among program components. Essentially, a program de-
pendence graph is built starting from a control flow graph (CFG) with statements
as nodes and possible transitions among them as edges, which is then analysed
for dominance to form an acyclic post-dominator graph — the two are merged
into a control dependence graph. A program dependence graph is formed from
the control dependence graph by enhancing it with additional edges for all data
dependencies, an example is given on Figure 1. The resulting complex struc-
ture is graph-like with nodes of several kinds (regions, statements, entry/exit
points) and edges of several kinds (data/control dominance, possibly labelled)
— there are algorithmic variations which are not important for understanding
the current paper. Such a PDG is remarkable in a sense that it captures many
structural aspects of a program and still allows to abstract from concrete details
such as variable names and precise positioning of the code. For a larger/smaller
scale, related methods are used such as system dependence graphs (SDGs) or
execution dependence graphs (EDGs) [12].

The last bit of background needed for understanding this paper is program
slicing [19,3], which is a well-known technique for obtaining a “view” of a pro-
gram with only those statements that are relevant for the chosen variable. In
terms of PDG we can have two query types in program slicing [7]. Backward
slicing from node x means finding all the nodes that influence the value of node

3 CodeSurfer, http://www.grammatech.com/research/technologies/codesurfer.
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Fig. 1. A tiny code fragment demonstrating the concept of a program dependence
graph: the listing on the left; the corresponding PDG fragment on the right (only
data dependencies for sum are shown, the complete graph is much bigger and more
cluttered) [21].

x. Forward slicing from node y means finding all the nodes that are influenced
by node y. This is an important technique to filter out any statements that are
irrelevant for clone detection.

3 Original study

The main research question asked by Komondoor and Horwitz is the following:
can we find code clones of type 3 (non-contiguous, reordered, intertwined), which
are refactorable into new procedures? [8]

3.1 Approach

To detect clones in a program, we represent each procedure using its PDG. In
PDG, vertex represents program statement or predicate, and edge represents
data or control dependences. The algorithm performs four steps (described in
the following subsections):

– Step 1: Find relevant procedures
– Step 2: Find pair of vertices with equivalent syntactic structure
– Step 3: Find clones
– Step 4: Group clones



Find relevant procedures. We are only interested in finding clones for
procedures that are reachable from the main program execution. Only then we
can safely remove unreachable procedures from our program and just not detect
clones of them. We do this by getting a system initialisation vertex and forward-
slicing with data and control flow. This will return all PDGs (including user
defined and system PDGs) that are reachable from the main program execution.
From that result, we further filter those PDGs to find only the user defined ones,
ignoring system libraries.

Find pairs of vertices with equivalent syntactic structure. We scan
all PDGs from the previous step to find vertices that have the type expression
(e.g. int a = b + 1). From those expression vertices, we try to match their
syntactic structure with each other. To find two expressions with equivalent
syntactic structures, we make use of Abstract Syntax Tree (AST). This way,
we ignore variable names, literal values, and focus only on the structure, e.g.
int a = b + 1 is equivalent with int k = l + 1, where both expression has
the same type, which is int).

Find clones. From a pair of equivalent structure expressions, we back-slice to
find their predecessors and compare them with each other. If the AST structures
of their predecessors are the same then we store it in the collection of clones
found. Because of this step, we can find non-contiguous, reordered, intertwined
and refactorable clones. Refactorable clones in this case mean that the found
clones are meaningful and it should be possible to move it into a new procedure
without changing their semantic.

Group clones. This is the step where we make sense of the found clones
before displaying them. For example, when using CodeSurfer, the vertex for a
while-loop doesn’t really show that it is a while loop but rather showing its
predicate, e.g. while(i<10) will show as a control-point vertex i<10. Therefore,
it is important that the found clones are mapped back to the actual program
text representation and grouped together before displaying them. It is important
that the programmer can understand and take action on the reported clones.

Experimental setup. The authors of the original paper used CodeSurfer
version 1.8 to generate PDGs and wrote Scheme program of 6123 lines that
access CodeSurfer API to work with the generated PDGs. They also had to
have a C implementation of 4380 lines to do the processing of those PDG to
actually find clones.

They were able to find isomorphic subgraphs of the PDG by implementing
a program slicing technique that used a combination of backward slicing and
forward slicing. They applied it to some open-source software written in C (tail,
sort, bison) and demonstrated the capability of slicing to detect non-contagious
code clones. We will show the actual numbers later when we compare the results
with the replication.



4 Changes to the original study

The motivation of this replication study is to be able to validate algorithm and
results of the original study. Once validated, we would like to publish our code
and intermediate results into a public repository so that it is easier for any future
researchers to either re-validate our results or to extend our program.

We had to use CodeSurfer 2.3 instead of 1.8 used in the original study: just
to get it running was already a challenge impossible to overcome — we would
eventually need to do a sandboxing of some 2001 version of OS, which would
then need to be properly licensed (CodeSurfer is not open source, but we have
applied for the academic license and got both 1.8 and 2.3 to experiment with).

Porting the existing code (kindly provided to use by Raghavan Komondoor)
to the new version of CodeSurfer was also ruled out as a viable option: the API
changed too much, and actually covered many things with standard calls that
needed to be programmed in full when working with version 1.8. In the end, we
reimplemented the algorithm from scratch, using both the original paper and the
code behind it as guides. Our implementation has 536 LOC of Scheme, which is
huge improvement against the 6123 LOC of the original study. The improvement
is mostly not ours to claim, but CodeSurfer API’s. For post-processing of clones,
we wrote a Ruby script, which was again shorter: 161 LOC versus the original
4380 LOC, partly due to the improved API, but partly also due to the language
choice (the original post-processing was done in C++). Actually, given a bit
more time, it should have been possible to avoid post-processing entirely, or
rather to implement in all in Scheme. The code is available online for anybody
to do this — http://github.com/ammarhamid/clone-detection — we accept
pull requests.

There are several other important changes from the original paper that we
need to explain. As mentioned above, we only detect clones within the reachable
procedures, excluding any unused procedures that are not reachable from main
execution. This makes the result more accurate, since dead code is out of our
consideration.

Furthermore, we only use backward slicing and no forward slicing to detect
clones. Let us have a look at the example on Table 2. According to the original
paper, only statements indicated by ++ will be reported as clones while statement
marked with ** is excluded. The main argument according to the original paper
is that fp3 is used inside a loop but the loop predicate itself is not matching
(for loop and the first while loop predicate doesn’t match) – or a so called cross
loop [8].

However, we argue that we should still report the statement marked with **

as a clone together with the fact that their loop predicate doesn’t match. For a
software developer it would mean one could still refactor this into two separate
procedures, instead of a single procedure proposed by the original paper (Table 3
and Table 4). Therefore, we consider that forward slicing is only necessary to
define refactoring strategy and not for detecting the clone itself.

http://github.com/ammarhamid/clone-detection


Fragment 1 Fragment 2

... ...

** fp3 = lookaheadset + tokensetsize; ** fp3 = base + tokensetsize;

for(i = lookaheads(state); ...

i < k; i++) { if(rp) {

++ fp1 = LA + i * tokensetsize; while((j = *rp++) > 0) {

++ fp2 = lookaheadset; ...

++ while (fp2 < fp3) { ++ fp1 = base;

++ *fp2++ |= *fp1++; ++ fp2 = F + j * tokensetsize;

} ++ while(fp1 < fp3) {

} ++ *fp1++ |= *fp2++;

}

}

Table 2. Two clones from bison that illustrates the necessity to have a forward slicing
according to the original paper [8]

The new fragment 1 The new fragment 2

... ...

fp3 = location(lookaheadset, fp3 = location(base, tokensetsize);

tokensetsize); ...

... if(rp) {

for(i = lookaheads(state); while((j = *rp++) > 0) {

i < k; i++) { ...

compute(LA, lookaheadset, compute(F, base,

i, tokensetsize, fp3); j, tokensetsize, fp3);

} }

}

Table 3. The new fragments after refactoring (without forward slicing)

The extracted procedures

int location(int base, int size) { return base + size; }

void compute(int cons, int base, int index, int size, int loc) {

fp1 = cons + index * size;

fp2 = base;

while (fp2 < loc) { *fp2++ |= *fp1++; } }

Table 4. The new refactored procedures. In this case, procedure location has only
one statement which probably unnecessary to create a new procedure for it. But the
point is if we use forward slicing in clone detection phase, we might hide this statement
prematurely from the programmers, who at least should be aware of the situation
before proceeding with refactoring.



Study Program LOC PDG nodes Elapsed time, minutes:seconds
Scheme C++ Ruby

Original tail 1569 2580 00:40 00:03 —
Replication tail 1668 3052 00:05 — 00:01

Original sort 2445 5820 10:00 00:07 —
Replication sort 2499 6891 00:30 — 00:01

Original bison 11540 28548 93:00 01:05 —
Replication bison 10550 33820 126:00 — 00:42

Table 5. Comparison on program size, number of nodes, implementation and time.

5 Results

To be as close to the original paper as possible, we used the GNU git repositories4

to locate versions that were released around 2001: CoreUtils 4.5.2 (for tail and
sort) and Bison 1.29 (for bison).

Table 5 shows the comparison of the sizes of the three programs (in number of
LOC and in number of nodes), and the running times for the algorithm between
the original and replication study. Figure 2 shows the comparison of the result
in details between the original and replication study.

We do not have a solid explanation for the differences observed, but we can
hypothesise on some issues:

Altered algorithm. We did use a slightly different algorithm (only reach-
able code; no forward slicing) to detect clones. However, we have also tried
running it exactly as it was intended originally, and the differences were rather
minor and could not explain some of the drastic differences.

Manual inspection was performed to ensure that the clones detected by
our tool are indeed clones and are indeed refactorable. It was possible to review
all clones from tail and sort and cover a random selection of clones for bison
— no false positives were found.

Bison running time in the original study is suspiciously short, which does
not reflect the explosive performance behaviour that we have observed in our
implementation. This could indicate a bug in one of the implementations, or
point to a drastically different (optimised, distributed) algorithm used for the
actual run of the original experiment. It could also be a simple reporting mistake
(e.g., “one and a half hours” reported instead of actual “one and a half days”).

Size of some clones reported for tail and bison is longer than most
functions (group 70+), which means either a mistake or some unreported proce-
dure used in the original experiment to combine several subsequent full-function
clones into one.

Testing a program of 10 KLOC is always harder than testing a program of
1 KLOC, especially if both programs are algorithmically heavy yet the shorter
one relies on a more advanced API. More investigation is needed to see which of
these factors were at play and which results are closer to the truth.

4 http://git.savannah.gnu.org/cgit/
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6 Conclusion

We have departed on a quest to find refactorable semantic clones and have
conducted a replication of a paper that did it with PDG and program slicing.
Our results are statistically somewhat different from the results of the original
study, but we can conclude nevertheless that the algorithm described there,
works. So, the fusion of PDG and slicing is suitable for Type 3 clone detection.

As a side product, we have noticed how significantly CodeSurfer has improved
over the years: the amount of code we needed to write to achieve the same
objectives, is ten times less than what had to be done 13 years ago, with almost
no postprocessing of the obtained results needed.

As for quantitative differences, unfortunately we could not compare them
in detail since we lack the original data, and we failed in getting the code op-
erational (it would require an old version of CodeSurfer operating on an old
system, preferably with performance comparable to the machine used for the
original experiment). However, we do present some evidence of correctness in
the form of manually reviewed code clones that we reported. We can also con-
clude that the clones are indeed refactorable — this has been evaluated through
manual inspection of the tool reports.

Both the code and the intermediate results of our experiments have been
shared as open source: http://github.com/ammarhamid/clone-detection, to
make it easier to revalidate, replicate, and extend. We hope our clone detector is
a suitable tool to use for future work. Possible future extensions should include
detecting interprocedural clones as well, which would allow detection of type
4 clones and refactorings such as inlining variables and extracting methods.
Intuitively, it would be more useful to provide results over bigger related code
fragments — however, the practical consequences remain to be seen.
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