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Abstract

■ One strong claim made by the representational–hierarchical
account of cortical function in the ventral visual stream (VVS) is
that the VVS is a functional continuum: The basic computations
carried out in service of a given cognitive function, such as re-
cognition memory or visual discrimination, might be the same
at all points along the VVS. Here, we use a single-layer com-
putational model with a fixed learning mechanism and set of
parameters to simulate a variety of cognitive phenomena from
different parts of the functional continuum of the VVS: recog-
nition memory, categorization of perceptually related stimuli,
perceptual learning of highly similar stimuli, and development

of retinotopy and orientation selectivity. The simulation results
indicate—consistent with the representational–hierarchical
view—that the simple existence of different levels of repre-
sentational complexity in different parts of the VVS is sufficient
to drive the emergence of distinct regions that appear to be
specialized for solving a particular task, when a common neuro-
computational learning algorithm is assumed across all regions.
Thus, our data suggest that it is not necessary to invoke com-
putational differences to understand how different cortical re-
gions can appear to be specialized for what are considered to
be very different psychological functions. ■

INTRODUCTION

The architecture and computational function of the
ventral visual cortex are better understood than those
of perhaps any other region of mammalian cortex.
After decades of research, many properties of this brain
region are well elucidated and generally agreed upon:
retinotopy of visual representations in early, posterior
regions that disappears in anterior regions (Tootell, Dale,
Sereno, & Malach, 1996; Tootell, Switkes, Silverman, &
Hamilton, 1988; Hubel & Wiesel, 1962); columnar organi-
zation of early visual representations for features such
as orientation (Blasdel & Salama, 1986; Hubel & Wiesel,
1959); increasing receptive field size with anterior pro-
gression; the emergence of view and position invariant
object representations in anterior areas (Tanaka, 2003;
Rolls, 1992); a general, hierarchical scheme for visual
representations in which simple visual “elements” are
coded for in posterior areas and more complex fea-
tures or whole objects are represented in anterior regions
(Bussey & Saksida, 2002; Riesenhuber & Poggio, 1999;
Tanaka, Saito, Fukada, & Moriya, 1991; Desimone, Albright,
Gross, & Bruce, 1984); the list goes on. However, the
issue of how best to characterize the cognitive function
of this region remains highly controversial.
The debate over the cognitive contributions of the

ventral visual stream (VVS) can be described, in broad

terms, as a debate about specialization of function. One
strand of the debate concerns category-selective spe-
cialization: do there exist regions of ventral visual cortex
that are specialized for the processing of certain object
categories, such as faces and houses (Op de Beeck,
Haushofer, & Kanwisher, 2008; Tsao & Livingstone,
2008; OʼToole, Jiang, Abdi, & Haxby, 2005; Hanson,
Matsuka, & Haxby, 2004; Spiridon & Kanwisher, 2002;
Kanwisher, McDermott, & Chun, 1997), or are regions
instead specialized for domain-general skills such as ex-
pertise rather than for object categories (Gauthier & Tarr,
1997), or is the neural code for objects in fact distributed
(Haxby et al., 2001)? A second strand of the debate con-
cerns the functions of visual perception and visual mem-
ory. The standard view suggests that visual perception
and memory are localized to distinct regions within VVS
and antero-medial-temporal lobe, with perception a func-
tion of posterior areas and memory of anterior areas
(Squire & Wixted, 2011; Knowlton & Squire, 1993; Sakai
& Miyashita, 1993; Squire & Zola-Morgan, 1991; Mishkin,
1982). An alternative account claims that a given region
may contribute to both perception and memory (Cowell,
Bussey, & Saksida, 2006, 2010; Lopez-Aranda et al.,
2009; Barense et al., 2005; Lee, Barense, & Graham,
2005; Bussey, Saksida, & Murray, 2002, 2003; Buckley &
Gaffan, 1998)—indeed, that perceptual and mnemonic
tasks may sometimes tap the same neural representa-
tions—and that the functional contribution of each
brain region is determined not by its location within a1University of Cambridge, 2University of California, San Diego
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cognitive module specialized for a certain function, but
by the nature of the stimulus representations it con-
tains (Cowell et al., 2010; Tyler et al., 2004; Bussey &
Saksida, 2002).

We have advocated an account of object processing
that falls into the second of the above camps, arguing
in favor of distributed object representations (Cowell,
Huber, & Cottrell, 2009; Cowell et al., 2006) and a func-
tional continuum along VVS, in which all processing
stages may contribute to perception or memory (or
indeed, any object processing function) depending on
the representational requirements of the task (Cowell
et al., 2010; Bussey & Saksida, 2002). The assumption
of a continuous hierarchy of object representations along
VVS is central to this explanation of visual cognition,
so we have termed this account the “representational–
hierarchical view.” The existence of a hierarchy of ob-
ject representations in VVS is widely accepted, forming
the basis of many models of object processing (e.g.,
Riesenhuber & Poggio, 1999; Wallis & Rolls, 1997; Perrett
& Oram, 1993). These have successfully used hierar-
chy to model visual identification of shapes and ob-
jects independently of stimulus variability, location, size
(Riesenhuber & Poggio, 1999; Fukushima, 1980), 3-D
viewing angle (Wallis & Rolls, 1997), and within a clut-
tered field (Grossberg, 1994). Just as in these models,
the representational–hierarchical view of VVS function
assumes that simple features reside in posterior regions
of VVS, and complex conjunctions of those simple fea-
tures are housed in more anterior regions. Stimulus rep-
resentations are hypothesized to reach a maximum of
complexity in perirhinal cortex (PRC)—a brain structure
situated at the anterior end of the VVS that is known to
be critical for judging the familiarity or novelty of ob-
jects (Squire, Wixted, & Clark, 2007; Murray, Graham, &
Gaffan, 2005; Winters, Forwood, Cowell, Saksida, &
Bussey, 2004), as well as for object perception under
certain circumstances (Bussey, Saksida, & Murray, 2002;
Murray, Bussey, & Saksida, 2001; Buckley & Gaffan,
1998). The complexity of stimulus representations reached
in PRC is assumed to correspond to the level of a whole
object and confers the functional role of PRC in both object
memory and object perception; any task requiring such
object-level representations—regardless of the specific
cognitive function that it is tapping into—will be affected
by damage to PRC. Similarly, any posterior region within
VVS may contribute to both perception and memory of
visual stimuli according to the level of complexity of the
stimulus representations that the region contains: if the
task, whether “mnemonic” or “perceptual,” is best solved
on the basis of simple visual features, then the stage of
VVS that will be optimal for its solution is the stage con-
taining simple feature representations (Cowell et al., 2010).

The representational–hierarchical view entails several
claims about cortical function in VVS, some of which re-
main untested, computationally. For example, Bussey
and Saksida (2002, 2005) have suggested that if the VVS

is truly a functional continuum, the computations carried
out in the service of a given cognitive function (say, visual
recognition memory or visual discrimination) might be
the same at all points along VVS, including PRC. In this
case, differences in the contributions to cognition made
by each region would simply be due to differences in
the stimulus representations contained in each region.
Posterior VVS might provide a familiarity signal allowing
recognition of simple visual features in the same way that
PRC provides a familiarity signal for whole objects. Related
to this is the claim by Cowell et al. (2010) that the repre-
sentational requirements of a task determine which brain
region is most critical for the task solution. For example, if
a visual discrimination task uses objects but those objects
are discriminable on the basis of a simple feature, such as
a color, then the task can be solved either using object-
level representations or feature-level representations. On
the other hand, if a visual discrimination task involves
presentation of the same object from different views
and requires apprehension that those different views
arise from the same object (Lee, Scahill, & Graham, 2008;
Buckley, Booth, Rolls, & Gaffan, 2001), then object-level
representations will likely be required (because probably
no single feature can be used to determine the correspon-
dence of object identity across the different views).
In the present article, we test the viability of these

claims. Is it possible that different regions could produce
the semblance of distinct functions using the same com-
putational algorithms operating upon different stimulus
representations (e.g., perceptual expertise with line orien-
tations as opposed to faces)? Is it true that the rep-
resentational requirements of a task can determine the
relative abilities of different brain regions to solve the task,
when all that differs between those regions is the stimulus
representations they contain rather than the computa-
tions they perform? This latter question has already been
tested within the specific domain of visual discrimination
learning (Cowell et al., 2010). This study simulates one of
the many empirical studies showing a double dissocia-
tion of function with the VVS (Iwai & Mishkin, 1968) and
interpreted as evidence for distinct functional modules
within VVS—anterior structures being for “perception”
and posterior structures being for “associative memory.”
The model it uses to demonstrate this functional dissocia-
tion is computationally identical in each of its hierarchical
layers, with the sole difference being the complexity of
the nature of the stimulus representations. The present
article seeks to extend this finding further by establish-
ing whether tasks as diverse as object recognition mem-
ory and categorization can be explained in terms of a
common cortical learning algorithm responding to differing
representational requirements.
Our principal aim is to put all of the cognitive tasks we

examine onto a level playing field, computationally, and see
whether differences in the input stimuli and representa-
tional requirements of different tasks can produce the di-
vergent behaviors associated with those tasks. In previous
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instantiations of the representational–hierarchical view
(Cowell et al., 2006, 2010; Bussey & Saksida, 2002), we
assumed a hierarchical structure with multiple layers of
stimulus representations, in which later layers contained
more complex stimulus representations than earlier
layers. In the current computational study, we replace
that hierarchy with a single layer, using the same learn-
ing mechanism and parameters on that layer for all tasks
(Figures 1 and 2).
The specific question under investigation in the cur-

rent article is whether it is possible for different regions
to use the same computational algorithm upon different
representations to generate a semblance of the distinct
computational functions seen in VVS. For each task, the
single network layer receives input stimuli at the level
of complexity used in the real-world version of the task
(e.g., lowercase and uppercase letters for stimulus rec-
ognition versus simple lines for the development of
orientation selectivity). Each task was run in a separately
initiated model, as we are not exploring issues of inter-
ference between tasks within the same layer. The use
of a single layer, a departure from our previous models
(Cowell et al., 2006, 2010), is critical to our present
aim; employing a hierarchy with several layers of stimu-
lus representations at different levels of structural com-
plexity and using different layers for different tasks
would not be a true test of the hypothesis that a single
neurocomputational algorithm operating on different
stimulus inputs can produce divergent cognitive func-
tions. By not using a hierarchical model, but instead
using a single layer and simply varying the stimulus
input in a task-appropriate fashion, we are able to test
whether one unifying algorithm can account for the
emergence of representations at the appropriate level
of complexity for the task. The logical extension of this
to the brain, of course, is a series of such layers stacked
together, similar to previous models of the VVS (e.g.,
Riesenhuber & Poggio, 1999; Wallis & Rolls, 1997;
Grossberg, 1994; Perrett & Oram, 1993; Fukushima,
1980). However, the current work adds to the existing

Figure 1. Diagram illustrating
the model architecture and
plasticity. Left: Drawing of the
major circuitry, showing the
input from the input layer,
the lateral connections to one
example network unit within
the layer, and the output from
the layer to a response unit.
Right: Learning rules used,
illustrating the conditions
needed for weight change.
See Appendix 1 for a more
detailed description of the
equations and the definitions
of the variables used.

Figure 2. Diagram illustrating the modelʼs response to repeated
exposure to one stimulus. In each image, a single unit is represented
by a pixel, with the activity of the unit represented by the darkness
of the pixel: black = 1 and white = 0. Top row: A stimulus is presented
to the model as a specific pattern of activity (left). In the first instance
the model is naive, so all the weights between the input units and
the network units are at random values producing a random and noisy
pattern of activity (middle). After lateral interactions between all the
units in the layer, some clusters of units with relatively high propagation
layer activity appear to retain local islands of activity. For the other
units, the lateral inhibition has reduced their activity to 0, giving
the resultant pattern of islands of activity in a sea of inactivity (right).
Middle and bottom rows: The pattern of activity after lateral interactions
determines which units are able to engage in learning. Those units
in the network layer that had moderate activity after one iteration
can sustain moderate amounts of learning, so when the same stimulus
is presented again, those units are able to generate a stronger activity
as a result of their updated weights. The units outside the island of
activity will still have noisy and weak activity values before lateral
interactions, and are reduced by the lateral interactions, unless other
and different stimuli have also been presented that these units learn
to represent. The strong activity in the peak units will also serve to
inhibit the activity in the other island units, so both “cleaning-up”
and strengthening the representation. Thus, with repeated exposure,
the peak units show pronounced activity in response to the stimulus
and come to signal the presence of that stimulus.
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literature by isolating one feature of hierarchy—increasing
stimulus complexity—and assessing its contribution to the
distinct behavioral functions found within the hierarchy
of the VVS.

We test the model presented here on its ability to
simulate results from a variety of tasks associated with
different regions of the VVS, ranging from tasks typically
thought of as tapping high-level cognition in anterior
VVS to tasks that are associated with low-level vision
and development in posterior VVS and primary visual
cortex. To provide the most stringent test of our ideas
possible, tasks were chosen to represents the broadest
range possible of computational occurrences known to
be dependent on structures within the VVS. These
include (1) recognition memory (cf. Cowell et al., 2006)
associated with PRC (Squire et al., 2007; Murray et al.,
2005; Winters et al., 2004), (2) categorization of percep-
tually related stimuli (Posner & Keele, 1968) associated
with inferior temporal cortex (Keri, 2003), (3) perceptual
learning for discrimination of highly similar visual stimuli
(cf. Saksida, 1999) associated with extrastriate cortex
(Gilbert, Sigman, & Crist, 2001), (4) the development
of retinotopy (Tootell et al., 1988), and (5) the develop-
ment of orientation selective representations (Bartfeld
& Grinvald, 1992; Blasdel & Salama, 1986) both as-
sociated with primary visual cortex. The network is
able successfully to simulate data across this broad
range of tasks, suggesting that the basic computational
mechanisms that underlie “low-level” perceptual func-
tions such as development of primary visual cortex and
“high-level” cognitive functions such as categorization
or recognition memory may be more similar than is usu-
ally assumed. Consequently, to explain observed differ-
ences in the contributions of different regions within
VVS to cognition, it may not be necessary to invoke no-
tions of functional specialization; a more parsimonious
account may be offered by assuming shared processing
mechanisms operating upon different representational
content.

METHODS

Model Overview

The algorithm we use in the present simulations is based
on the Kohonen self-organizing feature map (SOFM;
Kohonen, 1984): a single-layer model, with no hierarchy
or feedback from downstream structures, that is able
learn without the need for a “teaching signal.” However,
because Kohonenʼs (1984) original SOFM algorithm does
not provide a representation of a single-neuron activity—
which makes it difficult to model electrophysiological
data—we use a model based closely on the SOFM but
with a variety of neurally plausible properties. For ex-
ample, activity calculation for each unit is not based on
Cartesian distance but instead uses the product of input
weight with input activity and more conventional associa-

tive treatment of these values (Rescorla & Wagner, 1972).
In addition, lateral interactions between units are explicitly
calculated, unlike in the conventional Kohonen network
where they are imposed and a learning rule based on
N-methyl-D-aspartate-mediated LTP and LTD is used.
These three details have very little impact on the me-
chanics of the model, meaning that the model that we
use here produces much of the same high-level response
to stimuli as would be seen in a conventional Kohonen
network (Kohonen, 1984) but, at the same time, con-
tains lower-level representations that allow us to model
electrophysiological data. A more radical change from
the Kohonen network is that the neighborhood size does
not decrease as a function of time but rather changes on
a trial-by-trial basis as a function of the unit activity re-
sponse to the current stimulus, in line with recent electro-
physiological data (Angelucci et al., 2002). This change
has a particular impact on tasks where stimulus familiar-
ity will change on a trial-by-trial basis, such as recogni-
tion memory, and is discussed further in the Results to
Experiment 1.
For a minority of the tasks we simulate, associative

learning is needed to associate the pattern of activity
produced by a self-organizing array of units in response
to a given stimulus with an outcome. Previous work has
already demonstrated very successfully that simple error
correction learning algorithms (Rescorla & Wagner, 1972;
Widrow & Hoff, 1960) can learn effectively the associa-
tions between a single stimulus and an outcome. This
is the case even if stimuli are represented using distrib-
uted patterns of activity (Ghirlanda, 2005), and if these
distributed patterns change with exposure to stimuli, at
the same time that error correction learning is taking place
(Saksida, 1999). Critically, this supervised learning does
not have any feedback connectivity to the unsupervised
self-organizing array of units, and therefore, the additional
information provided by the outcome cannot affect learn-
ing within the self-organizing array. Thus, we adopt this
simple error correction learning algorithm when associa-
tive learning is required to solve the task.
The single-layer network architecture is very simple,

which lends the model not only parsimony but also
clarity. By reducing the number of built-in assumptions,
the key aspects of the mechanism in the model that are
responsible for the observed simulation results are re-
vealed. Further detailed properties of visual cortex that
are known to exist but whose inclusion in themodel would
obscure the simple mechanism that can account for the
simulated findings—such as hierarchical layers of repre-
sentations or cortical feedback—are purposefully ex-
cluded. For full details of the model, see Appendix (also
see Figure 1).

Stimuli

Many existing models of cognitive function (e.g., Cowell
et al., 2006, 2010; Bussey & Saksida, 2002) approximate
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real-world stimuli by representing them with a small array
of units, where each unit represents a stimulus dimension
such as width, length, or color, and each unit value rep-
resents the value for that stimulus in that dimension.
However, in the present work, one of our aims was to test
whether the stimulus properties hypothesized (i.e., as-
sumed) in existing instantiations of the representational–
hierarchical view are indeed possessed by the kinds of
stimuli used in the empirical tasks that we have simulated
and whether differences in stimuli across different tasks
are sufficient to account for the emergence of diverse cog-
nitive functions (such as object recognition memory and
perceptual learning). Therefore, in the current model, we
use realistic two-dimensional images of visual stimuli—
gray-scale representations of lines, shapes, and objects
within a 20 × 20 pixel input space—which are, where
possible, identical to the stimuli used to collect the original
behavioral data.

EXPERIMENT 1: SIMULATION OF
STIMULUS RECOGNITION

The study of recognition memory, the ability to judge
whether a stimulus has been seen before, has been cen-
tral to our understanding of memory and amnesia as it is
thought to be an example of declarative memory (Squire
& Zola-Morgan, 1991), the explicit recall of past events.
The critical role of medial-temporal lobe structures in
recognition memory was highlighted by the study of tem-
poral lobectomy patients (Scoville & Milner, 1957), and it
is now widely acknowledged that neocortical structures,
such as the PRC, are essential (Squire et al., 2007; Murray
et al., 2005; Winters et al., 2004).
Here, we simulate a preferred looking task that is widely

used to assess recognition memory in humans (visual
paired comparison; Manns, Stark, & Squire, 2000) and
rodents (pontaneous object recognition; Ennaceur &
Delacour, 1988). Participants are allowed to study an ob-
ject and then, after a delay, are shown the studied object

along with a new object. Preference for the novel object,
an indicator of memory for the familiar object, declines as
a function of delay (Forwood, Winters, & Bussey, 2005) and
is sensitive to damage to PRC (Winters et al., 2004; Bussey,
Muir, & Aggleton, 1999). A self-organizing mechanism
(Kohonen, 1984) combined with sharpening of stimulus
representations proportional to length of exposure to give
measures of stimulus novelty has been used by compu-
tational models of recognition memory in PRC (Cowell
et al., 2006; Bogacz & Brown, 2003; Norman & OʼReilly,
2003).

The current model was run with the default parameters
as set out in Table 1. The stimuli and training procedure
used in this experiment are detailed in Figure 3. Fifteen
simulations were run to replicate multiple subjects, with
five being run on each of three delay conditions. Each
network corresponds to a single subject in the standard
rat spontaneous object recognition task protocol receiving
six recognition memory trials in succession. Each recogni-
tion memory trial involved exposure to a novel stimulus
for a set number of iterations in the sample phase, fol-
lowed by a delay period. In the choice phase, the now
familiar sample stimulus was available alongside a novel
stimulus. Between each recognition memory trial and
during the delay period within the recognition memory
trial, the models were exposed to a fixed set of 14 stimuli
to represent neutral familiar stimulus exposure, such as a
ratʼs home cage. For each test session, the learning rate, λ,
was set to 0.05 to reduce the amount of learning taking
place per iteration so that more gradual changes in the
stimulus representation were detectable.

During the choice phase, to simulate stimulus prefer-
ence, the model was programmed to “switch-if-familiar”:
for each stimulus presentation, the peak of activity in the
stimulus representation on the network layer (a value be-
tween 0 and 1) was compared with a randomly generated
number between 0 and 1, and if greater, the model would
switch to view the other stimulus available on the next
trial. The number of times the network viewed the novel
stimulus, Nnovel, and familiar stimulus, Nfamiliar, was used

Table 1. The Default Values for the Parameters Used in the SONN Model

Parameter Symbol in Equations Value Used

Minimum neighborhood size Nmin 2

Maximum neighborhood size Nmax 12

Network layer learning rate λ 0.1

Rw learning rate α 0.1

Input layer size array of 20 × 20 units

Network layer size array of 20 × 20 unitsa

Unless otherwise stated, the given values are used in all simulations.
aFor Experiment 1, 40 by 40 array was used reflecting the greater surface area in the cortex devoted to primary sensory structures relative to
higher structures.
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to calculate a discrimination ratio (Winters et al., 2004),
with a positive score indicating novelty preference:

Discrimination Ratio ¼ ðNNovel − NFamiliarÞ
NTotal

ANOVA was run with Delay as a between-subject fac-
tor on the discrimination ratios. If the main effect was
significant, the discrimination ratio for each delay was
compared with the others using multiple comparisons
of means to determine which delays were significantly
different from performance at zero delay.

Results and Discussion

ANOVA of the discrimination ratios produced by themodel
data (Figure 3) showed a significant main effect of Delay
(F(2, 12) = 9.58, p < .01) and a significant intercept
(F(1, 12) = 628.40, p < .001), indicating that the discrimi-
nation ratios were significantly different from zero—rates
of novel and familiar stimulus exploration were not equal.
Multiple comparisons of means (with Tukey adjustment)
revealed no significant difference between performance
at 0 and 90 iterations delay ( p > .05), but a significant
difference between performance at 0 and 180 iterations
delay (t(4) = 3.59, p < .01), confirming the visible trend
in the data that the delay reduced novelty preference
in the choice phase. This successful simulation of recog-

nition memory is a product of one basic feature of the
model: Familiar stimuli evoke stronger activity patterns
than novel stimuli (Figure 2). Unlike in a conventional
Kohonen network (Kohonen, 1982) where the neighbor-
hood size and learning rate systematically fall as training
progresses, the current model uses a fixed learning rate
and a neighborhood size that is driven by the peak unit re-
sponse to the current stimulus (Angelucci et al., 2002; see
Appendix, point 3). Therefore familiar stimuli are capable
of evoking stronger single unit activity because prior train-
ing has altered the weights of a subset of units to enable
them better to represent the stimulus. In turn, this results
in a minimal neighborhood size, such that the final activity
pattern is spatially limited. By using the peak strength of
responding to the current stimulus as a cue to switch explo-
ration to the alternative, a pattern of performance that grad-
ually decays with increasing delay is shown, as seen in
animals (Forwood et al., 2005; Eacott, Gaffan, & Murray,
1994; Zola-Morgan, Squire, Amaral, & Suzuki, 1989) and hu-
mans (Holdstock, Gutnikov, Gaffan, & Mayes, 2000; Buffalo,
Reber, & Squire, 1998). As with healthy animal subjects, this
novelty preference is affected by delay periods where inter-
vening stimuli are presented: Intervening stimuli modify
the weights that are well tuned to the familiar stimulus, so
reducing the strength of the activity pattern to that familiar
stimulus after the delay and thus reducing the preference
for the novel object (see also Bartko, Cowell, Winters,
Bussey, & Saksida, 2010; Cowell et al., 2006).

Figure 3. Simulation of
recognition memory. Procedure
shows the stimuli presented
to the network in one of the
six repeated sequences that
each network was exposed
to with new LC letters each
time. **In the Choice phase,
the simulation is run using a
“Switch-if-Familiar” protocol,
enabling the model itself
to assess familiarity for the
current stimulus, and if
familiar to switch to the
alternative stimulus for the
next trial. See Experiment 1
methods for details. Results
shows the calculation of a
discrimination ratio using
the number of trials of the
novel and familiar stimuli
in the choice phase and
average discrimination
ratios on the recognition
memory task, with five
networks tested per
delay. A discrimination
ratio of 0 indicates no
preference for the novel
stimulus, a positive
score indicates preference
for the novel object. Error
bars indicate SEM.
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One prominent hypothesis about how the brain detects
novelty in stimuli is that it is related to decreased re-
sponding of neurons to repeated stimuli, referred to
as “response decrement on stimulus repetition” (Fahy,
Riches, & Brown, 1993) or “repetition suppression” (Miller,
Li, & Desimone, 1991). Quantification of unit activity in
the six sample phases for each of the five simulations for
this experiment shows that repetition-induced response
decrements are taking place in the majority of units that
respond to a stimulus. When presented with a novel stim-
ulus at the beginning of the sample phase, only a small
fraction (13.6%) of units respond to the stimulus above a
level of 0.01, the rest show minimal or no activity. Of these,
when the same stimulus is presented after a further 40
presentations, 8% of units show no change greater than
±10% of their original activity level, 80.1% show a decrease
of greater than 10% and only 11.9% show an increase of
greater than 10%. Thus, most units that respond selec-
tively to a stimulus show response reduction after repeated
exposure to that stimulus, consistent with the data on
repetition-sensitive responding (Zhu & Brown, 1995; Fahy
et al., 1993; Miller et al., 1991). A minority of units show
enhancement, consistent with reports of response in-
crements alongside decrements in the temporal lobe
(Table 2 in Zhu & Brown, 1995). The single unit with
peak activity to the stimulus, which determines the prob-
ability of switching from one stimulus to the other in the
model, always increases its activity, by an average of 86%.
However, the likelihood of finding the corresponding
unit during electrophysiological experiments that tend to
sample a few hundred cells in a structure that contains
hundreds of thousands of cells is clearly small. Thus, the
current model, although it uses increased responding
and enhanced specificity of responding to a stimulus as
an indicator of stimulus familiarity, shows activity patterns
that are consistent with electrophysiological data. It also
accounts for the fact that, although the activity of most
neurons should be reduced by repeated exposure to a
stimulus, a much smaller number of neurons will show
enhanced activity (Zhu & Brown, 1995).
Another study has attempted to assess whether the

PRC is functionally organized by asking whether neurons
that respond to similar stimulus attributes cluster together
(Erickson, Jagadeesh, & Desimone, 2000). Data addressing
this issue experimentally have been obtained by looking
at correlations in the firing patterns of single neurons in
PRC during the presentation of either novel or familiar
visual stimuli (Erickson et al., 2000). When comparing
two neurons that were “near” (recorded with the same
electrode at the same cortical location and at different
cortical depths), it was found that a positive correlation
was observed, but there was a greater correlation when
viewing familiar stimuli (0.28) than when viewing novel
stimuli (0.13). This analysis can be replicated using data
from the current model by looking at the correlation
between the activity of the network units at different
stages in the lateral interaction calculations: before (aj)

and after (aj″). The current model assumes, for simplicity,
that these calculations take place within the same unit,
although this is not necessarily the case in the neocortex,
where different populations of adjacent cells may play
different roles in these calculations or be undergoing dif-
ferent stages of the calculation at the same point in time.
The “experienced” simulations presented above were
therefore exposed to a collection of 14 familiar stimuli
(the 14 neutral or home stimuli) randomly interleaved with
12 novel stimuli (each consisting of a pair of parallel bars
differing in orientation and location within the input array)
for 10 iterations following the above simulations, and the
activity values before and after lateral interaction calcula-
tions were collected. These activity values were separated
into trials of novel and familiar stimuli, and the correlation
coefficient between the average activity value before and
after lateral interaction calculations for each unit were cal-
culated for each stimulus type. The model data follow the
pattern observed in primates (Erickson et al., 2000), with
a greater correlation (r value) when viewing familiar stim-
uli (0.47 ± 0.013 SEM) than when viewing novel stimuli
(0.25 ± 0.013 SEM). As well as providing evidence that
the current model ties in with the known attributes of
recognition memory in the PRC, this analysis demonstrates
that this neuro-realistic model can be tested at a neuro-
biological level as well as at a cognitive level.

EXPERIMENT 2: SIMULATION OF
STIMULUS CATEGORIZATION

A cognitive function typically associated with the VVS and
with temporal lobe cortex, more generally, is the categori-
zation of stimuli based on perceptual dimensions (Keri,
2003), such as the dot pattern classification task (Posner,
Goldsmith, & Welton, 1967). In this task, participants
learn to sort abstract patterns of dots either using their
own subjective criteria or with the help of feedback. A
category of dot patterns is created by first creating a ran-
dom pattern of dots—the prototype—and from this, any
number of exemplars can be created by moving each
of the dots in the prototype to a greater or lesser extent
(Posner et al., 1967). The size of the distortion used can
be low or high, making exemplars with varying similarity
to the prototype and to each other. After training with
several exemplars from three categories, the subject is
required to label some of those familiar exemplars, as well
as some novel exemplars and the prototype itself, neither
of which they have seen before. One major finding from
these experiments is that subjects are more accurate at
labeling the prototype than the other equally novel ex-
emplars: the prototype effect (Posner & Keele, 1968).
The second major finding is that novel exemplars are
sorted less accurately than the familiar exemplars regard-
less of their similarity to the prototype: the exemplar
effect (Posner & Keele, 1968).

These major findings inspired the two main theories
regarding what information is stored during performance
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of the dot pattern classification task (for a review, see
Keri, 2003). The prototype account (Posner & Keele,
1968) argues that the prototype effect is evidence that
some representation of the prototype was extracted
and stored during the initial learning period in addition
to a representation of each exemplar. Others have argued
that the more accurate labeling of the prototype stimulus
does not necessitate the extraction or storage in memory
of the prototype itself and can result from generalized
labeling using what is known about the stored exemplars.
One such exemplar account, the Generalized Context
Model (Nosofsky, 1986), proposes that each exemplar is
represented and stored as a location in multidimensional
space, where the dimensions are based on stimulus at-
tributes such as color, shape, and size. Categorization of
a novel stimulus is then based on its summed distance
from and therefore its similarity to the representations
of previously seen exemplars.

A simulation of the original dot pattern classification
task used by Posner and Keele (1968) was run to assess
whether the model would demonstrate the same pat-
tern of responses to the novel stimuli: Are the exemplar
effect and the prototype effect observed? If the simula-
tions are faithful to the empirical results, examining the
mechanism responsible for the emergence of these ef-
fects in the model may provide valuable insights into
what information is used to perform the task by humans.

The model was run with the default parameters in
Table 1. The stimuli and training procedure used in this
experiment are detailed in Figure 4. Before testing, the
simulations were again exposed to the 14 neutral stimuli
used in Experiment 1. The simulations were then trained
to label four exemplars from three categories and were
finally tested on a range of novel exemplars, familiar ex-

emplars, and the prototype for each category. The stimuli
used in this task were random dot patterns consisting of
nine dots, with each dot centered on the middle of a 3 ×
3 pixel square and with a degree of blurring to the sur-
rounding pixels. Three different prototypes were created
and from each, low distortions were created using the
4 bits-per-dot distortion level (Posner et al., 1967) and
high distortions were created using the 6 bits-per-dot
distortion level (Posner et al., 1967). Ten simulations were
run, corresponding to multiple subjects.
Each network had three response units to represent

the three categories being trained. Performance of the
model in terms of concept identification was assessed
by looking at the activity level of the three response
units. To transform these activity values into a response,
a random “noise” activity value between 0 and 0.5 was
added to the activity level of each unit. The unit with
the largest total activity value was then taken to represent
the modelʼs chosen category response. For each trial, a
response was generated and depending on the stimulus
this was identified as correct or incorrect, and percent
correct over blocks of 10 trials was calculated. Percent cor-
rect in the test phase was averaged across all the networks,
and responses to the four different stimulus types were
compared using paired-sample t tests, with Bonferroni
correction for multiple comparisons. For novel random
dot patterns, there is no correct concept, so performance
cannot be meaningfully gauged.

Results and Discussion

The average performance of the 10 networks on the
24 test stimuli is shown in Figure 4. Analysis of the data
showed that both the prototype and exemplar effects

Figure 4. Simulation of
categorization. Procedure
shows the training stages
and the stimuli presented
to the network. All stimuli
are derived from three
prototype patterns, each
a random arrangement
of dots. See Experiment 2
methods for details.
**Stimuli that are derived
from one prototype are
related, although different.
They are said to be from the
same concept and require
the model to generate the
same response. Results show
performance of ten networks
on the categorization task,
showing the probability of
correctly identifying the
concept for each stimulus
type. Error bars indicate SEM.
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are seen in the model simulations, echoing the pattern of
behavior seen in humans (Knowlton & Squire, 1993). Ca-
tegorization of the prototype was significantly different
from that of the novel high distortions ( p < .001) and
from the novel low distortions ( p < .01), demonstrating
a prototype effect. Categorization of the old high distor-
tions was significantly different from that of the novel
high distortions ( p < .001), demonstrating an exemplar
effect. In addition, as seen in the human data (Posner
& Keele, 1968), the novel low distortions were categor-
ized significantly better than the novel high distortions
( p < .001).
Thus, the model can account for several key features of

human categorization performance when presented with
stimuli that closely approximate those used in behavioral
studies of categorization. How the model achieves this
is of interest. On test, the model generates a pattern of
activity across its units in response to a given stimulus
and uses this to generate a category response. Both novel
and familiar stimuli are treated equally—the primary dif-
ference being that the pattern of activity generated in
response to a novel stimulus will be weak and distributed
across many units, whereas that for a familiar stimulus
will be stronger and involve fewer units as a direct con-
sequence of learning and some more active units out-
competing their neighbors (Figure 2). The extent to
which a clear category is given in response to this pattern
will depend on which units are active and whether they
are strongly associated with only one of the three trained
categories. Thus, novel exemplars are less able to gen-
erate the correct concept responses than familiar ex-
emplars due to a weak pattern of activity but are able
to generate above chance performance (33.3%) due to
a similar pattern of activity to that evoked by the trained
exemplars. In the isolated case of the prototype, this
weak distributed pattern of activity is unusual in that it
overlaps to a very large extent with the units active for
all of the trained exemplars and is therefore better able
to generate a correct concept response than the familiar
exemplars in spite of its novelty and weak distributed
activity. Critically, this performance is achieved using
the same computational algorithm that was used to
simulate recognition memory in Experiment 1 (and to
simulate further tasks in Experiments 3 and 4).
At the moment, there is not a clear consensus in the

literature regarding the role of teaching signals in category
learning. The most well-known computational models of
human categorization (e.g., ALCOVE, Kruschke, 1992; the
generalized context model, Nosofsky & Palmeri, 1997; the
Rational model, Anderson, 1991; and connectionist ap-
proaches, Rogers & McClelland, 2004) have mainly been
explored in the context of supervised learning. However,
there also exist many unsupervised models of category
learning, in which no explicit teaching signals are pro-
vided, but instead items are grouped into categories
based on their observed properties, and then these cate-
gories are used to make inferences about a new itemʼs

class membership. Indeed, unsupervised competitive
learning or Kohonen networks are quite good at solving
categorization problems as long as the data clusters are
relatively easily separable (Rumelhart & Zipser, 1986;
Kohonen, 1982; Grossberg, 1976a, 1976b). Our model
falls into this latter camp and, in principle, should be able
to perform the same types of classification problems as
other competitive or Kohonen learning models. The sort
of categorization that our model performs may well be
somewhat different from other, semantically richer forms
of categorization: As mentioned previously, unsupervised
learning may be sufficient to solve categorization problems
in which the data are easily separable, but a teaching signal
may become necessary as the classification becomes more
difficult (e.g., see Kohonenʼs LVQ2.1 algorithm; Kohonen,
1990). The present work therefore does not represent a
repudiation of extant work on categorization that incor-
porates a teaching signal but is consistent with extant
unsupervised models that indicate that certain types of
categorization problem are solvable with an unsupervised
network.

Interestingly, recent work exploring the role of teach-
ing signals on category learning in humans suggests that
teaching signals are not as essential as has been tradition-
ally assumed (e.g., Kalish, Rogers, Lang, & Zhu, 2011). In
these studies, it was found that unlabeled experiences,
where no category information is present, can alter beliefs
about category structure, but only if these unlabeled trials
are drawn from a shifted distribution of categories to the
original trained trials. Such a finding highlights the extent
to which category learning may not require any teaching
signals to shape internal representations and is consis-
tent with our model, in which learning takes place in all
trials, regardless of category information, to alter the land-
scape of stimulus representation within the self-organizing
network.

EXPERIMENT 3: SIMULATION OF
PERCEPTUAL LEARNING

Perceptual learning is thought to be a form of nondeclara-
tive implicit learning (Schacter, Chiu, & Ochsner, 1993).
It was first shown with rats learning to discriminate two
similar geometric figures (Gibson & Walk, 1956), and has
subsequently been demonstrated in humans and other
species with a range of stimulus types (for a review, see
Gilbert et al., 2001). The basic phenomenon is that pre-
exposure to the stimuli enables faster subsequent learning
of different responses to those stimuli, but this occurs
only for difficult discriminations between very similar
stimuli (Oswalt, 1972).

An initial explanation for this phenomenon attributed
it to an increased ability to discriminate more properties
of the stimuli (Gibson & Gibson, 1955), making an in-
dividual more sensitive to the differences that existed
between the stimuli. Although alternative accounts exist
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(McLaren, Kaye, & Mackintosh, 1989), some recent the-
oretical models are sympathetic with Gibsonʼs idea of
changes taking place in the stimulus representation
(Saksida, 1999; Gaffan, 1996): A SOFM exposed to two
similar stimuli learns to devote a larger number of units
to representing those stimuli and so reduces the overlap
in the stimulus representation and enables faster dis-
crimination learning to take place when compared with
a non-preexposed group (Saksida, 1999).

The model was run with the default parameters in
Table 1. The stimuli and training procedure used in this
experiment are detailed in Figure 5. Ten simulations
were run to replicate multiple subjects, with five being
run on a perceptual learning task in which networks re-
ceived preexposure to the stimuli before acquisition of
the discrimination problem and five on a control task
in which networks were trained on the discrimination
problem with no prior stimulus exposure. Once again
training began with exposure for all simulations to the
14 neutral stimuli. The pre-exposure simulations were
then presented with the two test stimuli for a fixed
number of trials before all simulations were trained on
a discrimination between the two test stimuli.

Each network had two response units. The perfor-
mance of the model in terms of expectation of reward
was assessed by looking at the activity level of the two
response units, representing expectation of the presence
or absence of reward. To transform these activity values
into a probability of responding, a random “noise” activity
value between 0 and 0.5 was added to the activity level
of each unit. The unit with the largest total activity value
was then taken to represent the modelʼs action, either
expecting or not expecting reward. For each trial, the
response was scored as correct or incorrect, depending
on the stimulus. This, in turn, was used to calculate a per-

cent correct over blocks of 10 trials, which was averaged
across all preexposure networks and all non-pre-exposure
networks and analyzed by ANOVA.

Results and Discussion

ANOVA of the percent correct performance (Figure 5)
showed a significant main effect of Block (F(9, 72) =
29.20, p < .001), a significant main effect of Pre-exposure
Group (F(1, 8) = 17.33, p < .01), and a significant inter-
action between Test Block and Pre-exposure Group (F(9,
72) = 6.28, p < .001). These results demonstrate that all
networks were able to improve discrimination perfor-
mance over the series of 100 trials. However, there was
a significant difference in discrimination performance fol-
lowing pre-exposure when compared with performance
without pre-exposure. A post hoc analysis of the inter-
action between the block of testing and the exposure
group (comparison of means with Bonferroni-corrected
p values) showed that the exposure conditions differed
significantly only in Blocks 2, 3, 4, 5, and 6 (all p <
.001). Thus networks in the preexposure and naive condi-
tions showed the same initial discrimination performance
at the start of testing, reached the same asymptotic level
of performance at the end of testing but showed signifi-
cantly different rates of acquisition.
This classic observation of perceptual learning is ex-

plained by the model recruiting more units to represent
the stimuli during exposure and is in line with other mod-
els of the phenomenon (Saksida, 1999). This happens be-
cause similar stimuli generate similar patterns of activity in
the model and with repeated presentation two major
changes occur in these patterns of activity: the peak activity
value increases as these active units in the model update
their weights to better reflect the stimulus, and the activity

Figure 5. Simulation of
perceptual learning. Procedure
shows the training stages and
the stimuli presented to the
network. Results show the
average performance of all
networks on the stimulus
discrimination over 10 blocks
of 10 iterations (a total of
100 iterations) both with
(diamonds) and without
(crosses) preexposure.
Chance performance is at
50%. Error bars indicate SEM.
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patterns for the two stimuli overlap less. Having well-
separated patterns of activity representing the stimuli at
the beginning of the discrimination task clearly facilitates
learning an association of only one stimulus with reward.
Without preexposure, the separation must occur simul-
taneously with the stimulus–reward learning, slowing
the learning of the task. The current model therefore
appeals to a nonassociative perceptual account of percep-
tual learning, in line with an existing account of this task
(Saksida, 1999).

EXPERIMENT 4: SIMULATION
OF V1 RETINOTOPY AND
ORIENTATION SELECTIVITY

Beginning with the classic work of Hubel and Wiesel
(1962, 1963), the selective response properties of cells
in primary visual cortex, V1, have been extensively re-
searched and the precise topography has been mapped.
Cells in V1 are retinotopically mapped (Tootell et al.,
1988; Talbot & Marshall, 1941) and are selectively respon-
sive to the orientation of a line stimulus in space, direc-
tion of motion, color and which eye is being stimulated
(Tootell et al., 1988; Hubel & Wiesel, 1962, 1965, 1972).
More recently, the orientation specificity of V1 cells has
been shown to occur in a spatial pattern across the sur-
face of the cortex, referred to as “pin wheels” or singula-
rities (Bartfeld & Grinvald, 1992; Blasdel & Salama, 1986).
In addition to the patterns of topographic orientation

selectivity that develop during infancy, the plasticity of
topographic maps in adulthood has also been dem-
onstrated following prolonged exposure to a limited range
of stimuli ( Jenkins, Merzenich, Ochs, Allard, & Guic-
Robles, 1990). This finding demonstrates that the mecha-
nisms driving changes in topographic mapping are not
restricted to early life but are present into adulthood in
primary sensory cortex and, therefore, may have mecha-
nistic similarities with learning mechanisms that take place
in other cortical structures in adulthood.
Manymodels have provided excellent and detailed simu-

lations of V1 development (Goodhill & Richards, 1999;
Barrow, Bray, & Budd, 1996; Swindale, 1996; Goodhill,
1993; Obermayer, Blasdel, & Schulten, 1992; Durbin &
Mitchison, 1990; Willshaw & von der Malsburg, 1976,
1979). We used the current model—which we have already
used to simulate high-level processes such as categoriza-
tion and perceptual learning—to simulate the develop-
ment of retinotopy and the subsequent plasticity of the
retinotopy due to overexposure to a restricted set of stim-
uli. We also simulated the development of orientation
selectivity and assessed the resulting spatial pattern.
The initial weights between the input space and the

network layer were random apart from a small bias repli-
cating biases used by other models of V1 (Goodhill, 1993;
Willshaw & von der Malsburg, 1979) designed to mimic
the resultant effects of the chemical axonal path-finding

mechanisms. Specifically, the weight value for each con-
nection, ranging from 0 to 1, was made up of two equally
weighted terms—the normalized Cartesian distance be-
tween the location within the input layer of the input unit
and the location within the network layer of the network
unit and a random variable. The model was run with the
default parameters from Table 1 with one exception: A
larger network layer size of 40 × 40 units was used to
better visualize the emerging representations. The stim-
uli and training procedure used in this experiment are
detailed in Figures 6 and 7. Two models were run, one
to simulate topography generation and plasticity in adult-
hood (Figure 6) and the other to simulate orientation
selectivity (Figure 7).

We visually examined the nature of the modelʼs pat-
tern development. Topography can be observed by plot-
ting each network unitʼs center of mass in the input
space; that is, the location in the input with the strongest
weights on average to that network unit (Goodhill, 1993).
In the case of orientation selectivity, a number of features
are consistently observed (Swindale, 1996): (1) the peri-
odicity of the pattern, (2) linear zones in the pattern
where regions of iso-orientation lie in parallel to each
other, (3) saddle points that are both a local peak in
orientation in one direction and a local valley in the or-
thogonal direction, (4) singularities at which a full set
of orientation domains meet at a point, and (5) frac-
tures where there is a larger step change in orienta-
tion. The presence or absence of these features will be
discussed.

Results and Discussion

The main finding of this simulation is that the model de-
velops topographic mapping in a similar manner to
that of primary visual cortex. For the first 800 iterations
the network was presented with stimuli extending over
the entire input space; it can be seen in Figure 6 that the
units in the network represent the entirety of input space
with a roughly even distribution. For the last 200 iterations
of the simulation (800–1000), the network was presented
with stimuli that occurred only in the top left-hand corner
of the input space. Following this phase, the network
units are no longer evenly distributed over input space—
adjacent units have been recruited to represent more
densely the space where this restricted stimulus set is lo-
cated. This finding of topography reflects a fundamental
property of Kohonen networks (Kohonen, 1984). The
additional finding of recruitment of additional units to over-
represented stimulus–space also follows from the self-
organizing nature of this and other similar models: because
small amounts of learning occur in each trial, any stimulus
that is seen in a greater number of trials can evoke larger
levels of learning and pull in more units to represent it
better. This second finding is also consistent with the em-
pirical finding that, in primates, repeated stimulation to a
restricted location in input space causes more cortical cells
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to come to represent that stimulated area ( Jenkins et al.,
1990).

The model demonstrates a good approximation to the
pattern of orientation selectivity seen in V1 (Figure 7).
Of the five key features of orientation selectivity patterns
seen empirically (Swindale, 1996), four have been high-
lighted in Figure 7. These are linear zones, saddle points,
singularities and fracture points. The last feature of period-
icity cannot readily be highlighted, but it is evident from
viewing the figure that the different “stripes” of orientation
selectivity are of roughly equal width across the network.
Thus, all of the key features of V1 orientation selectivity
are seen in the present simulation results.

The findings that topographic mapping and orien-
tation selectivity can be simulated by the present self-

organizing model show that it is able to simulate some
fundamental features of V1 developmental learning. How-
ever, there is nothing in the design of the model that re-
produces any aspect of cortical circuitry that is unique to
V1. This finding, therefore, suggests that the development
of the retinotopic mapping of V1 is less determined by
any of the unique cytoarchitecture that distinguishes V1
from other neocortical areas, but rather by the inputs
that V1 receives. This idea has already been empirically
demonstrated: retinal projections that target V1 can be
re-routed into primary auditory cortex by deafferentation
of the thalamic medial geniculate nucleus shortly after
birth in the ferret. When the adult primary auditory cortex
is then studied, it is found to contain many of the features
normally observed in V1 and also seen in the simulations

Figure 6. Simulation of
topography in V1. Procedure
shows the stimuli presented to
the network, 800 iterations of
blobs followed by 200 iterations
of squares. Results show the
center of mass of the weights
as training progresses. The
network starts with an initial
small bias in the weights,
demonstrated in the small
amount of spread already
present after 10 iterations.
For the first 800 iterations the
weights of the model modify
so that the units acquire a
center of mass reflecting
the location of the stimuli—
covering the entire input
space. By 800 iterations, the
network is topographically
mapped. For the last 200
iterations the weights of the
model learn to represent a
fixed set of 30 stimuli in only
the top left quadrant of input
space. The units representing
this location in space have
pulled together, with more
units being recruited from
adjacent locations in space
to better represent the
restricted set of stimuli.
By 1000 iterations, the grid
pattern of the locations where
each stimulus was is visible
in the center of mass of the
weights.

1818 Journal of Cognitive Neuroscience Volume 24, Number 9



presented here, including orientation singularities and
saddle points (Sharma, Angelucci, & Sur, 2000). This would
support our claim that the pattern of orientation selectivity
observed may be produced by a learning algorithm that
is generic to many areas of neocortex.

GENERAL DISCUSSION

The brain is capable of many feats of visual processing,
including functions as diverse as visual priming; perceptual
learning; simultaneous discrimination of visual stimuli;
object identification; and recognition memory for objects,
faces, scenes, and even simple patterns. Under the tradi-
tional view of visual cognition, many of these functions
are seen as being underpinned by separate regions of the
brain. For example, visual priming is typically assigned to
posterior VVS whereas recognition memory is localized
to medial-temporal lobe structures (Squire, Stark, & Clark,
2004; Tulving & Schacter, 1990). Furthermore, low-level
functions such as the development of visual cortex are
typically studied completely separately from higher-level
functions such as recognition memory, and it is rare to
consider such phenomena together.
In contrast, under the representational–hierarchical

account, the VVS is thought of as a functional continuum:
Any region can potentially contribute to any of the fore-
going functions, whether “perceptual” or “mnemonic,”

to the extent that performing the function requires the
kinds of stimulus representation residing in that brain
region. Because the complexity of stimulus represen-
tations increases continuously from simple features in
posterior VVS to complex feature conjunctions in ante-
rior regions, cognitive function under this account varies
continuously from posterior to anterior regions. All tasks
requiring representations of simple visual features—
whether for discrimination on the basis of simulta-
neously presented features (in a perceptual task) or
discrimination on the basis of familiarity (in a recogni-
tion memory task)—will depend on regions in posterior
VVS, and all tasks requiring discrimination at the level of
whole objects will depend on anterior regions. Under
the representational–hierarchical account, the contribu-
tion of any region to visual cognition is determined by
the stimulus inputs received by the region and the con-
sequent nature of the stimulus representations it contains.

If different regions in VVS each contribute to cognition
in the same way, with their function modified only by the
particular flavor of stimulus representation that they con-
tain, an important implication is that different regions
may be using the same cortical mechanism (simply oper-
ating on different representations) for any given task.
That is, these regions might be neurocomputationally
homogenous, but by virtue of the different stimulus inputs
they receive, give the appearance of possessing different

Figure 7. Simulation of
orientation selectivity in V1.
Procedure shows the stimuli
presented to the network for
10,000 iterations. Results shows
the orientation selectivity of
each unit on the network layer
after 10,000 iterations. The
four features present in the
representation are highlighted
and labeled.
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specialized cognitive mechanisms. This idea, although
advocated by us on numerous occasions, has never previ-
ously been formally computationally tested.

In this study, we developed a neurocomputationally
plausible model of visual cortex, consisting of a single
layer of stimulus representations that develop through
an unsupervised, self-organizing learning algorithm in a
manner strongly influenced by the inputs that the net-
work receives. Using the same parameters and learning
algorithm throughout, we successfully simulated four
tasks with known behavioral or neural outcomes: stimu-
lus recognition memory, categorization of dot patterns,
perceptual learning with dot patterns, and the develop-
ment of orientation-selective topographic features in
visual cortex. These four phenomena are associated with
distinct regions of the ventral visual-perirhinal stream,
namely, PRC (Squire et al., 2007; Murray et al., 2005;
Winters et al., 2004), inferior temporal cortex (Keri,
2003), extrastriate cortex (Gilbert et al., 2001), and primary
visual cortex (Bartfeld & Grinvald, 1992; Blasdel & Salama,
1986), respectively. For stimulus recognition memory we
found, in line with the literature, that the model showed
delay dependent performance that was sensitive to inter-
ference without showing catastrophic losses (Forwood
et al., 2005; Winters et al., 2004), as well as demonstrating
repetition-induced response reductions (Zhu & Brown,
1995) in the majority of network units and functional
organization (Erickson et al., 2000). In the categorization
learning task, the model was able to reproduce the exem-
plar effect and the prototype effect (Posner & Keele, 1968).
In a simulation of perceptual learning, the model demon-
strated an advantage in acquiring a visual discrimination
problem following simple preexposure to the stimuli
subsequently used in the task, in line with many studies
of animal behavior (Gilbert et al., 2001; Gibson & Walk,
1956). Finally, the same model, when trained with very
simple oriented line stimuli, reproduced all the major
features of V1 orientation-selective topography observed
from electrophysiological ( Jenkins et al., 1990; Hubel
& Wiesel, 1962) and cortical imaging studies (Bartfeld
&Grinvald, 1992; Blasdel & Salama, 1986), such as plasticity
of topography, periodicity of the pattern, linear zones,
saddle points, singularities, and fractures (Swindale, 1996).

The principal aim of this study was to test the idea that
stimulus inputs and task requirements are sufficient to
drive the emergence of distinct regions in VVS that appear
to be “specialized” for solving a particular task, if we
assume the presence of a common neurocomputational
algorithm throughout the VVS. We found that a single,
unified cortical algorithm was able to simulate a diverse
set of phenomena, traditionally associated with quite dis-
tinct areas of VVS. This contributes an important demon-
stration: the apparent specialization of cognitive function
in anatomically distinct regions of visual cortex might
simply reflect differences in the stimulus inputs to—and
therefore the representational content of—those regions.
Accordingly, when drawing inferences about the cognitive

specialization of brain regions from either imaging studies
or neuropsychological experiments, it is important to
consider the representational requirements imposed by
the stimuli and the instructions used in the task (Cowell
et al., 2010).
Moreover, these simulations indicate that a unified

cortical learning mechanism can construct the various
layers in the representational hierarchy that we have
hitherto simply assumed (Cowell et al., 2006, 2010;
Bussey & Saksida, 2002). In previous simulations, we
assumed a hierarchy by postulating multiple network
layers across which stimulus representations increase in
complexity; with the present model, we simulated func-
tions previously associated with each of the separate
layers, using the same layer of stimulus representations
and changing only the stimulus inputs and the task struc-
ture. Interestingly, there are inherent differences be-
tween the stimuli used across the different tasks. For
example, within-category similarity levels are much high-
er for simple line stimuli than for complex letter stimuli,
because each simple line item contains fewer features;
by possessing a greater number of stimulus features,
the complex letters effectively reside in a much higher-
dimensional space. These properties of the input stimuli
influence the stimulus representations that emerge in the
network, with the effect that, for each task, the single
network layer mimics whichever layer in the hierarchy
of our previous models was important for the task. In
other words, we allowed the stimulus inputs to the single
network layer to drive the emergence of stimulus repre-
sentations at the appropriate level of complexity, with no
assumptions about what that complexity might be or
where in the brain it should be found. This provides
a very pure test of the ability of stimulus inputs and task
requirements to drive the emergence of appropriate rep-
resentations. The present simulations exploit these
diverse representational properties to account for ap-
parent differences in cognitive function across different
regions of the VVS, without assuming distinct neural
mechanisms (cf. Cowell et al., 2009; Zaki & Nosofsky,
2001; Plaut, 1995).
The view that much of neocortex might function in

the same manner is not new; it has a long history going
back at least as far as the work of Lashley and his ideas
of cortical mass action (Lashley, 1950) and has modern
proponents in the work of Fuster (2006, 2009), Foster
and Jelicic (1999), and Goldstone and Barsalou (1998).
Fuster (2009) has proposed a new paradigm of cortical
memory, where memory cognits are composed of dis-
tributed patterns of activity spanning multiple cortical
areas using both bottom–up and feedback connectivity.
This idea is well supported with empirical evidence from
imaging and single-unit recording experiments but does
not attempt to expand upon what computations may be
happening within each cortical area. The current work
does this and is broadly in line with Fusterʼs paradigm.
It also contributes to the debate on the localization and
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specialization of cognitive function in the cortex by pre-
senting an account of how the cortex might function in
a computationally uniform manner, while giving the ap-
pearance of cognitive modularity (see also Op de Beeck
et al., 2008; Cosmides & Tooby, 1994).
In summary, this study tests the idea that the simple

existence of different levels of representational com-
plexity in different parts of the VVS is sufficient to drive
the emergence of distinct regions that appear to be spe-
cialized for solving a particular task, when a common
neurocomputational learning algorithm is assumed across
all regions. Of course, the model used here is highly
simplified, and we are not claiming that the algorithm
and circuitry used here explain everything about the func-
tioning of the cortex. Different neurotransmitter activity,
cell types, etc., could and almost certainly do modulate
the functions of different cortical regions, endowing them
with at least somewhat different properties. However, what
we have demonstrated here is that it is not necessary to
invoke such differences to understand how different cortical
regions can appear to be specialized for what are considered
to be very different psychological functions. Potentially
much more important than these putative differences are
the commonalities across regions, and by focusing on the
differences we risk missing the wood for the trees.

APPENDIX 1: COMPUTATIONAL METHODS

The model used in the current article is based on a
Kohonen SOFM (Kohonen, 1984); as in the SOFM, the
main computations in the model are executed within a
single layer of heavily interconnected units. All units in
this main layer receive a weighted input from all of the
units in an input array and all send projections to the
same target outside the layer (Figure 1). As is the case
in the cortex, all the units in the main layer engage in
lateral excitation and inhibition with their neighbors
within the main layer, in other words there are weighted
connections between all the units in the main layer. The
input–main layer connections change as a function of a
learning rule, so that they are updated from one trial
to the next as a function of input activity, unit activity,
and current weight. The connections within the main
layer emulate the lateral connectivity within neocortex:
they follow a Gaussian profile, such that close neighbors
have stronger connectivity than distance neighbors
(Thomson & Deuchars, 1997); the profile of the inhibi-
tory connections is three-fold wider than that of the excit-
atory connections (Angelucci et al., 2002), and as with
extraclassical receptive fields, the width of the Gaussian
profile is dynamic, being small when the stimulus is opti-
mal and evokes a high peak activity level and larger when a
less optimal stimulus is presented (Angelucci et al., 2002).
Each unit in the model layer has an activation value that

represents a firing rate, and spike-timing is not instantiated
in this model. Activation values for each computational
unit in the current model are limited to within an upper

and lower bound: The lower bound, 0, represents the
spontaneous noise level of the neuron, and the upper
bound, 1, represents the saturation firing rate of the neu-
ron. If the activity value for any unit is calculated to be
outside this range, its value is set to 0 or 1 as appropriate.
In practice only a small proportion of units are affected
by this threshold, so these are not binary units.

The input to the model is a two-dimensional array of
units, each one of which can have an activity value of
between 0 and 1. In the current model, we use realistic
two-dimensional images of visual stimuli—gray-scale rep-
resentations of lines, shapes, and objects within a 20 ×
20 pixel input space—which are, where possible, the exact
same stimuli used to collect the original behavioral data.

A single trial proceeds as follows:

1. A stimulus is selected according to the protocol for
each task. This is presented to the network layer of
units and the resulting activity, aj, of each unit in the
network layer, j, is calculated using

aj ¼
X
i

ai � wijP
i
ai

ð1Þ

where ai is the activity for each input unit i and wij is
the weight between input unit i and network unit j.

2. To reduce the levels of activity within the network
layer and the number of units able to engage in com-
petition, the activity of most units is reduced to close
to 0 and the peak is reduced by the mean activity
across the layer, as specified by Equation 2:

a0
j ¼ aj � aj

maxðajÞ
� �2

−aj a0
j ¼

1 if a0
j > 1

0 if a0
j < 0

� �
ð2Þ

3. The neighborhood size Nt for the current trial, t,
is then calculated using the new peak activity, max
(aj

0). This value lies between the maximal neighbor-
hood value, Nnet, for very weak peak activity and the
minimal neighborhood value, Nmin, for peak activity
levels of 1. This range is a constant parameter of the
model. The value of Nt, determines the inhibitory
and excitatory neighborhood sizes, Nimn, the inhib-
itory neighborhood size, is taken as three times larger
than the excitatory neighborhood size, Nem, in line
with the relative sizes of the effects seen (Angelucci
et al., 2002).

Nt ¼ Nmin þ ðNnet − NminÞ � e
−

maxða0
j
Þ

0:25

� �
Net ¼ Nt

Nit ¼ 3 � Nt

ð3Þ

4. Both the excitatory and inhibitory lateral interaction
between each unit and every other unit in the layer
are modeled using a matrix of lateral weights. These
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weights are defined using a Gaussian profile, as in (4)
where xjk is the Cartesian distance between the two
network units j and k and the neighborhood sizes
are as calculated each trial (3).

wejk ¼ e−
xjk
Netð Þ2 wijk ¼ e−

xjk
Nitð Þ2 ð4Þ

Using these weights, the activity of each unit in the
layer, aj″, is then recalculated based on the lateral
excitatory and inhibitory weights calculated in (4) and
the activity of all the other units in the layer ak

0 based
on the activity values for each unit generated by (2).

aj″ ¼ maxða0
j � wejkÞ �

maxða0
j � wejkÞ

maxða0
j � wijkÞ

 !2

aj″ ¼ 1 if aj″ > 1
0 if aj″ < 0

� �
ð5Þ

The activity value for each unit, aj″, provides the main
output value of the network unit and is used to deter-
mine the amount of learning that can take place at
each unit in the network.

5. The learning rule used on the input to network layer
weights is a form of Hebbian learning. It should be
noted that this equation closely resembles Ojaʼs learn-
ing rule, a more stable modification of the standard
Hebbian Rule and an algorithm for principal compo-
nents analysis (Oja, 1982).

wijðt þ 1Þ ¼ wijðtÞ þ aj″ � λ � ðai − wijðtÞÞ ð5Þ

According to this equation, large changes in a weight
can only take place when the network unit is active.
The direction of the weight change is determined by
the difference term ai − wij(t): It is positive if the in-
put unit activity (ai) is greater than the current weight
(wij(t)), and negative if the current weight (wij(t))
is greater than the input activity (ai). λ represents a
learning rate parameter that in the current simulations
remains constant.

6. Some of the simulations require the model to learn
associations between specific stimuli and a response or
outcome. To simulate this, the network layer sends an
output to a stimulus–reward associative learning me-
chanism. The main layer provides a pattern of activity
which can engage in error correction learning to associ-
ate the stimulus, as represented by the network layer,
with a number of response units using a Rescorla–
Wagner or delta learning rule (Rescorla & Wagner,
1972; Widrow & Hoff, 1960). In this learning rule (Equa-
tion 7), it is the difference between the presence or ab-
sence of reward, R, and the expectation of reward
signaled by the activity of the response unit, ar, that

drives weight changes and hence stimulus–response
learning. An additional variable in the equation, α, repre-
sents a learning rate parameter that determines how
quickly learning takes place, and in the following simu-
lations remains constant.

ar ¼
X
j

wmr � aj″P
j
aj″

ar ¼ 1 if ar > 1
0 if ar < 0

� �
ð6Þ

wjrðt þ 1Þ ¼ wjrðtÞ þ aj″ � α � ðR − arÞ ð7Þ

The default parameters used in all the simulations
presented here are shown in Table 1. Where this is not
the case, the parameters used and the justification for
the change are described. The overall mechanism of the
model and how it deals with repeated stimuli in a dynamic
sense is illustrated in Figure 2.
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