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Abstract

We propose and discuss two postulates on the nature of errors in

highly correlated noisy physical stochastic systems. The first postulate

asserts that errors for a pair of substantially correlated elements are

themselves substantially correlated. The second postulate asserts that

in a noisy system with many highly correlated elements there will be

a strong effect of error synchronization. These postulates appear to

be damaging for quantum computers.
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1 Quantum computers and the threshold the-

orem

Quantum computers are hypothetical devices based on quantum physics. A

formal definition of quantum computers was pioneered by Deutsch [1], who

also realized that they can outperform classical computation. The idea of a

quantum computer can be traced back to works by Feynman, Manin, and

others, and this development is also related to reversible computation and

connections between computation and physics that were studied by Bennett

in the 1970s. Perhaps the most important result in this field and certainly a

major turning point was Shor’s discovery [2] of a polynomial quantum algo-

rithm for factorization. The notion of a quantum computer along with the

associated complexity class BQP is an exciting gift from physics to mathe-

matics and theoretical computer science, and has generated a large body of

research. Quantum computation is also a source of new, deep, and unify-

ing questions in various areas of experimental and theoretical physics. For

background on quantum computing, see Nielsen and Chuang’s book [3].

Of course, a major question is whether quantum computers are feasible.

An early critique of quantum computation (put forward in the mid-90s by

Unruh, Landauer, and others) concerned the matter of noise:

[P0] The postulate of noise: Quantum systems are noisy.

A major step in showing that noise can be handled was the discovery by

Shor [4] and Steane [5] of quantum error-correcting codes. The hypothesis

of fault-tolerant quantum computation (FTQC) was supported in the mid-

90s by the “threshold theorem” [6, 7, 8, 9], which asserts that under certain

natural assumptions of statistical independence on the noise, if the rate of

noise (the amount of noise per step of the computer) is not too large, then
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FTQC is possible. It was also proved that high-rate noise is an obstruction

to FTQC. Several other crucial requirements for fault tolerance were also

described in [11, 12].

The study of quantum error-correction and its limitations, as well as of

various approaches to fault-tolerant quantum computation, is extensive and

beautiful; see, e.g., [13, 14, 15, 16, 10]. Concerns about noise models with

statistical dependence are mentioned in several places, e.g., [17, 18]. Specific

models of noise that may be problematic for quantum error-correction are

studied in [19]. Current FTQC methods apply even to more general models

of noise than those first considered, which allow various forms of time- and

space-statistical dependence; see [20, 21, 22].

The basic conjecture of this paper is that noisy highly correlated data can-

not be stored or manipulated. This applies to both the quantum and classical

cases — but note that in the classical case correlations do not increase the

computational power. When we run a randomized computer program, the

random bits can be sampled once they are created, and it gives no computa-

tional advantage in the classical case to physically maintain highly correlated

data.

2 Noise and fault tolerance

The postulate of noise is essentially a hypothesis about approximations. The

state of a quantum computer can be prescribed only up to a certain error.

For FTQC there is an important additional assumption on the noise, namely

on the nature of this approximation. The assumption is that the noise is “lo-

cal.” This condition asserts that the way in which the state of the computer

changes between computer steps is statistically independent, for different

qubits. We will refer to such changes as “qubit errors.” In addition, the
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gates which carry the computation itself are not perfect. We can suppose

that every such gate involves at most two qubits and that the gate’s imper-

fection can have an arbitrary form, so the errors (referred to as “gate errors”)

created on the two qubits involved in a gate can be statistically dependent.

(Of course, qubit errors and gate errors propagate along the computation

and handling this is a main difficulty in fault tolerance.)

The basic picture we can have of a noisy computer is that at any time

during the computation we can approximate the state of each qubit only up to

some small error term ǫ. Nevertheless, under the assumptions concerning the

errors mentioned above, computation is possible. The noisy physical qubits

allow the introduction of logical “protected” qubits which are essentially

noiseless.

The close analogy between the classical and the quantum cases for error

correction and fault tolerance is very useful. For our purposes, a good way to

understand the notions of quantum error-correction and fault tolerance is to

draw the line not between classical and quantum information but between de-

terministic information (or even stochastic information where the elements

are statistically independent) and stochastic highly correlated information

(both classic and quantum). Thus, while the state of a digital computer hav-

ing n bits is a string of length n of zeros and ones, in the (classical) stochastic

version, the state is going to be a (classical) probability distribution on all

such strings.

Quantum computers are similar to these (hypothetical) stochastic clas-

sical computers and they work on qubits (say n of them). The state of a

single qubit q is described by a unit vector u = a|0 > +b|1 > in a two-

dimensional complex space Uq. (The symbols |0 > and |1 > can be thought

of as representing two basis elements in Uq.) We can think about the qubit

q as representing ′0′ with probability |a|2 and ′1′ with probability |b|2. The
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state of the entire computer is a unit vector in the 2n-dimensional tensor

product of these vector spaces Uq’s for the individual qubits. The state of

the computer thus represents a probability distribution on the 2n strings of

length n of zeros and ones. The evolution of the quantum computer is via

“gates”. Each gate g operates on k qubits, and we can assume k ≤ 2. Every

such gate represents a unitary operator on Ug, the (2k-dimensional) tensor

product of the spaces that correspond to these k qubits.

A simple (rather special) example of noise to keep in mind is that all qubit

errors are independent random unitary operators for the individual qubits,

and all gate errors are random unitary operators on the spaces Ug. If these

errors are small (namely, if all these operators are sufficiently close to the

identity), the threshold theorem will apply.

A main insight of quantum error-correction is that errors affecting a sub-

stantial but small fraction of — even highly correlated – bits/qubits can be

handled. (For this, basic linearity properties of probability theory as well

as of quantum physics are crucial.) Errors that exceed, with substantial

probabilities, the capacity of the error-corrector are problematic. Under the

independence assumptions of the threshold theorems, if the rate of errors

is small the probability for exceeding the capacity of the error-corrector is

extremely small. The crux of the matter is whether independent (or almost

independent) errors on highly correlated elements is a possible or even a

physically meaningful notion.
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3 Noisy stochastic correlated physical systems

3.1 The postulate of noisy correlated pairs

The purpose of this section is to propose and discuss the following postulate:

[P1] In any noisy physical system, the errors for a pair of elements that

are substantially statistically dependent are themselves substantially

statistically dependent.

In particular, for quantum computers1 this postulate reads:

[P1] In a quantum computer, the errors for a pair of substantially correlated

qubits are substantially correlated.

Another way to put Postulate [P1] is: noisy correlated elements cannot

be approximated up to almost independent error terms: if we cannot have an

approximation better than a certain error rate for each of two correlated ele-

ments, then an uncorrelated or almost uncorrelated approximation is likewise

impossible.

Remarks:

1. Real-life examples: The weather and the stock market. We

can discuss Postulate [P1] for cases of (classical) stochastic systems with

highly correlated elements. I am not aware of a case of a natural system

with stochastic highly correlated elements that admits an approximation up

to an “almost independent” error term. This is the kind of approximation

required for fault-tolerant quantum computation.

1Our conjectures themselves come in (highly correlated) pairs. Each conjecture is for-

mulated first for general noisy physical systems and then specified to quantum computers

that are physical devices able to maintain and manipulate highly entangled qubits.
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Can we expect to estimate the distribution of prices of two very corre-

lated stocks in the stock market up to an error distribution that is almost

independent?

Or take, for example, the weather. Suppose you wish to forecast the prob-

abilities for rain in twenty nearby locations. We suppose these probabilities

will be strongly dependent. Can we expect to have a forecast that is off by

a substantial error that is almost statistically independent for the different

locations?

To make this question a little more formal, consider not how accurately a

weather forecast predicts the weather, but rather how it predicts (or differs

from) a later weather forecast. Let D be the distribution that represents the

best forecast we can give for the rain probabilities at time T from the data

we have at time T − 1. Let D′ be the best forecast from data we have at

time T − 1 − t. Suppose that D is highly correlated. Postulate [P1] asserts

that we cannot expect that the difference D−D′ will be almost statistically

independent for two locations where D itself is substantially correlated.

2. The threshold theorem and pair purification. The threshold

theorem which allows FTQC has various remarkable applications, but our

postulate can be regarded as challenging its simplest non-trivial consequence.

The assumptions of the threshold theorem allow the errors on a pair of qubits

involved in a gate to be statistically dependent. In other words, the outcome

of a gate acting on a pair of qubits prescribes the position of the two qubits

only up to an error that is allowed to exhibit an arbitrary form of correlation.

The process of fault tolerance allows us to reach pairs of entangled qubits

that, while still being noisy, have errors that are almost independent. This

“purifying” nature of fault tolerance for quantum computation is arguably

an element we do not find in fault tolerance for deterministic computation.
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3. Positive correlations for errors. Consider a noisy classical com-

puter on n bits and suppose that the overall error is given by taking the XOR

of the n bits in the computer with a randomly chosen string e of n bits ac-

cording to a probability distribution E . Suppose that for every bit, the error

probability is 1/1000. If the errors are independent then the probability that

e will have n/500, say, error is very tiny as n grows. Positive correlations

between the errors for every (or most) pairs of bits will change this picture.

For example, if for every two bits the probability that for e both these bits

are 1 is around 1/50,000 (rather than 10−6), then there will be a substantial

probability that more than n/100 bits will be “hit” by the error. (The same

conclusion will apply if for every triple of bits the probability that they will

all be hit is, say, 10−7 rather than 10−9.) This effect of positive correlation

for errors is the basis for Postulate [P2] below.

4. Leaks of information. Rather than talking about errors and noise

we can talk about information “leaked” from our physical systems to the

outside world. For quantum computers leaking of information automatically

amounts to noise and thus a strong form of Postulate [P1] for quantum

computers is:

[P1’] For a noisy quantum computer, information leaks for two substantially

correlated qubits have a substantial positive correlation.

For general stochastic systems [P1’] reads:

[P1’] In any noisy physical system, the information leaks concerning the

states of two elements that are substantially statistically dependent,

have a substantial positive correlation.

Postulate [P1’] seems natural for systems where correlations are gradually

created and information is gradually leaked. The central question is whether

such an effect can be diminished via error correction.
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3.2 The postulate of error synchronization

Suppose we have an error rate of ǫ. The assumptions of the various threshold

theorems (and other proposed methods for quantum fault-tolerance) imply

that the probability of a proportion of δ qubits being “hit” is exponentially

small (in the number of bits/qubits) when δ exceeds ǫ. Error synchronization

refers to an opposite scenario: there will be a substantial probability of a large

fraction of qubits being hit.

[P2] In any noisy physical system with many substantially correlated ele-

ments there will be a strong effect of spontaneous error-synchronization.

[P2] In any quantum computer at a highly entangled state there will be a

strong effect of spontaneous error-synchronization.

As remarked above, error synchronization is expected for a large system

when the errors (or information leaks) are positively correlated. An even

stronger form of error synchronization is considered in [23], where formal

definitions for the quantum case can be found.

Remarks:

1. Empiric. Postulates [P1] and [P2] can be tested, in principle, for

quantum computers with a small number of qubits (10-20). If such devices

where the qubits themselves are sufficiently stable are still well down the

road, they are still expected long before the superior complexity power of

quantum computers kicks in.

A rigorous form of [P1] can be suggested as a benchmark for quantum-

computer engineers: To construct pairs of noisy entangled qubits with almost

independent error-terms.

2. Spontaneous synchronization for highly correlated systems.

The idea that for the evolution of highly correlated systems changes tend
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to be synchronized, so that we may witness rapid changes affecting large

portions of the system (between long periods of relative calm), is appealing

and may be related to other matters like sharp threshold phenomena and

phase transition, the theory of evolution, the evolution of scientific thought,

and so on.2 We can examine the possibility of error synchronization for the

examples considered above. Can we expect synchronized errors for weather

forecasts? Can we expect stock prices, even in short time scales, to exhibit

substantial probabilities for changes affecting a large proportion of stocks?

This matter is also related to the issue of pattern formation for correlated

systems.

3. Error synchronization and the concentration of measure phe-

nomenon. A mathematical reason to find spontaneous synchronization of

errors an appealing possibility is that this is what a “random” random noise

looks like. Talking about a random form of noise is easier in the quantum

context. If you prescribe the noise rate and consider the noise as a random

(say unitary) operator (conditioning on the given noise rate), you will see

a perfect form of synchronization for the errors, and this property will be

violated with extremely low probability.

Random unitary operators with a given noise rate are not a realistic form

of noise. The qubits in a quantum computer are expected to be quite isolated,

so that the errors are described by a “locally defined” process (namely, a pro-

cess (stochastically) generated by operations on a small number of qubits at

a time) — similar to the (noiseless) evolution described by quantum compu-

tation itself.

2This idea is conveyed in the Hebrew proverb “When troubles come they come to-

gether,” the English “It never rains but it pours,” and the Russian : “When trouble

comes, open the door!”
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While random unitary operators with prescribed error rate appear to be

unapproachable by any process of a “local” nature, their statistical properties

may well hold for such stochastic processes describing the errors. The fact

that perfect error-synchronization is the “generic” form of noise suggests

that stochastic processes describing the noise will approach this “generic”

behavior unless they have good reason not to. (One obstruction to error

synchronization, pointed out by Greg Kuperberg, is time independence.)

4. Correcting highly synchronized errors. An observation that com-

plements the discussion so far is that synchronized errors that are unbiased

can be corrected to produce noiseless deterministic bits. Suppose we have a

situation in which an error hits every bit with probability (1 − ǫ) and when

a bit is hit it becomes a random unbiased bit. (That is, a bit is flipped with

probability (1 − ǫ)/2.) This type of noise can be corrected by representing

a 0 bit by a long string of 0’s and a 1 bit by a long string of 1’s. (If the

noise hits a smaller fraction of bits, the condition of it being unbiased can

be compromised.) If we start with qubits and again replace each qubit with

a random qubit with probability (1 − ǫ) we can still extract noiseless bits.

However, there is no quantum error-correction code for such noise.

This means that deterministic noiseless bits can prevail (for classical and

quantum systems) even for some forms of highly correlated errors. (Our

postulates do not imply a high correlation for the errors when the elements

of the system are statistically independent, but mechanisms leading to our

conjectural effects may still be relevant for the nature of noise for classical

forms of storing information and computation.)

The method of “clone and sample” appears to be essentially the only

error-correction method we find in nature. This method allows us to intro-

duce gates where errors on the involved bits will be almost independent to

start with, and thus will reduce “noise on gates” to “noise on bits.” But this
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method is not available for quantum information of a general type.

5. The censorship conjecture. Notions of “highly correlated” or

“highly entangled” systems are not easy to define. We will refer informally to

systems that up to a small error are induced by their marginal distributions

on small sets of elements as “approximately local.” For a suggested defi-

nition of “approximately local” (just for the quantum case), and a precise

formulation of the conjecture below, see [23].3

[C] Censorship conjecture: Noisy stochastic physical systems are approxi-

mately local.

[C] The states of quantum computers are approximately local.

The rationale for this conjecture is that high forms of entanglement will

necessarily come together with strong effect of error synchronization which

in turn will push the system towards approximate locality.

4 A mathematical formulation

4.1 Measuring information leaks

In this section we attempt to give a mathematical formulation for Postulate

[P1’]. Our setting is as follows. We have a quantum computer running on n

qubits. The noise can be described by a unitary operator on the computer

qubits and the neighborhood qubits or as a quantum operation E on the

space of density matrices for these n qubits.

3There are many measures for the “amount of entanglement” (and correlation) that

can be used. It is also not clear if we should measure the entanglement of a single state or

use a measure that depends on the variety of feasible states for a system. Leggett’s paper

[24] and his “disconnectivity measure” (D-measure) seem especially relevant.
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It is better to think about the conjectures in this section as follows: A

noisy quantum computer is subject to noise described by a quantum oper-

ation E, such that the error rates for individual qubits are small but sub-

stantial and E satisfies the (stronger and stronger ) requirements described

in this section. The operation E may not be the overall noise that describes

the gap between the ideal state and the noisy state of the computer, but we

assume that any damaging properties of E will not be remedied by additional

noise of a different nature.

We denote by L(a) the “amount of information the neighborhood has

on the qubit a.” More generally, for a set A of qubits we denote by L(A)

the “amount of information the neighborhood has on A.” Next we propose

mathematical definitions for these notions.

Let ρ be a state of the computer. For a set A of qubits let ρ|A be the

induced state on A. When the state ρ is a tensor product pure state then for

every set A of qubits, S(ρ|A) = 0 and the information leak of the noise oper-

ator E from the set of qubits A can be measured by the entropy S((E ◦ρ)|A).

(We deam this entropy-based notion appropriate for our purposes although

the entropy does not capture every form of “information leak” attributable

to a noise operator.)

I am not aware of a canonical way to make the “information leak” a

measure of the noise operation E that does not depend on a specific choice for

this tensor product state. In what follows we let ρ0 = (+)⊗n = (1/
√

2((|0 >

+|1 >))⊗n and define L(A) = LE(A) = S(E(ρ0|A)).

Remark: Let ρ̂ be the state of the computer’s qubit and the environ-

ment that is represented by a set N of qubits. A standard measure on

the information that the environment has on the qubits in A is L′(A) =

S(ρ̂|A) + S(ρ̂|N) − S(ρ̂|{A∪N}). I would expect that L′(A) can replace L(A)

for the formulation of the conjectures in this section.
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4.2 Two qubits

We will state mathematically a version of Postulate [P1’]. Our setting is as

follows: Let ρ be the “ideal” state of the computer and consider two qubits

a and b. We use as the (rather standard) measure of entanglement

ENT (ρ; a, b) = S(ρ|a) + S(ρ|b) − S(ρ|{a,b}).

As a measure of correlation of information leaks we use

EL(a, b) = L(a) + L(b) − L({a, b}).

Postulate [P1’] can be formulated as follows:

EL(a, b) ≥ K(L(a), L(b)) · ENT (ρ; a, b), (1)

where K is a function of L(a) and L(b), which is substantially larger than

their average (L(a) + L(b))/2. (K(0, 0) = 0, so that relation (1) tells us

nothing about noiseless entangled systems.)

Remark: We are mainly interested in the case that the noise rate is fixed,

but the dependence of K(L(a), L(b)) on the noise rates is also of interest.

4.3 Two qubits: A stronger version

We go on to describe and motivate an even stronger form of [P1’] and an

extension to more than two qubits. These extensions go beyond Postulates

[P1] and [P2] as discussed so far.

The expression S(ρ|a) + S(ρ|b) − S(ρ|{a,b}) was used as a measure of en-

tanglement between two qubits. We would like to replace it by a measure of

what can be called “emergent entanglement,” defined as follows. Let MA be

the class of completely positive separable maps on density matrices, which

acts as the identity on a set A of qubits.
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EE(ρ; a, b) = max{(S(Z ◦ ρ|a) + S(Z ◦ ρ|b) − S(Z ◦ ρ|{a,b}) : Z ∈ M{a,b}}.

A strong form of relation (1) is

EL(a, b) ≥ K(L(a), L(b)) · EE(ρ; a, b), (2)

where, as before, K is a function of L(a) and L(b) which is substantially

larger than their average (L(a) + L(b))/2.

Of course, letting Z be the identity we see that EE(ρ; a, b) ≥ ENT (ρ; a, b).

The measure of “emergent entanglement” may be related to Briegel and

Raussendorf’s notion of “persistent entanglement” [25] and it also looks like

a variant of “distilled entanglement.”

The motivation for this strong version of Postulate [P1’] comes from con-

sidering the state of a quantum computer that applies a fault-tolerant com-

putation. The state of the computer is t-wise independent for a large value

of t; hence every two qubits are statistically independent and Postulate [P1’]

does not directly apply. Consider an error-correcting code and let s be the

minimal number of qubits whose state “determines” those of the others, so

once they are measured and their value are “looked at” the state of the other

qubits is determined. When we measure and look at the values of s − 1

qubits, we see a very strong dependence between every pair of the remaining

qubits. Now, if we assume Postulate [P1’] and (just tentatively) also assume

that “measuring and looking at” the contents of some qubits does not induce

errors on other qubits (this is a standard assumption in current noise mod-

els), we see that the conclusion of Postulate [P1’] should apply for pairs of

qubits in a quantum computer running FTQC even though pairs of qubits

are independent.
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4.4 More qubits

Here is a tentative suggestion for an extension of the above conjecture from

pairs of qubits to larger sets of qubits. This suggestion goes beyond Postu-

lates [P1] and [P2] proposed in this paper and is related to a strong form of

error synchronization conjectured in [23].

For a set A = {a1, a2, . . . , am} of m qubits let

ENT (ρ; A) = −S(ρ) + maxS(ρ∗),

where ρ∗ is a mixed state with the same marginals on proper sets of qubits

as ρ, i.e. ρ∗|B = ρ|B for every proper subset B of A.

Define in a similar way

EL(A) = −LE(A) + LE∗(A),

where E∗ is a quantum operation which satisfies E∗|B = E|B for every proper

set B of A.

Let ρ be an ideal state of the computer and let A be a set of m qubits.

EL(A) ≥ KmENT (ρ|A) (3)

Here, Km = Km({L(a) : a ∈ A}) is substantially larger than min{L(N(a))) :

a ∈ A} and it vanishes when all the individual information leaks vanish.

Also here we can further conjecture that for every completely positive

map Z ∈ MA

EL(A) ≥ KmENT ((Z ◦ ρ); A) (4)

Remarks: 1. We expect that a quantum error-correcting code that

corrects t-errors and has a fixed error rate will have a strong form of error-

synchronization as t tends to infinity. Namely, the noise operation will have a
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similar effect to that of the following operation: with probability ǫ a (1−o(1)-

fraction of qubits are being measured. (This is referred to as “devastating”

noise in [23].) This is also expected when implementing a Fourier transform,

which is an important subroutine in quantum computer programs, e.g., if the

state of the computer is described by the Hadamard matrix.

I expect (but proving it remains to be done) that Postulate [P1’] as ex-

pressed by relation (2) will imply the weaker form of error-synchronization

discussed in Section 3.2, while an extension for larger sets of qubits given by

(4) will imply the stronger form.

2. The value of ENT (ρ; A) is intended to serve as a measure of the

additional information when we pass from “marginal distributions” on proper

subsets of qubits to the entire distribution on all qubits. Another measure

which express this idea less accurately but may be easier to handle is defined

as follows:

ENT ′(ρ; A) =
∑

S(ρ|A\{ai}) − (m − 1)S(ρ|A),

The nonnegativity of ENT ′(ρ; A) was proved in [12] and it extends a well-

known inequality of Shearer for classical entropy. Similarly we can define

EL′(A) =
∑

L(A\{ai}) − (m − 1)L(A).

It may be useful to state the conjectures given by relations (3) and (4) while

replacing the quantities ENT and EL by ENT ′ and EL′, respectively.

4.5 Censorship

Here is a tentative suggestion for an entropy-based mathematical formulation

for Conjecture [C].

Let ρ be a pure state on a set A = {a1, a2, . . . , an} of n qubits define
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ẼNT (ρ; A) =
∑

{ENT (ρ; B) : B ⊂ A}.

In this language a way to formulate the censorship conjecture is:

There is a polynomial P (perhaps even a quadratic polynomial) such that:

For any quantum computer on n qubits, which describes a pure state ρ, and

for every integer k,

ẼNT (ρ; A) ≤ P (n). (5)

Remarks: 1. It is interesting to study how the quantities ENT (A; ρ),

and ENT ′(A, ρ) evolve in time for dynamical systems describing (quantum

and classical) physical processes.

2. The additional conjectures of this section are meant to draw the fol-

lowing picture: we have an ideal notion of a quantum computer which has

extraordinary physical and computational properties. Next come noisy quan-

tum computers with an ideal notion of noise. If the noise rate is small then

FTQC is possible. Next come noisy quantum computers which satisfy re-

lation (1). For those, fault tolerance will require controlling the error rate

as well as K2, which we expect to be much harder. This model is also an

idealization as long as K3 = 0 and so on. For such highly entangled states as

those required in quantum algorithms, Ki will be more and more damaging

for larger values of i.

We expect that for realistic noisy quantum computers statistical depen-

dencies beyond those induced by small sets of elements (perhaps even beyond

pairs) will diminish.

5 Discussion

Our conjectures on the nature of noise for correlated systems appear to be

damaging to the possibility of storing and manipulating correlated quantum
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or classical data. It will thus be damaging for quantum computation but not

for classical computation (even randomized), because there, for the compu-

tation itself, no correlation is needed. Moreover, classical noiseless bits can

prevail also in certain cases of highly correlated errors.

Causality

We do not propose that the entanglement of the pair of noisy qubits causes

the dependence between their errors. The correlation between errors can be

caused by the process leading to the correlation between the qubits, or simply

just by the ability of the device to achieve strong forms of correlation.

How it comes about

A basic challenge is to present concrete models of noise that support Postu-

lates [P1] and [P2]. (Of course, there is a difference between showing that

the type of behavior we are looking for is possible and showing that it is un-

avoidable.) A model for the noise that supports our postulates should already

exhibit [P1] and [P2] for the “new errors” — either qubit-errors or gate-errors

(or both) — and would thus be quite different from current models.

It is worth noting that error synchronization is a very familiar phe-

nomenon for error propagation of (unprotected) quantum programs. It is

instructive to see in this context how error synchronization is often created

when we start with small independent errors and let them propagate along

the steps of a computer program.

One way to view the noise is as represented by a rather primitive (but

quick) stochastic program (or circuit) “running” along the actual program.

We run the program P and we actually get P+N . The simplest explanation

for why errors of correlated qubits are themselves correlated is that the noise

N depends on P, or can be described as a weak perturbation of the original
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program itself. But this is not the only possibility. It may be the case that

N does not depend on P but rather represents a certain form of “generic”

quantum program. In both these cases we think of N as a quantum program

with many steps for each computer cycle. This hypothetical “noise program”

partially achieves one familiar “computational task” for a distributed system

— synchronization.

The models suggested by Alicki, Horodecki, Horodecki, and Horodecki

[19] appear to be relevant. Also relevant is Alicki’s idea [26] (see also [27])

that “slow gates” (combined with the free evolution of the system) will be

an obstacle to error correction.

But perhaps the easiest way to find relevant models of noise is to look

for them in the literature. There is a substantial interest in local stochastic

behavior leading to spontaneous (collective) synchronization (e.g., [28, 29, 30,

31, 32]). The Glauber dynamics (a very simple locally defined “program”)

for the Potts model (e.g., [33]) can also be regarded in this way. There is

also a substantial amount of work on emergence of patterns in stochastic

(correlated) locally described systems.

Linearity

Do our postulates violate the linearity of quantum physics? The plain simple

answer is no. Again the analogy with classical stochastic processes is telling.

The conjecture that in noisy systems like the weather substantially correlated

events are subject to substantially correlated noise (or, in other words, can

only be approximated up to error terms that are also substantially correlated)

is perhaps bold and may well be false, but it is not remotely bold enough to

violate the laws of probability theory. This is also so in the quantum case.

It is indeed correct that these conjectures amount to systematic non-

linear inequalities for the noise (or, for feasible approximations,) for noisy
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highly correlated systems. Such non-linear inequalities, if they exist, may be

of independent interest.

Faraway qubits

Suppose we have two qubits that are far away from each other at a given

entangled state at time T . Consider their state at time T + t. Is there

any reason to believe that the changes will not be independent? And if t is

small compared to the distance between the qubits isn’t it the case that to

implement a noise that is not independent we will need to violate the speed

of light? And finally isn’t this observation a counterexample to Postulate

[P1]?

The answer to the final question is negative. There is no difficulty in

conceding that changes over time in the states of two faraway entangled

qubits will be independent. The problem with this critique is the initial

assumption: we are given two qubits at time T at a given state. Starting

with noiseless correlated elements, we may well reach correlated elements

that can be described up to substantial but independent error terms. But

for fault tolerance we may not assume noiseless pairs of entangled qubits to

start with.4

Probability, secrets, and computing

We will now describe a potential difficulty to our conjectures at least in the

classical case. Consider a situation where Alice wants to describe to Bob a

complicated correlated distribution D on n bits that can be described by a

polynomial-size randomized circuit. Having a noiseless (classical) computa-

tion with perfect independent coins, Alice can create a situation where for

4Sometimes, we consider a quantum computer that is only partially noisy (e.g., [10]).

In such a case we should formulate Postulates [P1], [P2] relative to the noiseless part.
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Bob the distribution of the n bits is described precisely by D. In this case the

values of the n bits will be deterministic and D reflects Bob’s uncertainty.

Alice can also make sure that for Bob the distribution of the n bits will be

D + E , where E describes independent errors of prescribed rate.

Is this a counterexample to our Postulates [P1] and [P2]? One can ar-

gue that the actual state of the n bits is deterministic and the distribution

represents Bob’s uncertainty rather than “genuine” stochastic behavior of

a physical device.5 But the meaning of “genuine stochastic behavior of a

physical device” is vague and perhaps ill-posed. Indeed, what is the differ-

ence between Alice’s secrets and nature’s secrets? In any case, the difficulty

described in this paragraph cannot be easily dismissed.6

However, note that as in the case of faraway qubits, the noisy distribu-

tion D + E was based on the ability to achieve the noiseless distribution D.

Achieving the distribution D was based on noiseless classical computation

to start with. For the case of quantum computers, we can still defend our

Postulates [P1] and [P2] against this argument as follows. Even if nature can

simulate Alice, and Bob’s “mental” uncertainty can be replaced by a “real”

physical situation where a highly correlated distribution is prescribed up to

an independent error term, this approximation was achieved via a noiseless

computation to start with. Therefore, such an approximation cannot serve,

in the quantum case, as a basis for fault tolerance. 7

5Compare the interesting debate between Goldreich and Aaronson [34], whether nature

can “really” manipulate exponentially long vectors.
6The distinction between the two basic interpretations of probability as either express-

ing human uncertainty or as expressing some genuine physical phenomenon is an important

issue in the foundation of (classical) probability. See, e.g., Anscombe and Aumman [35].

Opinions vary from not seeing any distinction at all between these concepts to regarding

human uncertainty as the only genuine interpretation.
7The difficulties considered here can perhaps be confronted by considering “information

leaks” (Section 3.1, remark 4) rather than “errors.” A related idea is to regard a stricter
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Running a quantum algorithm with a “random” state at all times

A critique of the possibility of any systematic damaging relation between the

state of the quantum computer and the noise was suggested by Ben-Or (see

[23]) and is related to some works of Preskill and Shor. (A related concern

was pointed out by Preskill. A detailed proof of such a result along with an

interesting interpretation was recently offered by Aharonov [36].) Having a

classical computer control a quantum computer makes it possible to run a

variant of any quantum computer program where at the initial state we apply

random Pauli operators on every qubit and modify the action of the gates

accordingly. This interesting critique does not apply to the mathematical

formulation given in Section 4 for Postulate [P1’], since the measures of

entanglement we use are invariant under such an operation.

Computation complexity

While it looks intuitively correct that our postulates are damaging for quan-

tum computation, proving it, and especially proving a reduction all the way

to the classic model of computation, is not going to be an easy task. (This is

an interesting question in computational complexity [23].) Let me mention

that the problem of describing complexity classes of quantum computers sub-

ject to various models of noise was proposed by Peter Shor [37] in the 90s,

but apparently was not picked up. Compare also Aaronson [38]. In particu-

lar, going below the computation power of logarithmic depth polynomial-size

quantum circuits appears to be difficult, yet such circuits combined with clas-

sical computers are strong enough to allow a polynomial-time algorithm for

definition of a noisy quantum computer as such that at any time along the computation

for every qubit, and for every observer, (who extracts information from the computer)

the noise rate for every qubit (namely the difference between its ideal state and its actual

state) is at least ǫ.
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factoring. (This follows from a recent result of Cleve and Watrous [39].)

Is it possible that our assumptions on noise (and, in particular, the possi-

bility of a dependence of the noise N on the program P), rather than being

harmful, will allow an even stronger computation power than BQP? Well,

optimism is always a good human trait, and yes, this is a possibility. But it

appears to be a remote possibility.

Topological quantum computers and anyons 8

There is a beautiful and powerful “dictionary” between certain forms of com-

binatorial methods for fault tolerance and remarkable objects from physics

for “topological quantum computers” [14, 40, 41]. In this case it is suggested

that fault tolerance can be realized by “non-Abelian anyons,” which can be

thought of as analogous to the physical realization of logical bits in a digital

computer that are very robust to noise. The two “languages” of this dictio-

nary are a combinatorial description of a quantum error-correction with n

qubits, and a physical realization as certain quasi-particles called “anyons”.

Only a small number of types of non-Abelian anyons are required to realize

the full power of quantum computers.

Analyzing the stability of non-Abelian (and Abelian) anyons based on

the assumption that the noise is “local” (statistically independent, as dis-

cussed above) reveals a remarkable phenomenon referred to as “mass gap.”

Below a certain temperature the anyon is going to be extremely stable. (Low

temperature translates to low error rate.) The mathematical model predicts

that as n grows the region of stability (in terms of the temperature) will not

become smaller and the “gap” will be maintained. Moreover, in this stable

area the robustness to noise will be exponential in n and thus, on the physics

8The next three items which discuss connections with physics are necessarily based on

incomplete and second-hand knowledge.
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side, we will obtain very robust qubits.9

The existence of very robust (“protected”) qubits based on quantum

error-correction via a highly entangled state, whether implemented by “soft-

ware,” say with ion traps, or by “hardware” like anyons, runs counter to our

conjectures. We can expect that when we study the effect of noise for the

combinatorial model of anyons with highly entangled state, using a perturba-

tion method that reflects Postulates [P1] and [P2], the exponential robustness

with n, or even the “mass gap” will disappear.

Other possible counter examples from physics

Several people have suggested that our postulates (and especially Conjecture

[C]) are already in conflict with phenomena from physics, like superconduc-

tivity and Einstein—Bose condensation. This appears to depend on precise

interpretation of these phenomena in our context and also on the rigorous

formal description of our conjectures themselves. Superconductivity and re-

lated phenomena are indeed physical systems with strong forms of (pairwise)

entanglement which appear to be related to what is required for quantum

fault-tolerance.

I tend to think that the form of entanglement for superconnectivity is

not sufficient to refute Conjecture [C] since the entanglement in this case is

“generated” (to a large extent) by dependencies of pairs of elements. Trans-

lating and testing Postulate [P1’] for the setting of superconductivity would

be of interest.

9In the translation between a discrete combinatorial model with n qubits (or n elements)

and a concrete physical object, it is not clear what is the interpretation on the physics

side for the value of n, and the relevance of the behavior as n tends to infinity should not

be taken for granted. Inner dependencies of the physical object appear to be relevant to

the best value of n for the combinatorial model describing it.
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Noisy quantum computers that respect our postulates are not capable of

simulating hypothetical objects like non-Abelian anyons. But are they capa-

ble of simulating familiar, much simpler, objects from physics? Perhaps the

simplest potential counterexample (not to [P1’] but possibly to its stronger

version, relation (2)) is a state X of 2n bosons (n large) each having a ground

state |0 > and an excited state |1 >, so that |0 > has occupation number

(precisely) n and |1 > has occupation number n. A similar state Y where

the occupational number has a binomial distribution can be simulated by a

tensor product state. So the question is whether X is physically realistic,

or perhaps any realization of X amounts in reality to something like Y . A

somewhat similar question (regarding a cat-like state and directly related to

the possibility of “superconducting qubits”) is raised by Leggett [24] (p.90,

(3.8), (3.9)).

Other possible relations to physics

An obvious connection to physics is that a failure of computationally superior

quantum computing would suggest that computations of quantum physics

that are relevant to physical reality can efficiently be simulated on classical

computers, and thus would question the relevance to reality of computations

from quantum physics that appear to be computationally hard. We mention

two other potential connections.

Perturbation methods. Another connection to physics may come from

the perturbation methods used to analyze non-Abelian anyons. These meth-

ods are related to standard perturbative methods used in various other areas

of physics and mainly in quantum field theory. Statistical independence

appears to be a major hidden assumption behind these methods. Modifi-

cations of the perturbation method itself, which may amount to amending

unjustified hidden probability independence assumptions, and may lead to
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a drastically different behavior for the extreme situation of (hypothetical)

highly entangled systems like quantum error-correcting code and quantum

computers, may be of interest also in more mundane situations from physics,

where these perturbation methods are (rather successfully) used.

Thermodynamics Connections between fault tolerance and thermody-

namics were considered, e.g., in [27, 42], and were intensely debated. (The

results and methods of [12] also have a clear thermodynamic flavor.)

For example, in a very recent paper, Alicki and Horodecki [42] propose

the following line of thought: 1. Thermodynamics is relevant because very

robust storage of quantum inormation requires large systems. 2. Meta-stable

states for finite systems are necessarily manifested by equilibrium states of

infinite systems. 3. Equilibrium states of infinite systems must have the

form: “probability measures over a set of states” and, in particular, cannot

support even a single qubit. Of the above points, perhaps the second is

the most controversial, and in view of some potential counterexamples may

be related to noise models/perturbative methods that are different from the

standard ones.

The information-theoretic form of the mathematical formulation of our

postulates (which, to a large extent, were required in order to respond to

various points discussed in this section) suggests possible connections with

thermodynamics. Of particular interest are connections with entropy-type

measures of “high order” statistical dependence.

Conclusion

My belief is that the interesting question of the physically realistic “Church-

Turing thesis” (put forward mainly by Deutsch) and, in particular, the fea-

sibility of computationally superior quantum computers will have a convinc-

ing solution, and that, whatever this solution is, the asymptotic approach —
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namely, the relevance of the asymptotic behavior of complexity to real-life

computation — which lies behind this question, will prevail.

The question “How can (computationally superior) quantum computers

fail?”10 is as important a part of the quantum information and quantum

computers endeavor, as the question “How can (computationally superior)

quantum computers succeed?” As a matter of fact, these two questions are

the same.
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