
FULL TITLE
ASP Conference Series, Vol. **VOLUME**, **YEAR OF PUBLICATION**
NAMES OF EDITORS

Visualization of Scalar Adaptive Mesh Refinement Data

Gunther H. Weber1, Vincent E. Beckner1, Hank Childs2, Terry J.
Ligocki1, Mark C. Miller2, Brian Van Straalen1 and E. Wes Bethel1

1Computational Research Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
2Computing Applications and Research Department, Lawrence
Livermore National Laboratory, Box 808, L-557, Livermore, CA 94551,
USA

Abstract. Adaptive Mesh Refinement (AMR) is a highly effective computa-
tion method for simulations that span a large range of spatiotemporal scales,
such as astrophysical simulations, which must accommodate ranges from inter-
stellar to sub-planetary. Most mainstream visualization tools still lack support
for AMR grids as a first class data type and AMR code teams use custom
built applications for AMR visualization. The Department of Energy’s (DOE’s)
Science Discovery through Advanced Computing (SciDAC) Visualization and
Analytics Center for Enabling Technologies (VACET) is currently working on
extending VisIt, which is an open source visualization tool that accommodates
AMR as a first-class data type. These efforts will bridge the gap between general-
purpose visualization applications and highly specialized AMR visual analysis
applications. Here, we give an overview of the state of the art in AMR scalar
data visualization research.

1. Introduction

Adaptive Mesh Refinement (AMR) techniques combine the compact, implicitly
specified structure of regular, rectilinear grids with the adaptivity to changes
in scale of unstructured grids. In this paper, we focus on block-structured,
h-adaptive (i.e., methods that produce dense grids in area with a large compu-
tational error) AMR techniques that represent the computational domain with
a set of nested rectilinear grids or patches at increasing resolutions (Berger &
Colella 1989) as opposed to tree-based refinement schemes such as the PARA-
MESH approach MacNeice et al. (2000). Figure 1. shows a simple example.
Four regular patches are organized in three hierarchy levels. Grids belonging to
a finer level are always completely enclosed by grids of the coarser levels.

Handling AMR data during visualization is challenging, since coarser in-
formation in regions covered by finer patches is superseded and replaced with
information from these finer patches. During visualization it becomes necessary
to manage selection of which resolutions are being used to avoid using conflict-
ing data representations in overlapping regions. Furthermore, it is difficult to
avoid discontinuities at level boundaries, which, if not properly handled, lead to
visible artifacts in visualizations.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357547206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Weber et al.

Figure 1. A simple Berger-Collela AMR hierarchy consisting of four patches
organized in three hierarchy levels.

While AMR data can be node-centered, the majority of data sets we are
currently visualizing use cell-centered values. This fact poses an additional chal-
lenge since many visualization algorithms expect data in a node centered format.
Despite the growing popularity of AMR simulations, little research has been done
in effective visualization of AMR data. Furthermore, there is a lack of tools that
treat AMR as first-class data type. In this paper we give an overview of the
current state of visualization techniques for scalar AMR data with an emphasis
on isosurface extraction.

2. Visualization Techniques for Scalar Data

2.1. Overview

Scalar quantities describe a variety of important physical characteristics such as
temperature or pressure. Most simulations, including AMR simulations, include
several scalar variables. Commonly used scalar data visualization techniques
include false color/pseudocolor plots in conjunction with clipping or slicing, iso-
surface extraction, and direct volume rendering.

Pseudocolor plots use a color map to assign colors to scalar values and
visualize a scalar field by coloring each position in the domain accordingly. A
prominent example for this plot type are temperature maps in weather forecasts
where colors depict temperature ranges or amount of precipitation. In three
dimensions (3D), pseudocolor plots are commonly utilized in conjunction with
slicing, where the plot is restricted to a planar slice through the data set, or
clipping, i.e., cutting away part of the geometry, to reveal the interior of the
domain. Spreadsheets, which are somewhat related to slicing planes, provide
direct access to data value and are valuable for debugging and extracting data
for further analysis with a wider range of tools such as Matlab or paper and
pencil.

Visualization of Scalar Adaptive Mesh Refinement Data 3

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

Figure 2. All 256 entries for the LUT used by MC can be constructed from
the shown 15 base cases by using rotational symmetry and inversion. The
vertex configuration, i.e, which vertices are inside (shown as black spheres in
the figure) and outside (shown as white spheres in the figure) the isosurface,
determines alone what triangulation is used by the algorithm.

Isosurface extraction generalizes the concept of contour lines in topographic
maps to three dimensions. A user specifies an isovalue, and a resulting isosurface
is computed, which connects all locations in the domain where the scalar field
assumes this isovalue.

Direct volume rendering extends the concept of pseudocolor plots by allow-
ing a user to specify transparency as well as color information for scalar values.
This makes it possible to hide entire “uninteresting” value ranges when gener-
ating an image. Rendered images depend on the choice of a light model. The
commonly used emission and absorption model (Max 1995) assumes that the
volume is filled with particles that emit light with a color as specified by the
color map and absorb light according to the additional transparency informa-
tion. Another light model approximates uses the gradient of a scalar variable as
normal to approximate the appearance of surfaces in the volume (Levoy 1988).
Volume rendering is very flexible in the range of achievable visualizations and
can simulate both pseudocolor plots and isosurfaces. However, it is computa-
tionally more expensive than these techniques. Furthermore, unlike isosurface
extraction, it does not yield an explicit representation of a surface to be used
for further processing and analysis.

2.2. Isosurface Extraction

Lorensen & Cline (1987) introduced the marching cubes (MC) algorithm for
isosurface extraction, which has become the de-facto method for isosurface ex-
traction in scientific visualization. MC operates on node centered data given
on regular rectilinear grid. MC “marches” all cells one-by-one and constructs a
triangulation approximating the isosurface in each individual “cube” cell. This
construction is performed locally and only depends on the values at the vertices
of the current cell.

4 Weber et al.

(a) (b)

Figure 3. The marching cubes algorithm approximates an isosurface by a
triangulation, which only takes values at cell vertices and edges into account.

(a) (b) (c) (d)

Figure 4. An ambiguous face configuration consists of vertices alternating
between being inside and outside of the isosurface (a). Three different contour
topologies on that face are possible: separating vertices outside the contour
(b), separating vertices inside the contour (c), or separating all vertices (d)
resulting in a non-manifold contour.

An important property of the MC methods, which leads to problems for
multiresolution data, is that it only considers function behavior at grid vertices
and along cell edges when constructing an isosurface. The algorithm classifies
each vertex of a given cell as either lying inside or outside the isosurface. As-
suming that the same inside/outside classification of vertices will always use the
same triangulation of the isosurface within a cell, MC stores these triangula-
tions in a lookup table (LUT). Using rotational symmetry and the assumption
that inverting inside and outside classification yields the same triangulation, it
is possible to reduce the 256 entries of this LUT to the fifteen base cases shown
in Figure 2.

All triangulations stored in the LUT reference intersection points along the
cell’s edges as vertices of the produced triangulation. These intersection points
are computed assuming the functions varies linearly along an edge. Figure 3
illustrates the effects of this approximation. The curved isosurface within the
cell show in Figure 3(a), for example, is approximated with a single triangle.
Consequently, the intersection curves along individual cell faces are also approx-
imated with a single line each. As shown later in Section 4. this property can
contribute to cracks in isosurfaces extracted from multi-resolution data.

Another problem in the original MC algorithm, which was originally pointed
out by Dürst (1988), can lead to cracks in the isosurface, even if one considers
only a single hierarchy level. For certain configurations, contour topology on a
cell face (or inside a cell) is not determined uniquely by the vertex vertex config-
uration. Faces with vertices whose classifications alternate between inside and
outside the isosurface cause ambiguity problems, see Figure 4. Three cases are
possible: Contours can separate vertices outside the isosurface, see Figure 4(b),

Visualization of Scalar Adaptive Mesh Refinement Data 5

6 3

Figure 5. Adjacent cell configuration resulting in a crack in an isosurface
extracted by an unmodified MC approach. Since the two triangles in the case
3 cube separate vertices outside the isosurface, the “hole” in the isosurface on
the right side of the case 6 cell is not closed up properly.

vertices inside the isosurface, see Figure 4(c), or all vertices resulting in a non-
manifold contour, see Figure 4(d).

All basis configurations of Lorensen and Cline’s paper separate the vertices
of an ambiguous face that are inside the isosurface. An inverse case (i.e., a
case with inverted inside and outside vertex classifications) uses the same tri-
angulation. Consequently, triangulations produced by inverting a base case will
separate vertices outside the isosurface. If such a cell and a cell whose tri-
angulation is derived from a basis configuration without using inversion share
an ambiguous face, a crack in the extracted isosurface triangulation arises, see
Figure 5.

Montani, Scateni & Scopigno (1994) proposed an extended set of basis
configurations. For each MC basis configuration containing an ambiguous face,
i.e., basis configurations 3, 6, 7, 10, 12, and 13, they add its inverse to the set
of basis configurations. The LUT created by their method, which is used, for
example, in the Visualization Toolkit (VTK) by Schroeder, Martin & Lorensen
(1998), consistently separates vertices outside the isosurface, preventing holes
arising due to inconsistent topology on faces between cells. Other approaches use
additional information to determine the contour topology uniquely on ambiguous
faces or inside a cell. Nielson (2003) provides an in-depth analysis for possible
configurations for trilinear interpolation.

3. AMR Visualization by Conversion to Other Types

Initial work on AMR visualization focused on converting AMR data to suit-
able conventional representations, which are subsequently used for visualization.
Norman et al. (1999) described a method for visualizing AMR data using using
standard unstructured grid techniques. Their method converts an AMR hier-
archy into an unstructured grid composed of hexahedral cells. This resulting
grid is then visualized utilizing standard AVS, IDL, and VTK algorithms. By
converting AMR data to an unstructured mesh, the implicit definition of grid
connectivity is lost. Overhead resulting from the required separate storage of
grid structure results in poor performance and does not scale well to large AMR
data sets. Furthermore, this approach prohibits using of the hierarchical nature
of AMR data for efficient visualization algorithms. Recognizing these fundamen-
tal problems, Norman et al. continue by extending VTK to handle AMR grids

6 Weber et al.

(a) (b)

Figure 6. The linear approximation of contours on boundary faces used
by the MC method can lead to cracks in an isosurface at coarse-fine level
boundaries, even if values at dangling nodes are chosen to be consistent with
the coarse level.

as first-class data structure. They have yet to publish detailed descriptions of
their techniques.

4. Crack-free Isosurface Extraction from AMR Data

AMR data is particularly difficult to handle when visualizing scalar fields via iso-
surface extraction. This difficulty is due to the fact that AMR often uses a cell
centered data format while the marching cubes algorithm (Lorensen & Cline
1987), which is de-facto standard isosurface extraction algorithm in scientific
visualization, expects values at the vertices of a grid. Furthermore, when ex-
tracting an isosurface using the marching cubes method, t-junctions can lead to
visible cracks in an isosurface, even if dangling nodes (i.e., nodes that are present
in the fine level but not in the coarse level) have values that are consistent with
the coarse level representation, see Figure 6. Figure 6(a) shows an isosurface
at a coarse-fine boundary where values at dangling nodes are identical to the
values that interpolation in the coarse level assigns to their location. In theory,
this configuration should lead to a consistent, crack-free isosurface. However,
as described in Section 2.2., the MC algorithm approximates curved contours
on boundary faces with line segments that are the edges of a triangulation, see
Figure 6(b). Since a single cell in the coarse level shares a boundary face with
four cells of the finer level, this approximation leads to a mismatch between
isosurface approximations in the coarse level, where the curvilinear contour is
approximated by a single line segment, and in the fine level, where the same
contour is approximated by a poly-line consisting of three line segments. The
result is a visible crack in the extracted isosurface.

Shared ambiguous faces are another source of more subtle cracks, as illus-
trated in Figure 7. Here it is possible that the “subdivision” of the boundary
in the finer level resolves an ambiguous face in the coarse level. Since most
MC implementations use implicit disambiguation (Montani et al. 1994), such
disambiguation can result in inconsistent isosurface topology in coarse and fine
hierarchy level. For example, the isosurface component in the coarse-level cell in
Figure 7(b) separates shared-face vertices that are outside the isosurface, while

Visualization of Scalar Adaptive Mesh Refinement Data 7

(a) (b)

Figure 7. Ambiguous faces at coarse-fine level boundaries can lead also
lead to cracks in an extracted isosurface if the finer representation resolves
the ambiguity.

the isosurface component in the fine-level cells separates shared-face vertices
that are inside the isosurface.

A simple scheme to apply the MC algorithm to cell centered AMR data,
which is commonly used by visualization tools, re-centers the grid by performing
a resampling step that computes values at node positions. Subsequently, isosur-
face extraction via MC uses the resulting grid. This approach leads to cracks,
which can be handled in a variety of ways. Most currently available visualiza-
tion tools, including ParaView and VisIt simply ignore cracks in the isosurface.
Alternatively, it is possible to use techniques that have been developed for other
(most commonly Octree-based) multiresolution data representations. Shu, Zhou
& Kankanhalli (1995) introduced an adaptive marching cubes implementation
and proposed to patch cracks in an isosurface by filling them with an appropriate
triangulation. However, while this strategy works for cracks resulting from rep-
resenting the same curvilinear at different levels of resolution (Figure 6), it can
lead to non-manifold (not locally flat) surfaces when applied to cracks that result
when a finer level resolves an ambiguity in the coarser level (Figure 7). Further-
more, the small triangles that result from this approach reduce the quality of
an isosurface triangulation. Shekhar et al. (1996) developed a multi-resolution
MC approach that removes cracks by adjusting adjusting the additional finer-
level triangulation vertices to coincide with the line-segment approximation in
the coarse level. Westermann, Kobbelt & Ertl (1999) modified this approach by
adjusting replacing triangles in the coarse cell by a triangle fan that matches up
with the polyline in the finer level. All these approaches fail, if a crack results
from the resolution of an ambiguous face in the finer level (Figure 7). While it
is possible to avoid this situation by utilizing a MC implementation that uti-
lizes additional information to resolve ambiguities in the coarse level (Nielson
2003), no widely available visualization tools uses this approach, since it imposes
additional computational overhead.

Weber et al. (2001b, 2003a) developed a method that extracts crack-free
isosurfaces from cell centered AMR data by interpreting cell centers of each patch
of the AMR hierarchy as the vertices of a new patch, which is the dual grid to the
original patch. Within these dual grids, isosurfaces are extracted utilizing the
standard marching cubes method. The use of dual grids leads to gaps between

8 Weber et al.

Figure 8. If the tessellation filling the gaps between hierarchy levels, which
result from the use of dual grids, does not share complete boundary faces
with rectilinear cells of the dual grid, cracks in an isosurface can result. This
is a result of the fact, that the same curved contour on the boundary is
represented at different detail, i.e., a single line on the rectilinear face and a
polyline consisting of two line segments on the two triangular faces.

different levels of an AMR hierarchy. Weber et al. use a procedural scheme
to fill these gaps with “stitch” cells (tetrahedra, pyramids, triangle prisms and
deformed cubes) ensuring that this step produces no t-junctions, since these
t-junctions would again lead to cracks in a resulting isosurface, see Figure 8.
Subsequently, they extract isosurface portions within gaps between hierarchy
levels utilizing the marching cubes methods by giving appropriate case tables
for these new cell types.

Fang et al. (2004) presented an alternate isosurface extraction approach
for node centered AMR data. Their main goal is preserving the original patch
structure and “identity” of cells, enabling a user to determine to what particular
patch cell a triangle of an isosurface belongs. Their method achieves this goal by
extending refined patches until it is possible to assign values to dangling nodes
that are consistent with interpolation results in the coarser level. Subsequently,
they decompose coarse-level cells at the boundary to a finer level into a set of
pyramids that connect the cell center with all boundary faces. For each “facet”
of a subdivided face, i.e., a face at the boundary to a finer level, a separate
pyramid is created, ensuring that marching cubes will not produce cracks in an
extracted isosurface.

Meshless methods are an alternative way to extract crack-free isosurfaces
from multiblock data. Co, Porumbescu & Joy (2004) presented an isosurface
extraction scheme that uses radial basis functions to define a continuous inter-
polant for multiblock data. Subsequently they extract a set of sample points
that lie on the isosurface and use splatting to render the isosurface.

4.1. Volume Rendering of AMR Data

Max (1993) described sorting schemes for cells during volume rendering includ-
ing one method specifically geared toward AMR data. Ma (1999) described
and compared two approaches for rendering of structured AMR data using the
PARAMESH framework. A PARAMESH MacNeice et al. (2000) hierarchy or-
ganizes grids as blocks in a quadtree (in 2-d space) or an octree (in 3-d space)
structure. Inner nodes of this tree correspond to regions that need further re-
finement while leaf nodes specify a grid whose resolution is given by the current
hierarchy level. Ma described two approaches for volume rendering of AMR data.

Visualization of Scalar Adaptive Mesh Refinement Data 9

One method resamples a hierarchy on an uniform grid at the finest resolution.
The resulting grid is evenly subdivided and each part rendered in parallel on a
separate processor. Partial images are combined using binary-swap composition.

A second method preserves the AMR structure. Individual blocks (leaves
of the octree) are distributed among the processors in a round-robin fashion to
achieve static load balancing. Since a block structure can lead to many small
ray-segments, Ma buffers these segments into larger messages to decrease com-
munication overhead. Individual blocks are rendered using ray-casting. Two
sampling schemes are used: A simple approach using a fixed, constant sam-
ple distance and an adaptive approach that decreases sample distance in finer
resolution blocks.

Weber et al. (2001a) described an interactive, hardware accelerated volume
rendering approach to generate previews of AMR data and a higher-quality
software approach based on cell projection. Both approaches use data duplicated
in coarser hierarchy levels as a less accurate approximation for the data in finer
levels. The hardware-based approach uses a k-d-tree-like structure to partition
an AMR hierarchy into blocks of homogeneous resolution and renders these
blocks in back-to-front order. Based on view-dependent criteria (e.g., the number
of pixels covered by a voxel) and a measured rendering time for the current frame,
the traversal depth into the individual patches of the AMR hierarchy is chosen
to achieve interactive rendering rates.

Weber et al. (2001a) also described a software cell-projection-based ap-
proach to render AMR data sets in higher quality. While rendering a level of
an AMR hierarchy, additional information is stored for each pixel that makes
it possible to “replace” the contribution of those parts of the domain that are
refined by another hierarchy level with a more accurate representation, support-
ing progressive rendering of AMR data sets. In later work, Weber et al. (2001c)
used the dual mesh and stitch cells introduced for isosurface extraction Weber
et al. (2003a) to define a C0 continuous interpolation scheme and utilized this
interpolation method in their progressive cell-projection rendering approach.

Kreylos et al. (2002) described a framework for remote, interactive rendering
of AMR data. The framework consists of a “lightweight” viewer and a renderer
running on one or several remote machines. The method of Kreylos et al. “ho-
mogenizes” an AMR hierarchy, i.e. partitions it in blocks of constant resolution
using a k-d tree. Resulting blocks of constant resolution are distributed among
processors and rendered using either a texture-based hardware-accelerated ap-
proach or a software-based cell-projection renderer. Two distribution strategies
are implemented: One strategy attempts to distribute cost evenly among proces-
sors, the other variant tries to minimize data duplication. Weber et al. (2003b)
built on this work and compared various AMR partitioning strategies for parallel
volume rendering of AMR data.

Kähler & Hege (2002) introduced a method that partitions Berger-Colella
AMR data into homogeneous resolution regions and visualizes it using texture-
based hardware-accelerated volume rendering. Their partitioning scheme uses a
heuristic that is based on assumptions concerning the placement of refining grid
to minimize the number of constant-resolution blocks. Generally, this approach
generates fewer blocks than the approach described by Weber et al. (2001a) and

10 Weber et al.

the approach developed by Kreylos et al. (2002). Subdivision into a smaller
number of blocks is beneficial when data is rendered on a single machine.

In later work, Kähler et al. (2002) used a set of existing tools to render re-
sults of a simulation of a forming star using the framework developed by Bryan
(1999). They define camera paths within a CAVE environment using the Virtual
Director virtual reality interface. Subsequently, they render animations of the
AMR simulation utilizing their previously developed hardware-accelerated vol-
ume rendering approach Kähler & Hege (2002). To enhance depth perception,
rendered images are augmented with a background that is obtained by rendering
a particle simulation of the formation of the early universe. Recently, Kähler
et al. (2006) implemented a GPU-based ray-casting approach for AMR data,
which improves rendering quality considerably compared to slicing-based ap-
proaches and supports a more complex light model with wavelength dependent
absorption.

By specifying a transfer function, and a range of isovalues, Park, Bajaj &
Siddavanahalli (2002) produced volume-rendered images of AMR data based on
hierarchical splatting, see Laur & Hanrahan (1991). Their method converts an
AMR hierarchy to a k-d-tree structure consisting of blocks of constant resolution.
Each node of this k-d tree is augmented with an octree. Octree and k-d-tree
nodes contain a 32-bit field, where each bit represents a continuous range of
isovalues. Using the k-d tree and the octree, regions containing values within
the specified range are identified and rendered back-to-front using hierarchical
splatting.

Kaehler et al. (2005) described a framework for visualization of time-varying
AMR data. Their method addresses the problem that most AMR simulations
update finer AMR patches more frequently than coarse patches. Considering
two subsequent time steps, their interpolation scheme first ensures that both
time-steps have the same refinement configuration, i.e., that each cell that is
refined in one time step is also refined in the other time step. Values for cells
that are not refined in the current time step but the other are obtained by
interpolation. Subsequently, they define an interpolation scheme to compute
intermediate values in regions that are covered by coarser level and thus, up-
dated less frequently. In addition to this interpolation scheme, their framework
automatically handles remote data access and computes interpolated values on
the machine, which also runs the simulation.

5. Visualization of AMR Data with VisIt

VisIt Childs & Miller (2006) is a richly featured visualization and analysis tool for
large data sets. It employs a client-server model where the server is parallelized.
The nature of parallelization is data parallel; the input data set is partitioned
among VisIt’s processors. In the case of AMR data, each patch is treated as an
atomic unit and assigned to one of the processors on VisIt’s parallelized server.
For example, patches “level zero, patch zero” and “level one, patch two” may
be assigned to the server’s processor zero, while patches “level zero, patch one,”
“level one, patch zero,” and “level one, patch one” may be assigned to processor
one.

Visualization of Scalar Adaptive Mesh Refinement Data 11

Visualization and analysis of massive scale data sets is an important use case
for VisIt. As such, it employs many optimizations to enable the processing of
this data. For example, VisIt is able to use spatial extents meta-data to reduce
the amount of data that is processed. When a slice of a three-dimensional
data set is being rendered, VisIt is able to to limit the patches processed to
those that actually intersect the slice. Although this functionality may sound
straight forward, it is difficult to implement in a richly featured, module based
framework. More information about the contract methodology that enables
these optimizations can be found in Childs et al. (2005).

VisIt’s handling of AMR data is made possible by marking coarse cells
that are refined at a lower level as “ghost.” This marking is done by adding
an array to each patch that designates the status of each cell (ghost or non-
ghost). Most algorithms can ignore the ghost markings; they operate identically
on ghost and non-ghost cells. One advantage of using the ghost cells is that
it allows structured grids to retain their native form. That is, removing the
ghost cells before applying visualization algorithms would create a grid that was
no longer structured. The resulting grid would often be unstructured and that
unstructured grid could have a memory footprint that is an order of magnitude
larger. Another advantage of using ghost cells is that they allow for proper
interpolations to take place, which would not be possible if refined cells were
removed before applying visualization algorithms. After all algorithms have
been applied, a module walks the data set and removes all cells or geometry
resulting from a ghost cell.

VisIt employs the standard Marching Cubes algorithm to contour data.
Most AMR data is cell-centered, requiring interpolation to the nodes. For hang-
ing nodes at the boundary of patches at different refinement levels, this interpo-
lation is done incorrectly in VisIt and cracked isosurfaces can result. However,
VisIt does not produce cracked isosurfaces when abutting patches are at the
same refinement level. In this case, VisIt can create a layer of ghost cells around
each patch that contains the values of neighboring cells from the other patches.
These ghost cells allow for correct interpolation to take place, meaning that a
consistent contouring takes place from patch to patch and no cracks are created
in this case.

VisIt’s employs a data parallel volume rendering scheme that is able to re-
solve the types of complex sorting issues that arise in unstructured meshes Childs
et al. (2006). AMR meshes present a special type of load balancing challenge
for VisIt’s volume rendering algorithm, however. The running time of the al-
gorithm is dependent on the amount of data and the amount of samples. For
AMR meshes, the patches at the coarser refinement levels occupy a larger spatial
footprint, and, as such, often cover a much larger portion of the picture and con-
tribute more samples. Hence, sampling the patches at coarser refinement levels
typically takes much longer than the sampling for patches at finer refinement
levels. VisIt attempts to counteract this problem by minimizing the amount
of patches at the coarse refinement levels on any given processor. In terms of
additional AMR handling, the volume rendering algorithm ignores all samples
from cells that are marked ghost. So if a sample point is contained by many
patches at different refinement levels, only the value at the finest level will be
accepted, since all other levels will have the corresponding cell marked as ghost.

12 Weber et al.

A trend of increasing importance is where visualization and analysis capa-
bilities are coupled in one production quality application. Here, analysis means
computing statistical moments of subsets of AMR hierarchies, distribution func-
tions, computed/derived quantities, temporal analysis, etc. VisIt provides a rich
set of analysis capabilities (such as integrating density over volume to obtain
mass, calculating volumes, surface areas, and moments of inertia), all of which
execute in parallel.

6. Ongoing and Future Work

We are currently working on extending VisIt’s visualization capabilities for AMR
data. To this end, we had extensive meetings with members of the LBNL Ap-
plied Numerical Algorithms Group (ANAG) and the LBNL Center for Com-
putational Sciences and Engineering (CCSE). We optimized handling of AMR
grids in VisIt. These optimizations can save on memory by a factor of ten
and also support more efficient rendering. Additional performance and memory
optimizations improve efficiency for the important use case of rendering patch
boundaries. VisIt previously used very general algorithm that was unnecessar-
ily slow. Our new, specialized algorithm is an order of magnitude faster and
more memory efficient. We also added support to link picking capabilities and
spreadsheet support (duplicating functionality present in ChomboVis). The re-
quest for this functionality indicates that visualization is still used frequently for
debugging. On the other hand there is a growing need for data analysis and vi-
sualization capabilities to interpret the results of production AMR simulations.
For example, we are currently working on adding line integral convolution-based
vector field visualization capabilities to VisIt.

Acknowledgments. This work was supported by the Director, Office of
Advanced Scientific Computing Research, Office of Science, of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231 through the Scientific
Discovery through Advanced Computing (SciDAC) program’s Visualization and
Analytics Center for Enabling Technologies (VACET). We thank the members
of the LBNL Visualization Group, the LBNL ANAG, the LBNL CCSE, and the
VisIt development team.

References

Berger, Marsha, and Phillip Colella. “Local Adaptive Mesh Refinement for Shock Hy-
drodynamics.” Journal of Computational Physics 82: (1989) 64–84.

Bryan, Greg L. “Fluids in the Universe: Adaptive Mesh Refinement in Cosmology.”
Computing in Science and Engineering 1, 2.

Childs, Hank, Eric S. Brugger, Kathleen S. Bonnell, Jeremy S Meredith, Mark Miller,
Brad J Whitlock, and Nelson Max. “A Contract-Based System for Large Data
Visualization.” In IEEE Visualization 2005. 2005, 190–198.

Childs, Hank, Mark A. Duchaineau, and Kwan-Liu Ma. “A Scalable, Hybrid Scheme for
Volume Rendering Massive Data Sets.” In Eurographics Symposium on Parallel
Graphics and Visualization. 2006, 153–162.

Childs, Hank, and Mark Miller. “Beyond Meat Grinders: An Analysis Framework
Addressing the Scale and Complexity of Large Data Sets.” In SpringSim High
Performance Computing Symposium (HPC 2006). 2006, 181–186.

Visualization of Scalar Adaptive Mesh Refinement Data 13

Co, Christopher S., Serban D. Porumbescu, and Kenneth I. Joy. “Meshless Isosur-
face Generation from Multiblock Data.” In Data Visualization (Proceedings of
VisSym 2004), edited by Oliver Deussen, Charles D. Hansen, Daniel Keim, and
Dietmar Saupe. 2004, 273–281.

Dürst, Martin J. “Additional Reference to “Marching Cubes” (Letters to the Editor).”
Computer Graphics 22, 2: (1988) 72–73.

Fang, D. C., Weber, G. H., H.R. Childs, E.S. Brugger, B. Hamann, and K.I Joy.
“Extracting geometrically continuous isosurfaces from adaptive mesh refinement
data.” In Proceedings of 2004 Hawaii International Conference on Computer
Sciences (DVD-ROM conference proceedings). 2004, 216–224. ISSN 1545-6722.

Kaehler, Ralf, Steffen Prohaska, Andrei Hutanu, and Hans-Christian Hege. “Visual-
ization of Time-Dependent Remote Adaptive Mesh Refinement Data.” In IEEE
Visualization 2005. IEEE Computer Society, 2005, 175–182.

Kähler, Ralf, Donna Cox, Robert Patterson, Stuart Levy, Hans-Christian Hege, and
Tom Abel. “Rendering The First Star In The Universe – A Case Study.” In
IEEE Visualization 2002. IEEE Computer Society, 2002, 537–540.

Kähler, Ralf, and Hans-Christian Hege. “Texture-based Volume Rendering of Adaptive
Mesh Refinement Data.” The Visual Computer 18, 8: (2002) 481–492. Zuse
Institut Technical Report ZR-01-30.

Kähler, Ralf, John Wise, Tom Abel, and Hans-Christian Hege. “GPU-Assisted Raycast-
ing for Cosmological Adaptive Mesh Refinement Simulations.” In Proceedings of
Volume Graphics. Eurographics Association, 2006.

Kreylos, Oliver, Gunther H. Weber, E. Wes Bethel, John M. Shalf, Bernd Hamann, and
Kenneth I. Joy. “Remote Interactive Direct Volume Rendering of AMR Data.”
Technical Report LBNL 49954, Lawrence Berkeley National Laboratory, 2002.

Laur, David, and Pat Hanrahan. “Hierachical Splatting: A Progressive Refinement
Algorithm for Volume Rendering.” Computer Grahpics (Proceedings of ACM
SIGGRAPH 91) 25, 4: (1991) 285–288.

Levoy, Marc. “Display of Surfaces From Volume Data.” IEEE Computer Graphics and
Applications 8, 3: (1988) 29–37.

Lorensen, William E., and Harvey E. Cline. “Marching Cubes: A High Resolution
3D Surface Construction Algorithm.” Computer Graphics (Proceedings of ACM
SIGGRAPH 87) 21, 4: (1987) 163–169.

Ma, Kwan-Liu. “Parallel rendering of 3D AMR data on the SGI/Cray T3E.” In Pro-
ceedings of Frontiers ’99 the Seventh Symposium on the Frontiers of Massively
Parallel Computation. IEEE Computer Society, 1999, 138–145.

MacNeice, Peter, Kevin M. Olson, Clark Mobarry, Rosalinda de Fainchtein, and Charles
Packer. “PARAMESH: A parallel adaptive mesh refinement community toolkit.”
Computer Physics Communications 126, 3: (2000) 330–354.

Max, Nelson L. “Sorting for Polyhedron Compositing.” In Focus on Scientific Visual-
ization, Springer-Verlag, 1993, 259–268.
. “Optical Models for Volume Rendering.” IEEE Transactions on Computer
Graphics 1, 2: (1995) 99–108.

Montani, Claudio, Riccardo Scateni, and Roberto Scopigno. “A Modified Look-Up
Table for Implicit Disambiguation of Marching Cubes.” The Visual Computer
10, 6: (1994) 353–355.

Nielson, Gregory M. “On Marching Cubes.” IEEE Transactions on Visualization and
Computer Graphics 9, 3: (2003) 341–351.

Norman, Michael L., John M. Shalf, Stuart Levy, and Greg Daues. “Diving Deep:
Data Management and Visualization Strategies for Adaptive Mesh Refinement
Simulations.” Computing in Science and Engineering 1, 4: (1999) 36–47.

Park, Sanghun, Chandrajit Bajaj, and Vinay Siddavanahalli. “Case Study: Interactive
Rendering of Adaptive Mesh Refinement Data.” In IEEE Visualization 2002.
IEEE Computer Society, 2002, 521–524.

14 Weber et al.

Schroeder, William J., Kenneth M. Martin, and William E. Lorensen. The Visualization
Toolkit. Prentice-Hall, 1998, second edition.

Shekhar, Raj, Elias Fayyad, Roni Yagel, and J. Fredrick Cornhill. “Octree-based deci-
mation of marching cubes surface.” In IEEE Visualization ’96. IEEE Computer
Society, 1996, 335–342, 499.

Shu, Renben, Chen Zhou, and Mohan S. Kankanhalli. “Adaptive Marching Cubes.”
The Visual Computer 11, 4: (1995) 202–217.

Weber, Gunther H., Hans Hagen, Bernd Hamann, Kenneth I. Joy, Terry J. Ligocki,
Kwan-Liu Ma, and John M. Shalf. “Visualization of Adaptive Mesh Refinement
Data.” In Proceedings of the SPIE (Visual Data Exploration and Analysis VIII).
2001a, volume 4302, 121–132.

Weber, Gunther H., Oliver Kreylos, Terry J. Ligocki, John M. Shalf, Hans Hagen,
Bernd Hamann, and Kenneth I. Joy. “Extraction of Crack-free Isosurfaces from
Adaptive Mesh Refinement Data.” In Proceedings of the Joint EUROGRAPHICS
and IEEE TCVG Symposium on Visualization, Ascona, Switzerland, May 28–31,
2001. Springer Verlag, 2001b, 25–34, 335.
. “Extraction of Crack-Free Isosurfaces from Adaptive Mesh Refinement Data.”
In Hierarchical and Geometrical Methods in Scientific Visualization, Springer
Verlag, 2003a, 19–40.

Weber, Gunther H., Oliver Kreylos, Terry J. Ligocki, John M. Shalf, Hans Hagen, Bernd
Hamann, Kenneth I. Joy, and Kwan-Liu Ma. “High-quality Volume Rendering of
Adaptive Mesh Refinement Data.” In Vision, Modeling, and Visualization 2001.
Akademische Verlagsgesellschaft Aka GmbH and IOS Press BV, 2001c, 121–128,
522.

Weber, Gunther H., Martin Öhler, Oliver Kreylos, John M. Shalf, E. Wes Bethel, Bernd
Hamann, and Gerik Scheuermann. “Parallel Cell Projection Rendering of Adap-
tive Mesh Refinement Data.” In Proceedings of the IEEE Symposium on Par-
allel and Large-Data Visualization and Graphics 2003. IEEE Computer Society,
2003b, 51–60.

Westermann, Rüdiger, Leif Kobbelt, and Thomas Ertl. “Real-time Exploration of Reg-
ular Volume Data by Adaptive Reconstruction of Isosurfaces.” The Visual Com-
puter 15, 2: (1999) 100–111.

