
Accepted Manuscript

Evolutionary optimisation of noisy multi-objective problems using confidence-

based dynamic resampling

Anna Syberfeldt, Amos Ng, Robert I. John, Philip Moore

PII: S0377-2217(09)00853-4

DOI: 10.1016/j.ejor.2009.11.003

Reference: EOR 9802

To appear in: European Journal of Operational Research

Received Date: 28 August 2008

Revised Date: 28 October 2009

Accepted Date: 3 November 2009

Please cite this article as: Syberfeldt, A., Ng, A., John, R.I., Moore, P., Evolutionary optimisation of noisy multi-

objective problems using confidence-based dynamic resampling, European Journal of Operational Research (2009),

doi: 10.1016/j.ejor.2009.11.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ejor.2009.11.003
http://dx.doi.org/10.1016/j.ejor.2009.11.003


ACCEPTED MANUSCRIPT 

Evolutionary optimisation of noisy multi-objective problems

using confidence-based dynamic resampling

Anna Syberfeldt∗a, Amos Nga, Robert I. Johnb, Philip Moorec

October 27, 2009

aCenter for Intelligent Automation, University of Skövde, SE-54148 Skövde, Sweden
bCenter for Computational Intelligence, De Montfort University, Leicester LE1 9BH, United Kingdom
cCenter for Mechatronic Research, De Montfort University, Leicester LE1 9BH, United Kingdom

Abstract

Many real-world optimisation problems approached by evolutionary algorithms are subject to

noise. When noise is present, the evolutionary selection process may become unstable and the

convergence of the optimisation adversely affected. In this paper, we present a new technique that

efficiently deals with noise in multi-objective optimisation. This technique aims at preventing the

propagation of inferior solutions in the evolutionary selection due to noisy objective values. This

is done by using an iterative resampling procedure that reduces the noise until the likelihood of

selecting the correct solution reaches a given confidence level. To achieve an efficient utilisation

of resources, the number of samples used per solution varies based on the amount of noise in the

present area of the search space. The proposed algorithm is evaluated on the ZDT benchmark

problems and two complex real-world problems of manufacturing optimisation. The first real-

world problem concerns the optimisation of engine component manufacturing in aviation indus-

try, while the second real-world problem concerns the optimisation of a camshaft machining line

in automotive industry. The results from the optimisations indicate that the proposed technique is

successful in reducing noise, and it competes successfully with other noise handling techniques.

Keywords: Evolutionary computations; Multi-objective optimisation; Noise; Simulation

1 Introduction

Real-world optimisation problems often contain non-linearities, combinatorial relationships, and un-

certainty factors that are too complex to be effectively modelled analytically. For these problems,

simulation-based optimisation is a powerful technique for determining optimal system parameters

(April et al., 2004). Simulation-based optimisation is the process of finding the best parameter values

for a system, in which the performance is evaluated on the basis of output from a simulated model of

the system.

While traditional, analytical optimisation methods have been unable to cope with the challenges

imposed by many simulation-based optimisation problems in an efficient way, such as multimodality,

∗Corresponding author. Tel.: +46 701 408051; fax: +46 500 448598. E-mail address: anna.syberfeldt@his.se (A. Syberfeldt).

1



ACCEPTED MANUSCRIPT 

non-separability and high dimensionality, evolutionary algorithms have been shown to be applicable

to this type of problem (Ong et al., 2004). Evolutionary algorithms (EAs) are also particularly suitable

for solving problems that require simultaneous optimisation of more than one objective, which is of-

ten the case in real-world applications (Deb, 2004). The difficulty with multi-objective problems is that

usually there is no single optimal solution with respect to all objectives, as improving the performance

of one objective means decreasing the performance of another (Srinivas and Deb, 1995). Instead of a

single optimum, there is a set of optimal trade-offs between the conflicting objectives, called Pareto-

optimal solutions (or Pareto front, if plotted in criterion space) (Coello Coello et al., 2007). Different

Pareto ranks can also be identified among solutions. Rank 1 includes the Pareto-optimal solutions in

the complete population, and rank 2 the Pareto-optimal solutions identified when temporarily dis-

carding all solutions of rank 1, and so on. Contrary to many other optimisation techniques, EAs can

capture multiple trade-off solutions in one single optimisation run since they maintain a population

of solutions.

In many practical applications of EAs, one has not only to cope with multiple optimisation objec-

tives, but also with stochastic noise as a consequence of uncontrollable variations, caused, for exam-

ple, by human operators or worn-out machines (Jin and Branke, 2005; Bui et al., 2005; Branke et al.,

2007; Goh and Tan, 2007). Noise means that even if the initial conditions of the system and its input

parameters are known, the output of the system cannot be predicted but will vary from time to time.

These unpredictable variations in the simulation output are harmful to the optimisation process since

the EA can be misdirected to propagate inferior solutions. To deal with noise in evolutionary optimisa-

tion, three basic approaches have been proposed: explicit averaging, implicit averaging, and selection

modification (Jin and Branke, 2005). In explicit averaging, the same solution is simulated a number of

times and the objective values are averaged. Simulating a solution n times reduces the noise by a factor

of
p

n, but at the same time increases the computational effort by a factor of n (Jin and Branke, 2005).

In implicit averaging, the sample size is adjusted to the population size; the larger the population the

smaller the sample size (Fitzpatric and Grefenstette, 1988; Miller and Goldberg, 1996). The assumption

of this approach is that there are many similar solutions in a large population, and that the influence of

noise is compensated for as the algorithm revisits promising regions of the search space frequently. In

selection modification, the ranking and/or selection procedure is modified to compensate for noise,

such that a solution is only considered better than another solution if certain conditions are satisfied

(Jin and Branke, 2005). For example, the probability of dominance can be considered as proposed by

Hughes (2001), or the closeness of solutions can be considered as proposed by Babbar et al. (2003).

In this paper we present a new noise handling technique for multi-objective optimisation that ef-

ficiently deals with noise in simulations. This technique varies the number of samples used per solu-

tion based on the amount of noise in combination with a user-defined confidence level, controlling

the trade-off between search space exploration and number of solution samplings. With the tech-

nique, resampling of solutions is performed iteratively until the noise is sufficiently reduced. The pro-

posed technique is integrated in an algorithm called “Multi-Objective Parallel Surrogate-Assisted EA”

(MOPSA-EA) described in Syberfeldt et al. (2008). MOPSA-EA is designed to reduce the large time

consumption associated with many real-world problems approached by simulation. The algorithm

2



ACCEPTED MANUSCRIPT 

supports a high degree of parallelism by implementing the asynchronous master-slave parallelisation

model in combination with a steady-state design. For improved efficiency, the algorithm also uses a

simulation surrogate to screen candidate solutions and identify the most promising ones. A simulation

surrogate is a computationally cheap approximation of a time-consuming simulation that can be used

to estimate the objective values of solutions.

The rest of the paper is organised as follows. The next section discusses the effects of noise in

EAs and outlines different techniques that have been suggested to cope with this problem in multi-

objective optimisation. In Section 3, the new noise handling technique proposed in this paper is de-

scribed. In evaluating the new technique, it is applied to five benchmark problems and two real-world

problems of manufacturing optimisation, which are described in Section 4. The technique is imple-

mented in MOPSA-EA, which is presented in Section 5. The results of the evaluation are presented in

Section 6, along with a comparison of other noise handling techniques and an analysis of the results.

Conclusions of the study and future work are presented in Section 7.

2 Noisy optimisation problems

A certain degree of randomness, so called noise, is an inherent property of most real-world systems.

When a system is subject to noise, repeated evaluations of the same solution over time will result in

different objective values. This effect is exemplified in Figure 1 (adopted from Büche et al., 2002), where

the objective value returned from the evaluation function f has an error that is governed by a normal

distribution and therefore varies from time to time.

f(t)

t

µ

Figure 1: Varying fitness values due to noise.

A noisy evaluation function is also illustrated in Figure 2 (adopted from Di Pietro et al., 2004). In

this figure, the function to be optimised is shown without noise to the left and with added noise to

the right (the probability of a function evaluation resulting in a particular value is represented by the

shading; the darker the area the more likely the value occurs). While it is trivial to optimise the original

function by an EA, the problem becomes significantly harder to solve when noise is present.

3



ACCEPTED MANUSCRIPT 

Figure 2: Function without noise (left) and with noise (right).

The problem of noise is that it is not possible to say for certain which of two solutions is the better

one (Tan and Goh, 2008). This influences the evolutionary selection negatively in two aspects:

(i) an inferior solution may be erroneously believed to be superior and therefore survives and

is given the opportunity to reproduce, or

(ii) a superior solution may be erroneously believed to be inferior and is therefore eliminated.

Noisy objective values like these are likely to cause a reduced convergence rate of the optimisation and

a deterioration of the quality of the final sub-optimum (Beyer, 2000; Arnold and Beyer, 2002; Branke

and Schmidt, 2003; Jin and Branke, 2005), since the evolutionary process, more or less, degenerates

into a random search (Tan and Goh, 2008). A number of different techniques have been suggested to

handle this problem, both for single-objective and multi-objective problems. Although many tech-

niques for single-objective problems can be applied to multi-objective problems as well, this paper

focuses on techniques specifically designed for multi-objective optimisation. There are four major

such approaches; static resampling, modified Pareto ranking scheme, dominance-dependent lifetime,

and fitness inheritance. A description of these approaches is provided in the remainder of this section.

For an overview of noise handling techniques in single-objective optimisation the reader is referred to

Jin and Branke (2005).

2.1 Static resampling

Static resampling, that is, sampling the objective values of all solutions a fixed number of times and

using the average values, is the most commonly used method for handling noise. The reduction of

variance in the estimated objective is proportional to the sample size; sampling an objective value n

times reduces the standard deviation of the objective by a factor of
p

n, but at the same time increases

the computational effort by a factor of n (Jin and Branke, 2005).

2.2 Modified Pareto ranking scheme

Two different approaches of modifying the original Pareto ranking scheme for handling noise have

been suggested; one probability-based and one based on a clustering method.

4



ACCEPTED MANUSCRIPT 

Probability-based With the probability-based Pareto ranking scheme, the original Pareto ranking

scheme is replaced by a probabilistic ranking process that takes noise into consideration (Hughes,

2001; Teich, 2001). In this ranking process, a solution s is assigned a rank representing the sum of

probabilities that each of the solutions in the population dominates s (the lower the rank, the better

the solution). In assigning ranks, the probability of making a wrong selection among two solutions is

quantified. When considering only one objective of two solutions, estimated with value a and value

b, respectively, the probability of making a wrong decision with respect to this objective is calculated

according to Equation 1 (assuming a minimisation problem).

P (a > b) =
∫ ∞

−∞

(
pd fa (a −x)

∫ −∞

x
pd fb (b −x)d x

)
(1)

In this Equation 1, x is the point being integrated over, and pd f is a probability distribution func-

tion defined by the mean and the standard deviation of the objective value. The formula estimates

the probability of b being in any position left of x, when a is located at point x. In a multi-objective

minimisation problem of M objectives, the probability of making a wrong decision when choosing

between two solutions A and B is calculated according to Equation 2

P (A > B) =
M∏

i=0
P (Ai > Bi ) , (2)

and the probability of A and B being mutually non-dominating is calculated according to Equation 3

P (A ≡ B) = 1−P (A < B)−P (A > B) . (3)

Based on these formulae, the probabilistic rank R of solution p with index i is then calculated accord-

ing to Equation 4

Ri =
N∑

j=1
P

(
p j > pi

)+ 1

2

N∑
j=1

P
(
p j ≡ pi

)−0.5. (4)

With probabilistic ranks, most solutions will be assigned unique ranks as a consequence of the ranks

being real values. A potential problem with this is that crowding distance among solutions (that is,

the density of solutions in a particular area) is not be considered, resulting in a poor diversity of the

population. Another drawback of the probability-based technique is the computational expense from

performing integral operations for each objective in each solution (cf. Equation 1).

A variant of the probability-based Pareto ranking scheme is the technique of multi-objective com-

puting budget allocation (Lee et al., 2008). In this variant, the solutions are first sorted in descending

order according to the R values and then the n solutions with the best ranks are included in the Pareto

front (where n is user-defined). Two types of error probabilities are calculated; (i) the probability that

at least one solution in the non-Pareto set (that is, solutions that do not belong to rank 1) is non-

dominated, and (ii) the probability that at least one solution in rank 1 is dominated. As long as these

probabilities are above a user-defined threshold, resampling of solutions continues. When both errors

have decreased below the given threshold, the algorithm proceeds to generate the next generation of

the population.

5



ACCEPTED MANUSCRIPT 

Cluster-based The cluster-based Pareto ranking scheme is also based on a modified ranking proce-

dure (Babbar et al., 2003). In this approach, a cluster-based Pareto front is formed by solutions of rank

1 and solutions that lie in the neighbourhood of rank 1. Two solutions A and B are considered to be

neighbours if their difference in mean values in the i :th objective is less then K
√

σi A+σi B
2 (where i is

user-defined, K is a user-defined neighbourhood restriction factor, and σi j is the standard deviation

in the i :th objective of solution j ). At the same time, the difference in any objective m 6= i must be

less then
√

σm A+σmB
2 . Initially, the value of K is large and a large number of dominated solutions are

included in the cluster-based Pareto front. During each generation of the EA, all solutions in the popu-

lation are resampled n times (where n is user-defined). With a decreased standard deviation resulting

from the resamplings, the K value is decreased during the optimisation. A smaller K value makes it

harder for solutions to be included in the front, and thereby the front becomes increasingly reliable.

A potential drawback of the cluster-based Pareto ranking scheme is that the diversity of the popula-

tion might be impeded with the modified ranking scheme. The clustering effect arising from including

solutions close to solutions of rank 1 in the front results in many similar solutions. A consequence of

many solutions being similar to each other is that the diversity of the population becomes poor and

hence the convergence of the search is negatively affected.

2.3 Domination-dependent lifetime

In the technique of dominance-dependent lifetime, each solution is assigned a maximal lifetime based

on the number of solutions it dominates (Büche et al., 2002). A solution dominating a large number

of solutions is assigned a short lifetime, and vice verse. The purpose of this strategy is to reduce the

impact of solutions that appear to be good, but whose fitness value is misleading due to noise. To en-

able good solutions to proceed in the evolutionary process, non-dominating solutions whose lifetimes

have expired are resampled and added to the population with the new objective values.

Contrary to the other techniques, the technique of dominance-dependent lifetime does not explic-

itly resample solutions, but instead evaluates non-dominating solutions whose lifetime has expired

anew and adds them to the population with their new objective values. Basically, this means that a

noisy sample of a solution is simply replaced by another noisy sample. It can be argued that the noise

is actually not reduced and the original problem that the algorithm may be mislead by the noise is

likely to remain.

2.4 Fitness inheritance

A technique to handle noise based on the concept of fitness inheritance has also been suggested (Bui

et al., 2005). In this approach, a child inherits the mean objective value µ̄= µpar ent1+µpar ent2

2 and the mean

standard deviation σ̄= σpar ent1+σpar ent2

2 from its parents. The child is evaluated once, and if the objective

values fall within the confidence interval
(
µ̄−3∗ σ̄≤ f ≤ µ̄+3∗ σ̄)

the inherited fitness is accepted.

Otherwise, the child is resampled a user-defined number of times and assigned the mean value and

standard deviation of these evaluations.

The technique of fitness inheritance uses a strategy in which the greater the standard deviation of

a solution’s parents (that is, the larger their noise size), the greater the probability that the inherited

6



ACCEPTED MANUSCRIPT 

values are accepted without resampling. Intuitively, the inverse is more logical, that is, the larger the

noise the greater the need to perform resampling to reduce the noise.

In the next section, a new noise handling technique for multi-objective problems is presented that

aims at addressing the drawbacks of the existing noise handling techniques.

3 Confidence-based dynamic resampling

When the optimisation problem is subject to noise, this must be compensated for by performing mul-

tiple samplings (that is, simulations) of solutions, otherwise the evolutionary selection process may

become unstable. Given s samplings of each solution and a total of n simulations, n/s unique solu-

tions can be evaluated. With 500 simulations, for example, 500 different solutions can be evaluated if

each of them is sampled once, and 50 if they are sampled ten times. A crucial aspect here is to find

the best trade-off between the number of unique solutions evaluated and the number of samplings

of each solution. The larger the number of unique solutions evaluated, the more the search space

can be explored and the greater the probability of finding its optimum. However, at the same time,

resamplings of solutions is necessary in order to prevent the search from being misdirected due to

noise. The remainder of this section includes a description of a novel technique that efficiently ad-

dresses this trade-off problem. This technique varies the number of samples used per solution, based

on the amount of noise in combination with a user-defined confidence level, controlling the trade-off

between search space exploration and number of solution samplings. With this technique, resampling

of solutions is performed iteratively until the noise is sufficiently reduced.

3.1 Basic procedure

The procedure of the proposed technique, referred to as confidence-based dynamic resampling (CDR),

comprises five main steps which are presented below. A flowchart illustrating the overall procedure can

be found on-line alongside the electronic version of the paper (Figure A).

Step 1: Initial sampling

Initially, the two solutions being compared are sampled n times each to form an initial estimate of the

amount of noise1. In order to avoid spending expensive simulations on inferior solutions, the default

value of n is two. In very noisy problems, however, it might be necessary to increase the value of n.

Step 2: Calculation of mean and sample standard deviation

Based on the collected samples, the mean and sample standard deviation of each objective is calcu-

lated for the two solutions.

1It can be noted that this step is passed over if the solutions for some reason already have been sampled n times.

7



ACCEPTED MANUSCRIPT 

Step 3: Selection of confidence level

The confidence level is defined by the user and represents the desired certainty of the true relation

between two solutions. Three types of true relations are possible between two solutions A and B :

(i) A dominates B , or

(ii) B dominates A, or

(iii) A and B are mutually non-dominating.

The confidence level α is in the interval [0,1] and specifies that in at least α of the cases the selection

between two solutions should be correct (that is, the selection should result in the same solution as if

the noise would have been completely reduced). It is natural to think that the user would always want

100% of the selections to be correct, that is, set α to 1. However, to reach a high α, a large number of

solution samplings are necessary and not as many unique solutions can be evaluated. With a low α,

on the other hand, many unique solutions can be evaluated, but there is a risk that the noise will not

be sufficiently reduced.

A specific confidence level is defined by the user for each Pareto rank, and generally a higher rank

implies a higher confidence level since high precision is usually more important for solutions in, or

nearby, the Pareto front. Usually, for rank 1, an α value of about 0.75 presents an acceptable trade-

off between search space exploration and noise reduction (for each of the succeeding ranks, the value

can the be decreased by 0.05). The confidence level to use in a comparison of two solutions is derived

from the solution of highest rank, which means that a non-dominating sort must first be performed to

establish the ranks of the solutions. Although this sort may not return the true ranks – the goal of the

procedure itself is to find out this ranking – it gives an indication of the relations between solutions in

the population.

Step 4: Confidence test

In a noisy context, the true relation between two solutions can only be determined by taking the mean

of all possible samples of the solutions. In practice, it is not possible to collect the complete set of

samples, only a limited number of samplings can be performed. Instead, the probability that the com-

puted relation is the same when given the collected (observed) samples as given all samples has to be

established (that is, the probability of making a correct selection from the solutions). The method of

Welch confidence interval is used to do this. Welch confidence interval (WCI) can be used to compare

whether or not there is a significant difference between two samples of unknown and possibly unequal

variances with respect to a given confidence level. There are two assumptions behind the method of

WCI. The first assumption is that the two samples being compared must be independent (that is, the

samples must be collected independently of each other). The second assumption is that the samples

are drawn from normal distributed populations. Many measurements can be approximated, to vary-

ing degrees, by the normal distribution. Also, even though the data are non-normal, the method can

still be used to approximate whether or not there is a significant difference between two solutions.

8



ACCEPTED MANUSCRIPT 

In CDR, WCI values are calculated for each objective i according to Equation 5 (Law and Kelton,

2000)

µi A (NA)−µi B (NB )± t f̂ ,1− α
2M

√
s2

i A

NA
+ s2

i B

NB
, (5)

where A and B are the two solutions being compared, µi is the mean of objective i , Np is the number

of samples of solution p, t is a Student t-distribution with estimated degree of freedom f̂

f̂ =
[

s2
A

NA
+ s2

B
NB

]
[

s2
A

NA

]2

NA−1 +
[

s2
B

NB

]2

NB−1

(6)

and probability 1− α
2M (α=confidence level, M=number of objectives), and s2

i is the variance of objec-

tive i . In multi-objective problems, the confidence level α has to be divided by 2M , and not by 1 as

in a single-objective problem, due to the Bonferroni Inequality (Law and Kelton, 2000). This means

that for a problem of two objectives, to obtain a 0.95 confidence, for example, each objective has to be

compared with a confidence level of 0.975.

If the WCI resulting from Equation 5 does not include 0, there is a significant difference between

the two solutions in the i :th objective. If none of the WCIs for the M objectives include 0, it means

that the relation between the two solutions (see Step 3) can be established with respect to the given

confidence level. The dominating solution is then returned, or the one with largest crowding distance,

if the solutions are mutually non-dominating, and the procedure is terminated. Otherwise (that is,

if any of the objective’s intervals covers 0) the difference between the solutions is not significant and

further noise reduction is necessary in order to determine their internal relation.

Step 5: Noise reduction by resampling

Ultimately, the relation between the solutions should be established using as few resamplings as pos-

sible to save simulation resources. Therefore, the strategy adopted in this step is to resample only one

of the solutions at a time. The solution having the largest sample standard deviation in the objective

with the largest interval including 0 (that is, with the largest potential to eliminate the undesired in-

significance) is the one resampled. After a new sampling of this solution, the procedure is repeated

from step 2 and a new check is made if further resampling is necessary.

To prevent the resampling of two solutions that are close to each other in objective space from con-

tinuing forever, the number of samplings of a solution is limited. Similar to the specification of confi-

dence level, the maximum number of samplings is defined by the user for each rank. A larger number

of samplings (about 5-10) is usually allowed for solutions in higher ranks where a higher precision is

needed. A limited number of samplings means that if a solution in this step has already reached its

allowed number, it cannot be further sampled. The other solution is then resampled instead, unless

it has also reached its maximum number. In such a case the dominating solution (or the one with

largest crowding distance, if the solutions are mutually non-dominating) given the obtained samples

is returned and the procedure is terminated. It should be noted that if too few resamplings are allowed,

9



ACCEPTED MANUSCRIPT 

there is a risk that the desired confidence level will not be reached.

Since the ranks of solutions are calculated in every iteration of the procedure, the maximum num-

ber of samplings of solutions may change between iterations if their ranks change (as may also the

confidence level to use when comparing them). In this way, the resampling strategy becomes dynamic

and adjusts automatically to changes in the population.

3.2 Optimised implementation

In step 3, a non-dominating sort is performed to derive the ranks of the solutions. This is a relatively

expensive operation with a complexity of O
(
MN2

)
(where M is the number of objectives and N is

the number of solutions in the population)2. To improve efficiency, step 3 can be optimised to avoid

the non-dominating sort whenever possible. This is done by first checking if there is a significant

difference between the two solutions in all objectives with respect to the confidence level of rank 1

(that is, no WCI includes 0). If this is the case, there will be a significant difference between them

with respect to all other confidence levels also, and their ranks do not need to be established, hence a

non-dominating sort can be avoided.

Another potential optimisation of the implementation of the noise handling technique is to per-

form less frequent resamplings in the beginning of the search during the rough exploration, and in-

crease the resampling frequency when the optimisation begins to converge. For example, the resam-

pling frequency can be increased when the population has not changed in the last i iterations, or when

the difference in objective values of solutions is smaller than a parameter p.

3.3 Discussion

The benefits of a dynamic resampling strategy have previously been discussed by Di Pietro et al. (2004).

Di Pietro et al. suggest two dynamic strategies to reduce noise. In the first strategy, called standard error

dynamic resampling, all solutions are resampled until the standard error of the mean for each solution

is below a user-defined threshold (the same threshold is used for all solutions). In the second strategy,

called m-level resampling, different thresholds are used for different noise intervals. Although Di Pietro

et al. were able to demonstrate the potential of a dynamic procedure, they also found that properly

applying a dynamic resampling strategy requires a more sophisticated approach than simply forcing

the standard error below some threshold. The CDR technique is a step in this direction; instead of using

standard error thresholds, statistical tests based on the concept of Welch confidence interval are being

used. Furthermore, the resampling procedure used in the CDR technique is more efficient since noise

is not reduced for all solutions in the population, but only for those participating in the evolutionary

selection. The motivation of this approach is that noise is not harmful to every element of an EA,

but only to those evolutionary processes that involve comparative selection. In other evolutionary

operations, such as mating or mutation, noise is irrelevant.

The following section presents a description of the evaluation of the CDR technique on a number

of optimisation problems.

2It can be noted that Jensen (2003) has suggested an improved version of the non-dominated sorting that reduces the
complexity to O

(
N logM N

)
.

10



ACCEPTED MANUSCRIPT 

4 Optimisation problems

The evaluation has used five benchmark problems and two complex real-world problems from the

manufacturing domain. The first real-world problem concerned the optimisation of a manufacturing

cell for the production of components for aircraft- and gas turbine engines at Volvo Aero, while the

second real-world problem concerned the optimisation of a camshaft machining line at Volvo Cars

Engine.

4.1 Benchmark problems

A set of guidelines for the systematic development of benchmark problems for multi-objective optimi-

sation was first proposed in Deb (1999). Based on these guidelines, Zitzler et al. suggest six benchmark

functions that have been extensively used in the literature for the analysis and comparison of multi-

objective EAs: ZDT1, ZDT2, ZDT3, ZDT4, ZDT5, and ZDT6 (Zitzler et al., 2000). These problems have

properties that are known to cause difficulties in converging to the true Pareto-optimal front and re-

flect characteristics of real-world problems, such as multimodality and high dimensionality. This has

motivated the use of these functions in assessing the performance of the CDR technique. However,

function ZDT5 has been omitted since it defines a Boolean function over binary strings, and binary

encodings are not considered in this study. Artificial noise was added to the functions generated from a

zero mean Gaussian distribution whose standard deviation (set to 0.2) represents the amount of noise.

Functions ZDT1-ZDT3 were used with 30 input parameters, while ZDT4 and ZDT6 were used with 10

input parameters.

4.2 Volvo Aero

At their factory located at the headquarters in Sweden, Volvo Aero has recently introduced a new man-

ufacturing cell. The cell comprises five multi-task machines and five burring stations, and processes a

wide range of different engine components. The cell is highly automated, but some operations, such

as burring, are performed manually. Human operators being part of the process is a source of noise in

system, as well as there are unpredictable machine breakdowns.

The inflow of the cell is controlled by using fixed inter-arrival times for components, which are to

be optimised. The inter-arrival time not only specifies when a component should enter the system,

but also determines the component’s due time since an overall production strategy is to process no

more than one component of a specific type in the cell at a time. This means that if, for example, the

inter-arrival time for a component type is set at two hours, a new component of that type is introduced

in the cell every two hours with a due time of two hours from the time it was introduced. For efficient

production, the inter-arrival times should be specified in a way that maximises the utilisation of the

cell (objective 1) and simultaneously minimises overdue components, that is tardiness (objective 2).

For high utilisation, short inter-arrival times are needed in order to obtain a high cell load and thereby

avoid machine starvation. However, avoiding overdue components requires generous due times; that

is long inter-arrival times. This means that the two objectives of maximal utilisation and minimal

tardiness conflict with each other.

11



ACCEPTED MANUSCRIPT 

For the optimisation, a discrete-event simulation model of the manufacturing cell was built using

the SIMUL8 software package3, and a scenario with eleven different component types was specified

in the simulation. This means that the problem has eleven decision variables, all continuous. A single

simulation run takes approximately 7 minutes including input and output processing. The company’s

optimisation time budget allowed for 400 simulations.

4.3 Volvo Cars Engine

Volvo Cars Engine manufactures passenger cars, and in this study a factory in Sweden responsible

for producing petrol and diesel engine components was considered. The specific focus of the study

was on the factory’s camshaft machining line, responsible for producing 15 different camshaft vari-

ants. The machining line comprises a number of operation groups, each responsible for performing

a specific operation on a camshaft being produced. For each operation group, there are a number of

parallel machines responsible for actually performing these operations. There are 14 operating groups

and 34 machines in total. Unlike an ordinary flow shop with parallel machines, each machine has its

own processing time, physical capability and limitations, as well as variability in terms of failures and

set-ups. All finished camshafts are taken to a storage area, from where they can later be distributed to

other production areas. It is important to always maintain stock levels in the storage area above cer-

tain limits in order to ensure that production is not delayed elsewhere because of unexpected events

such as machine breakdowns or quality defects (noise). Camshafts are produced in batches (that is, a

collection of camshafts of the same kind), with each batch being prioritised for production in order to

keep stock levels in the storage area at an acceptable level. Prioritisation is determined by a schedule,

which also defines the individual path through machines and operations that the batches should take.

Stock levels are checked at continuous time intervals, and a mean value of the shortage noticed at each

measure point is calculated at the end of the scheduling period. Besides minimising product shortage

(objective 1), it is also important that a schedule results in a throughput of the line that is as high as

possible for maximum efficiency (objective 2). For high throughput, there should ideally be only one

variant produced in the line at the same time to avoid set-up times for machines, which cause a large

overhead. Furthermore, for a high throughput, variants with shorter processing times should be pri-

oritised before those with longer processing times. However, to maintain the minimum stock levels, an

even mix of the different variants being produced in the line is needed and variants should be priori-

tised so that shortage is avoided. In other words, the objectives of minimum shortage and maximum

throughput conflict with each other.

In evaluating the new noise handling technique when applied to the problem at Volvo Cars Engine,

as well as the previous problems described, it is integrated in a multi-objective surrogate-assisted EA

which is described in the next section.

For the optimisation of the machining line, a discrete-event simulation was constructed using the

QUEST simulation software4. The simulation model was primarily built for short-period scheduling,

and in this study a seven day of production period was simulated in the model. Such a period includes

3www.simul8.com
4www.3ds.com

12



ACCEPTED MANUSCRIPT 

scheduling about 500 batches, and the task of the optimisation algorithm is to set a unique priority for

each batch and also to define its path through the machining line. It takes approximately 5 minutes to

simulate seven days of production, input and output processing included. The company’s time budget

allowed for the performance of 600 simulations.

5 Multi-Objective Parallel Surrogate-Assisted Evolutionary Algorithm

The proposed CDR technique is integrated in the parallelised algorithm “Multi-Objective Parallel Surrogate-

Assisted EA” (MOPSA-EA) (Syberfeldt et al., 2008). This section outlines the fundamentals of MOPSA-

EA and presents how its parameters have been configured in the optimisation problems described in

the previous section. Pseudo code for MOPSA-EA can be found on-line alongside the electronic ver-

sion of the paper (Algorithm 1).

5.1 Basic algorithm

In MOPSA-EA, initially, the first generation of the population P is filled with as many random solu-

tions as there are processing nodes. These are created by the master node and sent to the slave nodes

for exact evaluation. When evaluated solutions are returned from the slaves, the master immediately

creates new offspring to be evaluated through crossover and mutation (the implementation of these

operators is problem specific). Parents in P to be used for the creation of offspring are chosen using

crowding tournament selection (Deb, 2004). With tournament selection, solutions that have bad objec-

tive values may also be selected, which maintains diversity in the population and prevents premature

convergence. For the tournament, two solutions A and B are chosen randomly and a non-dominated

sort is performed. A is declared the winner if either

(i) A has a better Pareto rank than B , or

(ii) A and B have the same Pareto rank, but A has a larger crowding distance than B 5.

In the tournament selection, noise in the evaluation of solutions is taken into consideration using the

CDR technique described in Section 3.

When generating offspring, a pool of λ candidate offspring is created (in this study, λ is considered

being constant). An offspring pool, called O, is created as soon as a processing node becomes avail-

able. The solutions in O are evaluated by the surrogate, and since the computational cost of surrogate

evaluations can be neglected in real-world optimisations (Emmerich et al., 2002), the size of the pool

can be large. The surrogate objective values assigned to solutions in O are adjusted to take the impreci-

sion of the surrogate into consideration. This is done by modifying the values based on the calculated

error of the surrogate (the details of this procedure are described in Syberfeldt et al., 2008). Based on

the adjusted surrogate objective values, the most promising solution in O is selected to be inserted into

P . In this procedure, through a non-dominated sort, all solutions of rank 1 in O are identified (called

5It can be noted that the hypervolume indicator has been suggested as a powerful alternative to the crowding distance
measure (see for example Emmerich et al., 2005).

13



ACCEPTED MANUSCRIPT 

OR1) and checked for domination against all solutions of rank 1 in P (called PR1). By only identify-

ing OR1 and PR1, a full non-dominating sort is avoided. The solution in OR1 that dominates the most

solutions in PR1 is selected, mutated and precisely evaluated. If several solutions in OR1 share the po-

sition of dominating most solutions in PR1, the one having the largest Euclidean distance to its closest

neighbour in PR1 is selected. Before the selected offspring is inserted into P , the worst solution in P is

removed by performing a non-dominated sort and discarding the solution with the smallest crowding

distance in the last rank. An elitistic approach is used, in which an offspring is only inserted into P if it

is not dominated by any solution in P .

The sample obtained from a newly inserted offspring may be used to update the surrogate. An

update does not need to take place every time a new sample becomes available, but can occur only

every N :th sample. Less frequent updates can save a lot of time, but can also decrease the quality of

the surrogate. In this study, N is set to 10. Since the algorithm is neutral with respect to the surrogate

technique, it does not specify how to update the surrogate. Surrogate update strategies vary between

different techniques, and are also highly problem dependent (Jin, 2005).

5.2 Surrogate configuration

MOPSA-EA allows for any kind of surrogate, and in this paper two different surrogate techniques are

used. In the Volvo Aero problem, an artificial neural network is used. Several properties of artificial

neural networks (ANNs) make them beneficial for use as surrogates, including universal approxima-

tion characteristics, good extrapolation/generalisation ability, applicability to multivariate non-linear

problems, ability to handle noise in data sets, and no inherent assumption about data correlations. The

ANN used has one hidden layer, since it has been shown that one hidden layer is sufficient for nearly

all problems (e.g. Chen et al., 1995). The number of hidden nodes in the ANN is dynamically adapted

depending on the number of samples available. For good performance, it is recommended that the

number of weights in the ANN is proportional to the size of the training data set (Mehrotra et al., 1996).

Since the number of samples continuously increases during the optimisation, a static number of hid-

den nodes is not appropriate. Therefore, the optimisation started with an ANN with one single hidden

node. When the number of available samples exceeded five times the number of weights in the net-

work, a new hidden node was added (according to the weight-sample ratio suggested in Mehrotra et al.,

1996). The ANN was trained using back-propagation with the sigmoid function and a learning rate of

0.5. For each 10th simulation, the ANN was re-trained with samples from the most recently simulated

solutions (at most 50 samples). In case any of these solutions had been simulated more than once, the

mean simulation values were used in the training. The idea of regularly re-training the ANN with the

most recent samples is to have a local surrogate defined over the current search region. Local ANNs

are preferable to global ANNs in surrogate-assisted optimisation (Giotis et al., 2000; Jin, 2005), since

they reduce the time consumption of the training process (Jin and Branke, 2005). To avoid overfitting,

10-folded cross validation was used in the training.

In the Volvo Cars Engine problem, constructing a useful ANN is not possible since the number of

simulation inputs is very large (about 500) and dynamic. An ANN with over 500 inputs includes tens of

thousands of network weights, and such a network cannot perform well when the problem is complex

14



ACCEPTED MANUSCRIPT 

and the number of data samples is limited. Therefore, we have constructed a so called surrogate model

instead of an ANN for the Volvo Cars Engine problem. While an ANN treats the simulation as a black

box, knowing nothing about its inner workings, a surrogate model treats the simulation as a white box

and explicitly attempts to imitate its internals. The surrogate model is built in the C# programming

language and solves the same problem as the simulation through a number of simplifications (for

example, carts transporting camshaft between machines are not modelled). Since it is less complex

than the simulation, it is also computationally cheaper and thereby serves the same purpose as an

ANN.

Note that no surrogate was needed in the optimisation of the ZDT benchmark problems since these

are considerably faster to run than the real-world problems.

5.3 Algorithm parameter settings

The configuration of the parameters of MOPSA-EA is presented in Table 1. The ZDT functions use

common settings, while for the real-world problems the parameter values were set in discussion with

system experts on the basis of domain knowledge. The system experts (simulation technicians and

production engineers) were introduced to the various parameters and asked to provide proper values

based on their knowledge and a limited number of simulation tests. Thorough parameter pre-tuning

could not be carried out within a practical time frame due to the time-consumption of the simulations

used to evaluate solutions.

ZDT Volvo Aero Volvo Cars Engine

Population size 50 40 60

Number of offspring 25 20 30

Mutation step size 0.5 1.0 1.0

Crossover operator Single-point Single-point Single-point

Crossover probability 0.8 0.8 0.8

Table 1: Algorithm parameter settings.

In the next section, the evaluation of the CDR technique when integrated in MOPSA-EA is pre-

sented.

6 Evaluation

In assessing the performance of the proposed noise handling technique, it is compared to four existing

techniques to reduce noise, which are described in Section 6.1. The performance metrics used in the

comparison are presented in Section 6.2. Results of the different noise handling techniques when

integrated in MOPSA-EA are presented in Section 6.3, and an overall analysis of these follows in Section

6.4.

15



ACCEPTED MANUSCRIPT 

6.1 Performance comparison

As described in Section 2, there are four major techniques for handling noise: (i) static resampling,

(ii) modified Pareto ranking scheme, (iii) dominance-dependent lifetime, and (iv) fitness inheritance.

The CDR technique was compared to all four of these. The implementation of the techniques in the

evaluation is described below. It is important to note out that with all techniques (including CDR), the

total number of simulations performed in an optimisation problem is the same. Consequently, the

number of unique solutions evaluated may vary with the different techniques.

Static resampling

In the implementation of this technique, each solution is sampled five times and the average objective

values are used. This is the same number of samplings used at maximum in the CDR technique, which

means that the noise reduction of the static resampling scheme will never be worse than that of CDR.

Modified Pareto ranking scheme

There are two different approaches for modifying the original Pareto ranking scheme to handle noise;

the probability-based technique and the cluster-based technique. Considering the drawbacks of the

probability-based technique discussed in Section 2.2, cluster-based ranking was used in the evaluation

performed in this study. The cluster-based technique involves the user-defined parameter K , defining

the neighbourhood restriction factor. Babbar et al. (2003) set K according to Equation 7

K =C ∗
(
1−e−

β

Ge

)
, (7)

where C and β are problem-specific constants, and Ge is the current generation. In this study, the

technique is implemented in a steady-state algorithm and Ge is therefore undefined, since the steady-

state algorithm does not use a generation-based population refinement strategy. K can therefore not

be set according to Equation 7, but the formula is therefore adjusted to fit a steady-state approach

according to Equation 8

K =C ∗ (maxSi m −numSi m) , (8)

where C is a constant set to 0.0001 (a value found through experimental tuning6), maxSi m is the

maximum number of simulations allowed for the optimisation (a constant value), and numSi m is the

number of simulations performed at the current point in time (a variable number). Similar to Equation

7, the neighbourhood decreases over time with Equation 8.

Dominance-dependent lifetime

In the implementation of this technique, the lifetime lt of a new solution i entering the population is

set according to Equation 9

6Parameter tuning is usually not applicable but was necessary in this case since no information about appropriate C
values was available.

16



ACCEPTED MANUSCRIPT 

il t = popSi ze − ind , (9)

where popSi ze is the population size, and ind is the number of solutions i is dominating. Equation 9

ensures that a short lifetime is assigned if a large number of solutions in the population are dominated

and vice versa. A non-dominating solution whose lifetime has expired is resampled once and added to

the population with its new objective values.

Fitness inheritance

With this technique, a child inherits the mean objective value µ̄ = µpar ent1+µpar ent2

2 and the mean stan-

dard deviation σ̄ = σpar ent1+σpar ent2

2 from its parents. The child is evaluated once, and if each obtained

objective value falls within the confidence interval
(
µ̄−3∗ σ̄≤ f ≤ µ̄+3∗ σ̄)

, the inherited fitness is

accepted. Otherwise, the child is resampled four times and assigned the mean values and standard

deviation of its samplings.

CDR

In the implementation of this technique, two parameters must be specified: confidence level and max-

imum number of samplings. In the evaluation, these parameters are set according to Table 2. Note that

the parameters have not been tuned before the evaluation. As previously discussed, elaborate param-

eter pre-tuning can usually not be afforded in real-world applications with time-consuming simula-

tions, and it is therefore necessary that the technique is not too sensitive with respect to its parameter

settings.

Confidence level Max samplings

Rank 1 0.75 5

Rank 2 0.70 4

Rank 3 0.65 3

Rank 4 0.60 2

Rank 5 and higher 0.55 2

Table 2: Confidence levels and maximum number of samplings for different ranks.

In Section 3.2, two potential improvements in the implementation of the CDR technique were dis-

cussed. The first one was to check if the two solutions being compared are significantly different with

respect to the highest confidence level of rank, and thereby avoid a non-dominating sort to be per-

formed unnecessarily. The second one was to perform less frequent resamplings in the beginning of

the search, and increase the resampling frequency when the optimisation begins to converge. In the

evaluation, CDR was implemented with the extra confidence check, but not with the variable resam-

pling frequency in order to avoid additional user-defined parameters.

17



ACCEPTED MANUSCRIPT 

6.2 Evaluation metrics

An overall goal in multi-objective optimisation is convergence to the Pareto-optimal front. A com-

monly used measure for evaluating convergence in problems having a known true optimal front (which

is the case with the ZDT functions) is the Υmetric (Deb et al., 2002). This metric measures the degree

of convergence by calculating the average minimum Euclidean distances from each of the obtained

non-dominated solutions to the closest solution in the true Pareto front. The smaller the value of Υ,

the better the convergence of the algorithm.

A commonly used measure for comparing the results of multi-objective EAs is the S metric (also

called the hypervolume metric). The S metric is one of the most frequently applied measures for multi-

objective optimisation (Emmerich et al., 2005). Basically, S measures the volume in objective space

dominated by obtained solutions. The larger the volume, the better the results of the algorithm. The

S metric is a combined measure of convergence and diversity in the set of non-dominated solutions.

It does not assume that the true Pareto-optimal front is known and can therefore also be applied to

real-world problems.

Another metric that is a combined measure of convergence and diversity is the inverted gener-

ational distance metric (Coello Coello and Reyes-Sierra, 2004). Inverted generational distance (IGD)

aims at being a combined measure of convergence and diversity in the set of non-dominated solutions.

This metric is calculated by taking the average of all Euclidean distances from each true Pareto front

sample to the closest solution generated by the algorithm. The rationale behind this metric is that for

a low IGD value, a well spread front and a good convergence is necessary at the same time.

6.3 Results

Benchmark problems

Results from the noisy ZDT functions are shown in Table 3, including CPU time consumption on a sin-

gle workstation7 stated in seconds (sec) and hundreds of a second (hsec). The metric values are based

on normalised objective values and constitute the average of 500 independent runs. The results have

a 99% confidence probability according to Welch’s t-test (defined in Law and Kelton, 2000). In calcu-

lating the Υ and IGD metrics, a set of 500 uniformly-distributed solutions of the true Pareto set was

derived. The S metric requires a reference point, which was set to (x,y)-coordinates that are just out-

side the worst values in objective space taken by the function, namely 1.5, 8.0. Based on the reference

point, the S value was normalised between [0,1], where a value of 1 coincides with the optimal value

possible (i.e., the hypervolume of the true Pareto front). The optimisation was performed for 5000

function evaluations, which is a relatively small number of evaluations compared to other studies on

the ZDT functions (usually, about 25,000 evaluations are used). A small number of evaluations have

been allowed to emulate a scenario in which the evaluation function is computationally expensive.

The function can therefore only be called a relatively small number of times.

As Table 3 illustrates, the best results with respect to the performance metrics are achieved with the

CDR technique. The techniques of static resampling and cluster-based Pareto ranking achieve about

7Equipped with Intel dual core processors of 2.13GHz, 2 GB of RAM, and Microsoft Windows XP Professional.

18



ACCEPTED MANUSCRIPT 

the same results and share second place. Dominance-dependent lifetime is the fourth best technique,

whilst the fitness inheritance technique achieves the worst results. With respect to CPU time con-

sumption, the differences between the five techniques are only a couple of milliseconds.

Υ

(minimise)

IGD

(minimise)

S

(maximise)

CPU time

(sec:hsec)

ZDT1

Conf. based dynamic resampling 0.209 0.14 0.801 5:96

Static resampling 0.228 0.161 0.742 5:31

Dominance-dependent lifetime 0.216 0.168 0.635 5:47

Cluster-based Pareto ranking 0.213 0.16 0.66 5:39

Fitness inheritance 0.331 0.196 0.637 5:51

ZDT2

Conf. based dynamic resampling 0.464 0.396 0.756 5:2

Static resampling 0.573 0.622 0.618 4:77

Dominance-dependent lifetime 0.56 0.617 0.622 4:85

Cluster-based Pareto ranking 0.501 0.492 0.691 5:01

Fitness inheritance 0.628 0.784 0.405 4:96

ZDT3

Conf. based dynamic resampling 0.193 0.105 0.901 4:83

Static resampling 0.325 0.212 0.815 4:22

Dominance-dependent lifetime 0.468 0.279 0.777 4:44

Cluster-based Pareto ranking 0.359 0.22 0.817 4:59

Fitness inheritance 0.516 0.302 0.742 4:54

ZDT4

Conf. based dynamic resampling 0.881 0.342 0.873 4:06

Static resampling 0.927 0.389 0.86 3:27

Dominance-dependent lifetime 1.423 1.101 0.802 3:63

Cluster-based Pareto ranking 1.166 0.477 0.858 3:85

Fitness inheritance 1.512 1.018 0.8 3:92

ZDT6

Conf. based dynamic resampling 0.601 0.503 0.716 3:91

Static resampling 0.682 0.589 0.691 3:24

Dominance-dependent lifetime 0.742 0.57 0.714 3:57

Cluster-based Pareto ranking 0.676 0.584 0.71 3:8

Fitness inheritance 0.817 0.628 0.683 3:72

Table 3: Benchmark results.

Volvo Aero

Table 4 presents the results from the optimisation of the Volvo Aero problem. The result values con-

stitute the average of ten independent runs (due to the computational expense associated with the

simulation, only a relatively small number of runs could be undertaken). The results have an 80% con-

fidence probability. Since the true Pareto-optimal front of the Volvo Aero problem is unknown, as with

real-world problems in general, only the S metric could be calculated. The reference points used in

the S metric were set just outside the theoretically best and worst values, respectively, for the system

(specified by domain experts).

19



ACCEPTED MANUSCRIPT 

As shown in the table, the CDR technique achieves the best value. The static resampling technique

and the cluster-based Pareto ranking technique are on second place (these achieve almost identical

values). Dominance-dependent lifetime is the fourth best technique, whilst the fitness inheritance

technique is the worst.

S

Conf. based dynamic resampling 0.496

Static resampling 0.467

Dominance-dependent lifetime 0.411

Cluster-based Pareto ranking 0.468

Fitness inheritance 0.393

Table 4: Results Volvo Aero problem.

Volvo Cars Engine

The results of the optimisation of the Volvo Cars Engine problem are presented in Table 5 (average of

ten independent runs). The optimisation was performed for 600 simulations and the results have a

80% confidence probability. As in the Volvo Aero problem, the true Pareto-optimal front is unknown

and only the S metric was calculated. Also in this case, the reference points for the S metric were set

just outside the theoretically best and worst values, respectively, for the system.

S

Conf. based dynamic resampling 0.511

Static resampling 0.483

Dominance-dependent lifetime 0.409

Cluster-based Pareto ranking 0.485

Fitness inheritance 0.398

Table 5: Results Volvo Cars Engine problem.

6.4 Analysis

In this subsection, the results of the five noise handling techniques are discussed. The sensitivity of the

user-defined parameters of the proposed CDR technique is also analysed.

Performance

In the optimisations, the CDR technique has the best performance in all problems. A key factor con-

tributing to its good results is most likely to be the dynamic resampling approach. The other tech-

niques, except dominance dependent lifetime, use a static strategy in which all solutions entering the

population are resampled a fixed number of times. Such a static approach is inefficient when consid-

ering that: (i) the same number of simulations are spent on solutions of higher ranks as on inferior

solutions of lower ranks, (ii) all solutions are simulated the same number of times although they are

20



ACCEPTED MANUSCRIPT 

subject to different amounts of noise8, and (iii) simulations are wasted on solutions that never take

part in the evolutionary process, that is, solutions which never influence the search. In contrast, the

proposed technique uses a resampling scheme in which the number of samplings is automatically ad-

justed to the rank and noise of a solution. Furthermore, only solutions that are part of the evolutionary

process are resampled. In this way, an efficient utilisation of simulations is achieved and the desired

confidence level is reached using as few resamplings as possible.

The second best results in the optimisations are achieved by the techniques of static resampling

and cluster-based Pareto ranking (these two achieve about the same overall results). The technique

of static resampling is surprisingly efficient, especially in the real-world problems. Static resampling

has previously been considered inappropriate when the number of simulations is limited due to their

high computational cost (Branke et al., 2001; Branke and Schmidt, 2003). However, with respect to its

simplicity and relative efficiency, it can be argued that this technique should not be rejected. There

are also enhanced versions of the static resampling technique which may have potential to perform

even better than the basic version, for example the approach described by Tan et al. (2007) in which

the number of samplings increases with the generations.

Ranked as number four in most of the optimisations is the technique of dominance-dependent

lifetime. As previously discussed in Section 2, this technique does not explicitly resample solutions,

but instead evaluates solutions anew and adds them to the population with their new objective values.

Basically, this means that a noisy sample of a solution is simply replaced by another noisy sample,

which might explain the weak results of the technique.

The worst results in the optimisations are achieved by the technique of fitness inheritance, espe-

cially in the real-world problems. Similar to the technique of dominance dependent lifetime, the poor

results might be explained by an inadequate noise reduction approach. In the technique of fitness in-

heritance, the greater the standard deviation of a solution’s parents (that is, the larger their amount of

noise), the greater the probability that the inherited values are accepted without resampling. From a

noise reduction perspective, this seems counter-intuitive.

User-defined parameters

All five noise handling techniques studied in this work suffer from arbitrary user-defined parameters.

CDR requires the specification of two parameters: (i) confidence level, and (ii) maximum number of

samplings. These parameters must be determined by the user based on the total number of simula-

tions allocated, the desired level of accuracy of the optimisation, and the noise characteristics of the

problem. The total number of simulations is usually known, but this might not be the case with the

desired level of accuracy and certainly not with the noise characteristics. It is therefore interesting to

analyse whether or not the user must have a good understanding of how to set the confidence level

and maximum number of samplings, that is, whether their configuration has a significant impact on

the performance of the optimisation. To investigate this, we compared the results of a number of dif-

ferent parameter configurations on the ZDT1 benchmark problem with noise size 0.2 (Table 6). In the

8Not that this applies only to the real-world problems – in the ZDT problems all solutions are subject to the same amount
of noise.

21



ACCEPTED MANUSCRIPT 

experiments, different confidence levels were tested in combination with three different settings of the

maximum number of samplings. The column to the left in Table 6 defines the confidence level for rank

1. The confidence level for rank 2 is the confidence level for rank 1 minus 0.05, the confidence level for

rank 3 is the confidence level for rank 2 minus 0.05, etc.

Confidence level Max. number of

samplings

(rank1-rank2-rank3)

Υ

(minimise)

IGD

(minimise)

S

(maximise)

0.95 5-4-3 0.22 0.146 0.767

0.95 7-5-3 0.223 0.139 0.812

0.95 5-2-2 0.218 0.188 0.778

0.85 5-4-3 0.21 0.164 0.756

0.85 7-5-3 0.209 0.148 0.758

0.85 5-2-2 0.208 0.125 0.831

0.75 5-4-3 0.209 0.14 0.8019

0.75 7-5-3 0.185 0.108 0.83

0.75 5-2-2 0.189 0.138 0.811

0.65 5-4-3 0.178 0.117 0.834

0.65 7-5-3 0.179 0.109 0.829

0.65 5-2-2 0.207 0.117 0.799

0.55 5-4-3 0.212 0.162 0.748

0.55 7-5-3 0.208 0.15 0.767

0.55 5-2-2 0.214 0.147 0.785

Table 6: Experiments on ZDT1 noise level 0.2.

As Table 6 illustrates, the configuration of the two parameters has some effect on the optimisa-

tion results. For the parameter “confidence level”, it seems that the extremes (that is, level 0.95 and

level 0.55) give the worst results, while levels in between give the best results (0.65 and 0.75). For the

parameter “maximum number of samplings”, a trend seems to be that doing fewer samplings is advan-

tageous in combination with a high confidence level. An explanation of this might be that EAs tolerate,

and can even be helped by, a small amount of randomness in the evolutionary process. Excessive noise

reduction may therefore lead to a waste of simulations.

The impact of parameter settings on performance is, however, relatively small and regardless of

which configuration is considered, the CDR technique is still better than the other techniques. This

indicates that the proposed technique does not rely upon a perfect parameter configuration, and that

its performance is satisfactory even if the user is not sure of how to set the parameters. For maximum

efficiency, however, trial-and-error in finding the optimal settings is needed.

7 Conclusions

The new technique to deal with noise uses an iterative resampling procedure that efficiently reduces

the noise by varying the number of samples used per solution based on the amount of noise in the

local area of the search space. This dynamic strategy avoids wasteful samplings when additional sam-

pling is of little benefit, and promotes additional samplings when this is beneficial. Contrary to several

22



ACCEPTED MANUSCRIPT 

existing techniques for noise handling, the new technique does not reduce noise for all solutions in

the population, only for those participating in the evolutionary selection. The motivation for this ap-

proach is that noise is not harmful to every element of an EA, only to those evolutionary processes that

involve comparative selection. In other evolutionary operations, such as mating or mutation, noise is

of minor importance.

Similar to other noise handling techniques, the proposed technique involves user-defined parame-

ters. Although the technique works well with a standard setting of the parameters, ideally there should

be no user-defined parameters at all. Investigating how to get rid of the user-defined parameters,

thereby making the use of the technique simpler, is an important topic for future research. Another po-

tential improvement that we will evaluate in the future is to let a surrogate (e.g. an ANN) represent the

noise landscape based on the information received when resampling solutions. If it is possible to con-

struct a surrogate of adequate quality, this can be used to estimate the noise of a solution and simula-

tion evaluations can thereby potentially be saved. A further aspect that we will investigate in the future

related to surrogates is the relationship between noisy evaluations and the training of surrogates. It is

known that a small amount of noise in the training data often improves the surrogate’s ability to gener-

alise on new data (Holmström and Koistinen, 1992). However, in real-world simulation-optimisation

every data sample used to train the surrogate is subject to a large amount of arbitrary noise. Such high

degree of unknown randomness in the data samples causes an unstable training process and a dete-

rioration of the accuracy of the surrogate. For improved efficiency of the optimisation, reducing the

noise is therefore not only important with respect to the EA, but also with respect to the training of the

surrogate. As far as we know, the problem of noise upon surrogate training has not been previously

addressed within the field of multi-objective evolutionary optimisation.

In the next stage of this work, we will also consider robustness. The concept of robustness differs

from noise in that the variations are not in the simulation (that is, the objective function), but in the

input parameters. Robustness is important since in real-world problems it cannot usually be guaran-

teed that the exact parameters of a solution are actually implemented, but rather a solution close to

the original one. We will investigate if it is possible to utilise the resamplings performed in the noise

handling technique to bias the evolutionary process towards more robust solutions without any ad-

ditional resamplings. This could be done by introducing small changes in the input parameters of a

solution being resampled. A non-robust solution will then achieve poor results and be consequently

punished in the evolutionary selection.

References

April, J., Better, M., Glover, F. and Kelly, J. (2004). New advances for marrying simulation and optimiza-
tion, Proceedings of the 2004 Winter Simulation Conference, Washington, DC, pp. 80–86.

Arnold, D. and Beyer, H. (2002). Noisy Local Optimization with Evolution Strategies, Kluwer Academic
Publishers, Norwell, MA. ISBN: 1402071051.

Babbar, M., Lakshmikantha, A. and Goldberg, D. E. (2003). A modified NSGA-II to solve noisy mul-
tiobjective problems, Proceedings of Genetic and Evolutionary Computation Conference, Vol. 2723

23



ACCEPTED MANUSCRIPT 

of Lecture Notes in Computer Handling Uncertainty in Indicator-Based Multiobjective Optimization,
Springer Verlag, Chicago, Illinois, USA, pp. 21–27.

Büche, D., Stoll, P., Dornberger, R. and Koumoutsakos, P. (2002). An evolutionary algorithm for multi-
objective optimization of combustion processes, IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C: Applications and Reviews 32(4): 460–473.

Beyer, H. (2000). Evolutionary algorithms in noisy environments: theoretical issues and guidelines for
practice, Computer Methods in Applied Mechanics and Engineering 186(2-4): 239–267.

Branke, J., Meisel, S. and Schmidt, C. (2007). Simulated annealing in the presence of noise, Journal of
Heuristics 14(6): 627–654.

Branke, J. and Schmidt, C. (2003). Selection in the presence of noise, in E. C.-P. et.al. (ed.), Proceedings
of Genetic and Evolutionary Computation Conference, number LNCS 2273, Springer Verlag, Chicago,
Illinois, pp. 766–777.

Branke, J., Schmidt, C. and Schmeck, H. (2001). Efficient fitness estimation in noisy environments,
in L. S. et al. (ed.), Proceedings of Genetic and Evolutionary Computation Conference, Morgon Kauf-
mann, San Francisco, California, pp. 243–250.

Bui, L., Abbass, H. and Essam, D. (2005). Fitness inheritance for noisy evolutionary multi-objective
optimization, Proceedings of Genetic and Evolutionary Computation Conference, Washington, DC,
USA, pp. 779–785.

Chen, T., Chen, H. and Liu, R. (1995). Approximation capability in C(Rn) by multilayer feedforward
networks and related problems, IEEE Transactions on Neural Networks 6(1): 25–30.

Coello Coello, C., Lamont, G. and Veldhuizen, D. V. (2007). Evolutionary Algorithms for Solving Multi-
Objective Problems, Genetic and Evolutionary Computation, 2nd edn, Kluwer Academic Publishers.

Coello Coello, C. and Reyes-Sierra, M. (2004). A study of the parallelization of a coevolutionary multi-
objective evolutionary algorithm, Proceedings of Third Mexican International Conference on Artifi-
cial Intelligence, Mexico City, Mexico, pp. 688–697.

Deb, K. (1999). Multi-objective genetic algorithms: Problem difficulties and construction of test func-
tions, Evolutionary Computation 7: 205–230.

Deb, K. (2004). Multi-Objective Optimization using Evolutionary Algorithms, second edn, John Wiley
& Sons Ltd.

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002). A fast and elitist multi-objective genetic
algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6(2): 182–197.

Di Pietro, A., While, L. and Barone, L. (2004). Applying evolutionary algorithms to problems with
noisy, time-consuming fitness functions, Proceedings of IEEE Congress on Evolutionary Computa-
tion, Vol. 2, Portland, Oregon, pp. 1254– 1261.

Emmerich, M., Beume, N. and Naujoks, B. (2005). An EMO algorithm using the hypervolume measure
as selection criterion, Proceedings of Evolutionary Multi-Criterion Optimization, Vol. 3410 of Lecture
Notes in Computer Science, Springer Verlag, Guanajuato, Mexico, pp. 62–76.

Emmerich, M., Giotis, A., Özdemir, M., Bäck, T. and Giannakoglou, K. (2002). Metamodelassisted evo-
lution strategies, in J.J. Merelo Guervós et al. (ed.), Proceedings of the International Conference on
Parallel Problem Solving from Nature, Springer Verlag, Granada, Spain, pp. 361–370.

24



ACCEPTED MANUSCRIPT 

Fitzpatric, J. and Grefenstette, J. (1988). Genetic algorithms in noisy environments, Machine Learning
3: 101–120.

Giotis, A., J., K. G. and Periaux (2000). A reduced-cost multi-objective optimization method based on
the pareto front technique, neural networks and pvm, Proceedings of European Congress on Compu-
tational Methods in Applied Sciences and Engineering, CD-ROM, Barcelona , Spain.

Goh, C. and Tan, K. (2007). An investigation on noisy environments in evolutionary multi-objective
optimization, IEEE Transactions on Evolutionary Computation 11(3): 354–381.

Holmström, L. and Koistinen, P. (1992). Using additive noise in back-propagation training, IEEE Trans-
actions on Neural Networks 3(1): 24–38.

Hughes, E. (2001). Evolutionary multi-objective ranking with uncertainty and noise, Proceedings
of First International Conference on Evolutionary Multi-Criterion Optimization, Springer Verlag,
Zurich, Switzerland, pp. 329–343.

Jensen, M. T. (2003). Reducing the run-time complexity of multiobjective eas: The NSGA-II and other
algorithms, IEEE Transactions on Evolutionary Computation 7(5): 503–515.

Jin, Y. (2005). A comprehensive survey of fitness approximation in evolutionary computation, Soft
Computing 9: 3–12. o.

Jin, Y. and Branke, J. (2005). Evolutionary optimization in uncertain environments - a survey, IEEE
Transactions on Evolutionary Computation 9(3): 303–317.

Law, A. M. and Kelton, D. (2000). Simulation Modeling and Analysis, third edn, Mc Graw Hill.

Lee, L., Chew, E., Teng, S. and Chen, Y. (2008). Multi-objective simulation-based evolutionary al-
gorithm for an aircraft spare parts allocation problem, European Journal of Operational Research
189(2): 476–491.

Mehrotra, K., Mohan, C. and Ranka, S. (1996). Elements of Artificial Neural Networks, MIT Press. ISBN
0-262-13328-8.

Miller, B. and Goldberg, D. (1996). Genetic algorithms, selection schemes, and the varying effect of
noise, Evolutionary Computation 4(2): 113–131.

Ong, Y., Nair, P., Keane, A. and Wong, K. (2004). Surrogate-assisted evolutionary optimization frame-
works for high-fidelity engineering design problems, in Y. Jin (ed.), Knowledge Incorporation in Evo-
lutionary Computation, Studies in Fuzziness and Soft Computing, Springer Verlag, pp. 307–332.

Srinivas, N. and Deb, K. (1995). Multiobjective optimization using nondominated sorting in genetic
algorithms, Evolutionary Computation 2(3): 221–248.

Syberfeldt, A., Grimm, H., Ng, A. and John, R. (2008). A parallel surrogate-assisted multi-objective
evolutionary algorithm for computationally expensive optimization problems, Proceedings of the
2008 IEEE Congress on Evolutionary Computation, Hong Kong, pp. 3177–3184.

Tan, K. C. and Goh, C. K. (2008). Handling uncertainties in evolutionary multi-objective optimiza-
tion, Computational Intelligence: Research Frontiers, Vol. 5050 of Lecture Notes in Computer Science,
Springer Verlag, pp. 262–292.

Tan, K., Cheonga, C. and Goh, C. (2007). Solving multiobjective vehicle routing problem with stochastic
demand via evolutionary computation, European Journal of Operational Research 177(2): 813–839.

25



ACCEPTED MANUSCRIPT 

Teich, J. (2001). Pareto-front exploration with uncertain objectives, Proceedings of First Interna-
tional Conference on Evolutionary Multi-Criterion Optimization, Springer Verlag, Zurich, Switzer-
land, pp. 314–328.

Zitzler, E., Deb, K. and Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: Em-
pirical results, Evolutionary Computation 8(2): 173–195.

26


