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Abstract

Pipeline parallel programming is a frequently used model to

program applications on multiprocessors. Despite its popu-

larity, there is a lack of studies of the characteristics of such

workloads. This paper gives an overview of the pipeline

model and its typical implementations for multiprocessors.

We present implementation choices and analyze their im-

pact on the program. We furthermore show that workloads

that use the pipeline model have their own unique charac-

teristics that should be considered when selecting a set of

benchmarks. Such information can be beneficial for pro-

gram developers as well as for computer architects who

want to understand the behavior of applications.

1 Introduction

Modern parallel workloads are becoming increasingly di-

verse and use a wide range of techniques and methods to

take advantage of multiprocessors. The pipeline paralleliza-

tion model is one such method that is particularly notewor-

thy due to its prevalence in certain application areas such as

server software.

Despite its frequent use, the characterizations of work-

loads using the pipeline model have not been studied much.

One reason for this might be the traditional focus of the

research community on scientific workloads, which typi-

cally do not exploit pipeline parallelism. Until recently few

benchmark programs that implement pipelines have been

available.

This issue is further exacerbated by the fact that pipeline

parallelism is emerging as a key method to take advantage

of the large number of cores that we can expect from fu-

ture multiprocessors. Methods such as the stream program-

ming model [10, 12], assisted parallelization [16] and even

automatic parallelization [13, 15] can be used to parallelize

programs by expressing the computational steps of a serial

workload as a parallel pipeline. These trends might lead to

an explosive increase of pipelined programs on multipro-

cessors.

This paper makes two main contributions. First, we

present a brief survey of how the pipeline model is used in

practice. Our overview can help other researchers to deter-

mine what part of the design space of pipelined programs is

covered by their applications. Second, we demonstrate that

the programs using the pipeline model have different char-

acteristics compared to other workloads. The differences

are significant and systematic in nature, which justifies the

existence of pipelined programs in the PARSEC benchmark

suite [2]. This suggests that pipelined workloads should be

considered for the inclusion in future benchmark programs

for computer architecture studies.

The remainder of the paper is structured as follows:

Section 2 presents a survey of the pipeline parallelization

model. In Section 3 we discuss how we studied the impact

of the pipeline model on the workload characteristics, and

we present our experimental results in Section 4. Related

work is discussed in Section 5 before we conclude in Sec-

tion 6.

2 Pipeline Programming Model

Pipelining is a parallelization method that allows a program

or system to execute in a decomposed fashion. A pipelined

workload for multiprocessors breaks its work steps into

units or pipeline stages and executes them concurrently on

multiprocessors or multiple CPU cores. Each pipeline stage

typically takes input from its input queue, which is the out-

put queue of the previous stage, computes and then outputs

to its output queue, which is the input queue of the next

stage. Each stage can have one or more threads depend-

ing on specific designs. Figure 1 shows this relationship

between stages and queues of the pipeline model.

Figure 1: A typical linear pipeline with multiple concurrent stages.

Pipeline stages have a producer - consumer relationship to each

other and exchange data with queues.
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2.1 Motivation for Pipelining

In practice there are three reasons why workloads are

pipelined. First, pipelining can be used to simplify pro-

gram engineering, especially for large-scale software de-

velopment. Pipelining decomposes a problem into smaller,

well-defined stages or pieces so that different design teams

can develop different pipeline stages efficiently. As long

as the interfaces between the stages are properly defined,

little coordination is needed between the different develop-

ment teams so that they can work independently from each

other in practice. This typically results in improved soft-

ware quality and lowered development cost due to simplifi-

cation of the problem and specialization of the developers.

This makes the pipeline model well suited for the develop-

ment of large-scale software projects.

Second, the pipeline programming model can be used

to take advantage of specialized hardware. Pipelined pro-

grams have clearly defined boundaries between stages,

which make it easy to map them to different hardware and

even different computer systems to achieve better hardware

utilization.

Third, pipelining increases program throughput due to

a higher degree of parallelism that can be exploited. The

different pipeline stages of a workload can operate con-

currently from each other, as long as enough input data is

available. It can even result in fewer locks than alternative

parallelization models [11] due to the serialization of data.

By keeping data in memory and transferring it directly be-

tween the relevant processing elements, the pipeline model

distributes the load and reduces the chance for bottlenecks.

This has been a key motivation for the development of the

stream programming model [8], which can be thought of as

a fine-grained form of the pipeline programming model.

2.2 Uses of the Pipeline Model

These properties of the pipeline model typically result in

three uses in practice:

1. Pipelining as a hybrid model with data-parallel

pipeline stages to increase concurrency

2. Pipelining to allow asynchronous I/O

3. Pipelining to model algorithmic dependencies

The first common use of the pipeline model is as a hy-

brid model that also exploits data parallelism. In that case

the top-level structure of the program is a pipeline, but each

pipeline stage is further parallelized so that it can process

multiple work units concurrently. This program structure

increases the overall concurrency and typically results in

higher speedups.

The second use also aims to increase program perfor-

mance by increasing concurrency, but it exploits parallelism

between the CPUs and the I/O subsystem. This is done

either by using special non-blocking system calls for I/O,

which effectively moves that pipeline stage into the oper-

ating system, or by creating a dedicated pipeline stage that

will handle blocking system calls so that the remainder of

the program can continue to operate while the I/O thread

waits for the operation to complete.

Lastly, pipelining is a method to decompose a complex

program into simpler execution steps with clearly defined

interfaces. This makes it popular to model algorithmic de-

pendencies which are difficult to analyze and might even

change dynamically at runtime. In that scenario the de-

veloper only needs to keep track of the dependencies and

expose them to the operating system scheduler, which will

pick and execute a job as soon as all its prerequisites are sat-

isfied. The pipelines modeled in such a fashion can be com-

plex graphs with multiple entry and exit points that have

little in common with the linear pipeline structure that is

typically used for pipelining.

2.3 Implementations

There are two ways to implement the pipeline model: fixed

data and fixed code. The fixed data approach has a static

mapping of data to threads. With this approach each thread

applies all the pipeline stages to the work unit in the pre-

defined sequence until the work unit has been completely

processed. Each thread of a fixed data pipeline would typi-

cally take on a work unit from the program input and carry

it through the entire program until no more work needs to

be done for it, which means threads can potentially execute

all of the parallelized program code but they will typically

only see a small subset of the input data. Programs that

implement fixed data pipelines are therefore also inherently

data-parallel because it can easily happen that more than

one thread is executing a function at any time.

The fixed code approach statically maps the program

code of the pipeline stages to threads. Each thread executes

only one stage throughout the program execution. Data

is passed between threads in the order determined by the

pipeline structure. For this reason each thread of a fixed

code pipeline can typically only execute a small subset of

the program code, but it can potentially see all work units

throughout its lifetime. Pipeline stages do not have to be

parallelized if no more than one thread is active per pipeline

stage at any time, which makes this a straightforward ap-

proach to parallelize serial code.

2.3.1 Fixed Data Approach

The fixed data approach uses a static assignment of data to

threads, each of which applies all pipeline stages to the data

until completion of all tasks. The fixed data approach can be

best thought of as a full replication of the original program,

several instances of which are now executed concurrently
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and largely independently from each other. Programs that

use the fixed data approach are highly concurrent and also

implicitly exploit data parallelism. Due to this flexibility

they are usually inherently load-balanced.

The key advantage of the fixed data approach is that it

exploits data locality well. Because data does not have to

be transferred between threads, the program can take full

advantage of data locality once a work unit has been loaded

into a cache. This assumes that threads do not migrate be-

tween CPUs, a property that is usually enforced by manu-

ally pinning threads to cores.

The key disadvantage is that it does not separate software

modules to achieve a better division of labor for teamwork,

simple asynchronous I/Os, or mapping to special hardware.

The program will have to be debugged as a single unit.

Asynchronous I/Os will need to be handled with concurrent

threads. Typically, no fine-grained mapping to hardware is

considered.

Another disadvantage of this approach is that the working

set of the entire execution is proportional to the number of

concurrent threads, since there is little data sharing among

threads. If the working set exceeds the size of the low-level

cache such as the level-two cache, this approach may cause

many DRAM accesses due to cache misses. For the case

that each thread contributes a relatively large working set,

this approach may not be scalable to a large number of CPU

cores.

2.3.2 Fixed Code Approach

The fixed code approach assigns a pipeline stage to each

thread, which then exchange data as defined by the pipeline

structure. This approach is very common because it allows

the mapping of threads to different types of computational

resources and even different systems.

The key advantage of this approach is its flexibility,

which overcomes the disadvantages of the fixed data ap-

proach. As mentioned earlier, it allows fine-grained par-

titioning of software projects into well-defined and well-

interfaced modules. It can limit the scope of asynchronous

I/Os to one or a small number of software modules and

yet achieves good performance. It allows engineers to con-

sider fine-grained processing steps to fully take advantage

of hardware. It can also reduce the aggregate working set

size by taking advantage of efficient data sharing in a shared

cache in a multiprocessor or a multicore CPU.

The main challenge of this approach is that each pipeline

stage must use the right number of threads to create a load-

balanced pipeline that takes full advantage of the target

hardware because the throughput of the whole pipeline is

determined by the rate of its slowest pipeline stage. In par-

ticular, pipeline stages can make progress at different rates

on different systems, which makes it hard to find a fixed as-

signment of resources to stages for different hardware. A

typical solution to this problem on shared-memory multi-

processor systems is to over-provision threads for pipeline

stages so that it is guaranteed that enough cores can be as-

signed to each pipeline stage at any time. This solution del-

egates the task of finding the optimal assignment of cores

to pipeline stages to the OS scheduler at runtime. However,

this approach introduces additional scheduling overhead for

the system.

Fixed code pipelines usually implement mechanisms to

tolerate fluctuations of the progress rates of the pipeline

stages, typically by adding a small amount of buffer space

between stages that can hold a limited number of work

units if the next stage is currently busy. This is done with

synchronized queues on shared-memory machines or net-

work buffers if two connected pipeline stages are on differ-

ent systems. It is important to point out that this is only

a mechanism to tolerate variations in the progress rates of

the pipeline stages, buffer space does not increase the max-

imum possible throughput of a pipeline.

3 Methodology

We studied the impact of the pipelining model with the

PARSEC benchmark suite [2]. To analyze the behavior of

the programs we chose a set of characteristics and measured

them for the PARSEC simlarge input set on a particular ar-

chitecture. We then processed the data with Principal Com-

ponent Analysis (PCA) to automatically eliminate highly

correlated data. The result is a description of the program

behavior that is free of redundancy. The results are visual-

ized using scatter plots.

This methodology to analyze program characteristics is

the common method for similarity analysis. Measuring

characteristics on an ideal architecture is frequently used

to focus on program properties that are inherent to the al-

gorithm implementation and not the architecture [1, 2, 19].

PCA has been in use for years as an objective way to quan-

tify similarity [4, 5, 7, 14, 18].

3.1 Workloads

We used PARSEC 2.1 to study the impact of the pipeline

model. The suite contains workloads implementing all the

usage scenarios discussed in Section 2.2. Table 1 gives

an overview of the four PARSEC workloads that use the

pipeline model.

Dedup and ferret are server workloads which imple-

ment a typical linear pipeline with the fixed code approach

(see Section 2.3.2). X264 uses the pipeline model to model

dependencies between frames. It constructs a complex

pipeline at runtime based on its encoding decision in which

each frame corresponds to a pipeline stage. The pipeline

has the form of a directed, acyclical graph with multiple

root nodes formed by the pipeline stages corresponding to

the I frames. These frames can be encoded independently
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Workload
Parallelism Dependency

Pipeline Data I/O Modeling

bodytrack N Y Y N

dedup Y Y Y N

ferret Y Y Y N

x264 Y N N Y

Table 1: The four workloads of PARSEC 2.1 which use the

pipeline model. ‘Pipeline parallelism’ in the table refers only to

the decomposition of the computationally intensive parts of the

program into separate stages and is different from the pipeline

model as a form to structure the whole program (which includes

stages to handle I/O).

from other frames and thus do not depend on any input from

other pipeline stages.

The bodytrack workload only uses pipelining to per-

form I/O asynchronously. It will be treated as a data-parallel

program for the purposes of this study because it does not

take advantage of pipeline parallelism in the computation-

ally intensive parts. The remaining three pipelined work-

loads will be compared to the data-parallel programs in the

PARSEC suite to determine whether the pipeline model has

any influence on the characteristics.

3.2 Program Characteristics

For our analysis of the program behavior we chose a total

of 73 characteristics that were measured for each of the 13

PARSEC workloads, yielding a total of 949 sample values

that were considered. Our study focuses on the parallel be-

havior of the multithreaded programs relevant for studies

of CMPs. The characteristics we chose encode information

about the instruction mix, working sets and sharing behav-

ior of each program as follows:

Instruction Mix 25 characteristics that describe the break-

down of instruction types relative to the total amount

of instructions executed by the program

Working Sets 8 characteristics encoding the working set

sizes of the program by giving the miss rate for differ-

ent cache sizes

Sharing 40 characteristics describing how many lines of

the total cache are shared and how intensely the pro-

gram reads or writes shared data

The working set and sharing characteristics were mea-

sured for a total of 8 different cache sizes ranging from 1

MBytes to 128MBytes to include information about a range

of possible cache architectures. This approach guarantees

that unusual changes in the data reuse behavior due to vary-

ing cache sizes are captured by the data. The range of cache

sizes that we considered has been limited to realistic sizes to

make sure that the results of our analysis will not be skewed

towards unrealistic architectures.

3.3 Experimental Setup

To collect the characteristics of the workloads we simulate

an ideal machine that can complete all instructions within

one cycle using Simics. We chose an ideal machine archi-

tecture because we are interested in properties inherent to

the program, not in characteristics of the underlying archi-

tecture. The binaries which we used are the official pre-

compiled PARSEC 2.1 binaries that are publicly available

on the PARSEC website. The compiler used to generate the

precompiled binaries was gcc 4.4.0.

We simulated an 8-way CMP with a single cache hierar-

chy level that is shared between all threads. The cache is

4-way associative with 64 byte lines. The capacity of the

cache was varied from 1 MB to 128 MB to obtain infor-

mation about the working set sizes with the corresponding

sharing behavior. Only the Region-of-Interest (ROI) of the

workloads was characterized.

3.4 Principal Component Analysis

Principal Component Analysis (PCA) is a mathematical

method to transform a number of possibly correlated in-

put vectors into a smaller number of uncorrelated vectors.

These uncorrelated vectors are called the principal compo-

nents (PC). We employ PCA in our analysis because PCA is

considered the simplest way to reveal the variance of high-

dimensional data in a low dimensional form.

To compute the principal components of the program

characteristics, the data is first mean-centered and normal-

ized so it is comparable with each other. PCA is then used to

reduce the number of dimensions of the data. The resulting

principal components have decreasing variance, with the

first PC containing the most amount of information and the

last one containing the least amount. We use the Kaiser’s

Criterion to eliminate PCs which do not contain any signif-

icant amount of information in an objective way. Only the

top PCs with eigenvalues greater than one are kept, which

means that the resulting data is guaranteed to be uncorre-

lated but to still contain most of the original information.

4 Experimental Results

In this section we will discuss how the use of the pipeline

programming model has affected the characteristics of the

PARSEC workloads. Our analysis shows that there are

substantial, systematic differences, which suggests that re-

searchers can improve the diversity of their benchmark se-

lection by including pipelined programs.

Figure 2 shows the first three principal components de-

rived from all studied characteristics. As can be seen the

three workloads which employ the pipelining model (rep-

resented by blue dots) occupy a different area of the PCA
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Figure 2: Comparison of the first three principal components of

all characteristics of the PARSEC workloads. Pipeline workloads

are represented by blue dots, all other workloads by red triangles.

The data shows significant systematic differences between the two

types of programs.

space as the rest of the PARSEC programs (represented by

red triangles). The PCA space can be separated so that

the different clusters become visible, as is indicated by the

dashed line which we have added as a visual aid.

A further investigation of the individual characteristics

reveals the sharing behavior of the workloads as a major

source for the differences. In Figure 3 we present a scatter

plot that was obtained with just the sharing characteristics.

As can be seen the PCA space of the sharing characteristics

can also be separated so that the two types of workloads

occupy different areas. However, the difference seems to be

less pronounced than in the previous case which considered

all characteristics.

The remaining characteristics which encode the instruc-

tion mix and working sets of the workloads also exhibit

a small tendency to group according to the parallelization

model of the workloads. However, the differences are much

smaller in scope and separation. The aggregate of these dif-

ferences appears to be the reason for the clearer separation

seen in Figure 2 compared to Figure 3.

Our analysis suggests that pipelined programs form their

own type of workload with unique characteristics. Their be-

havior is different enough to warrant their consideration for

inclusion in a mix of benchmarks for computer architecture

studies.

5 Related Work

Kuck published a survey about parallel architectures and

programming models [9] over thirty years ago. He covers

various early methods to parallelize programs but does not

include the pipeline model.

For main memory transaction processing on multipro-

Figure 3: Comparison of the first three principal components of

the sharing characteristics of the PARSEC workloads. Pipeline

workloads are represented by blue dots, all other workloads by red

triangles. Systematic differences in sharing are a major source for

the different behavior of pipelined workloads.

cessors, Li and Naughton demonstrate that pipelined pro-

grams can achieve higher throughput and less locking over-

head [11].

Subhlok et al. study how the stages of a pipeline can

be mapped optimally to processors [16]. They developed

a new algorithm to compute a mapping that optimizes

the latency with respect to constraint throughput and vice

versa. The algorithm addresses the general mapping prob-

lem, which includes processor assignment, clustering and

replication.

Thies et al. present a systematic technique to parallelize

streaming applications written in C with the pipeline par-

allelization model [17]. They suggest a set of annotations

that programmers can use to parallelize legacy C programs

so they can take advantage of shared-memory multiproces-

sors. The programmer is assisted by a dynamic analysis that

traces the communication of memory locations at runtime.

The stream programming model is a parallelization ap-

proach that decomposes a program into a parallel network

of specialized kernels which are then mapped to process-

ing elements [3, 6, 8]. Data is organized as streams, which

is a sequence of similar elements. A kernel in the stream

programming model consumes streams, performs a com-

putation, and produces a set of output streams. It cor-

responds to a pipeline stage of the pipeline programming

model. Stream programs are suitable for execution on

general-purpose multiprocessors [10, 12].

Decoupled Software Pipelining (DSWP) is an automatic

parallelization method which uses the pipeline model [13,

15]. It exploits the fine-grained pipeline parallelism inher-

ent in most applications to create a multithreaded version

of the program that implements a parallel pipeline. Low-
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overhead synchronization between the pipeline stages can

be implemented with a special synchronization array [15].

6 Conclusions

This paper gives an overview of the pipeline programming

model, its implementation alternatives on multiprocessors

and the challenges faced by developers.

To analyze how pipeline parallelization affects the char-

acteristics of a workload we studied the programs of the

PARSEC benchmark suite. The suite contains several

programs that implement the pipeline model in different

ways. Our results show that workloads that use the pipeline

model have systematically different characteristics. A ma-

jor reason for the changed characteristics are differences in

the sharing behavior. Our results suggest that researchers

should consider adding pipelined workloads to their mix of

benchmark programs for computer architecture studies.
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