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We consider steady-state nonequilibrium many-body flows of mass and momentum. For several such 
diffusive and viscous flows we estimate the phase-space strange-attractor Lyapunov dimensions from the 
complete spectrum of Lyapunov exponents. We vary the number of particles and the number of ther­
mostated degrees of freedom, as well as the deviation from equilibrium. The resulting Lyapunov spectra 
provide numerical evidence that the fractal dimensionality loss in such systems remains extensive in a 
properly defined nonequilibrium analog of the equilibrium large-system thermodynamic limit. The data 
also suggest a variational principle in the vicinity of nonequilibrium steady states. 
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I. INTRODUCTION 

Since 1972, control variables, "thermostats, barostats, 
ergostats, etc.," have been used in simulations to main­
tain atomistic systems in nonequilibrium steady states [1]. 
The theories developed to analyze these steady states [2] 

~led to paradoxical results. Typically, theoretical 
'Kawasaki" expressions [2] for the steady-state phase­

space distribution functions diverge, f(q,p,t-H/J )-4-co. 
The explanation was discovered in 1987. The nonequili­
brium phase-space structures of steady states are mul­
tifractal strange attractors [3]. This topological finding 
explained the puzzling divergence of the phase-space 
probability density, away from equilibrium, and led to a 
simple geometric understanding of the second law of 
thermodynamics [4]. The steady-state phase-space prob­
ability density flows out of, and away from, zero-volume 
unstable repellors toward, and into, geometrically similar 
zero-volume attractors, upon which the second law of 
thermodynamics is satisfied. Thus the repellors and at­
tractors correspond to sources and sinks, respectively, for 
steady-state phase-space flows. This geometric explana­
tion of the second law incorporates concepts which were 
developed earlier in order to explain the chaotic proper­
ties of nonlinear dynamical systems. 

In the past 15 years, several particle-based strange at­
tractors, all characterizing time-reversible and deter­
ministic nonequilibrium steady, or time-periodic, states, 
have been analyzed [5-9]. The underlying system sizes 
considered have ranged upward, from one or two parti­
cles, to the computational limit, now about one hundred 
particles. (Depending upon the method selected, the re­
quired computer time varies as N 2, N 3, or N 4 for N par­
ticles). In every case studied, the attractors turned out to 

-.e multifractal objects. Their information or Lyapunov 
dimensions were always strictly less than the dimen­
sionality of the phase space within which these objects 

were embedded. The information dimension of attractors 
in three- or four-dimensional spaces could be estimated 
directly, by phase-space box-counting methods [8]. The 
Lyapunov dimensions of higher-dimensional attractors 
could only be estimated by evaluating the Lyapunov 
spectra of the underlying dynamical systems. 

The second law of thermodynamics declares that the 
global entropy production is positive. Thus the entropy 
production external to any nonequilibrium steady state 
must be positive, S > O. In the prototypical situation of 
steady-state hot-to-cold heat flow, with energy provided, 
at rate Q>0, to a system's hot end, and extracted, at the 
same rate, from the cold end, the external entropy change 
rate is 

In continuum mechanics the correspondin~ negative 
change of the steady-state system entropy -QATIT2 is 
exactly offset by a phenomenological internal entropy 
production. In statistical mechanics there is no such phe­
nomenological mechanism for offsetting the drop in sys­
tem entropy. The Gibbs system entropy for such a steady 
heat flow diverges to co. For a study of the time 
dependence of this Gibbs entropy drop see Ref. [9]. 

With a nonequilibrium stationary state maintained by 
deterministic time-reversible equations of motion (using 
Gauss's or Nose-Hoover thermostats, for instance) the 
second law corresponds to the collapse of the phase-space 
probability density onto a strange attract or. This result 
was clearly and precisely established, numerically, for a 
variety of small systems. Whether or not the topological 
proof of the second law found in these small systems 
could be extended to large systems hinged on two ques­
tions. 

The first question is the following. Is the shift in the 
Lyapunov exponents confined primarily to a few ex­
ponents, or is the shift spread over the entire spectrum? 
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If the distribution of shifts is distributed over the entire 
spectrum, then the loss of Lyapunov (Kaplan-Yorke) di­
mension I:::..D can be accurately estimated, for very small 
gradients, from a Taylor series in the deviation from equi­
librium. Including just the first close-to-equilibrium term 
gives the loss in terms of the largest exponent AI: 

I:::..D=SlkA1 , 

where S is the total external entropy-production rate and 
k is Boltzmann's constant. 

The second question is the following. Can these small­
system arguments be extended to a large-system limit? 
How can the behavior of large-system attractors be 
judged on the basis of small-system evidence? 

A breakthrough in the theoretical understanding of 
both these questions, at least for some spatially homo­
geneous nonequilibrium systems, was made by Sarman, 
Evans, and Morriss. They considered the spectrum of 
Lyapunov exponents. These exponents characterize all 
the time-averaged orthogonal growth and decay rates in a 
complete set of comoving and corotating phase-space 
directions. Sarman, Evans, and Morriss showed [10] that 
the sums of individual "Smale pairs" of Lyapunov ex­
ponents show identical shifts, away from equilibrium. 
That is, for the ordered spectrum of Lyapunov exponents 
{AI> A2 > ... > An J, all of the possible summed pairs of 
exponents {Aj+~n+l-j)' for j=1,2, ... ,1112, have the 
same value -2S Ik11. Note that we are using 11 as a 
pure number, equal to the total number of independent 
directions in phase space. Provided that the Lyapunov 
exponents are bounded (which seems obvious on physical 
grounds), this result establishes the qualitative validity of 
the dimensionality reduction formula given above. 

This proof holds for arbitrarily large deviations from 
equilibrium and for arbitrarily large systems, at least for 
systems which are "homogeneous" and which satisfy a 
relatively weak restriction on their time evolution [10]. 
By homogeneous we mean that all particles are treated 
equally. The result of Sarman, Evans, ~nd Morriss is 
therefore a convenient starting point for dlscussing inho­
mogeneous systems, in which some partid~s are singled 
out for special treatment. \ 

\ 

Steady flows of mass, momentum, and energy, as well 
as more complicated cyclic hysteretic thermodynamic 
processes, all exhibit losses of phase-space dimensionality 
in their phase-space attractors. The coexistence of mi­
croscopic time reversibility with macroscopic thermo­
dynamic irreversible behavior seems paradoxical, but it 
can be understood in terms of the Lyapunov instability of 
the time-reversed motion. In the reversed motion the 
positive Lyapunov exponents exceed those on the normal 
trajectory, so that the reversed motion is less stable. In 
fact, the reversible character of the differential equations 
for the Lyapunov exponents [7] establishes directly that 
the entire Lyapunov spectrum {A J changes sign in the 
time-reversed motion { +AJ -+ { - AJ. This property has 
been verified numerically, both for the most negative 
Lyapunov exponent [11] and, in our unpublished work, 
for the complete spectrum. 

The generic nonequilibrium situation is as follows: In 
the forward direction of time the summed Lyapunov 

spectrum (from a single long trajectory) is negative,
l:.A < 0, though nearly half the Lyapunov exponents are 
positive. In the backward (reversed) time direction thf~ 
summed spectrum changes sign and becomes positive, S0 

that the underlying trajectory is accordingly less stable, 
though still nearly half its Lyapunov exponents are nega­
tive. This difference in global stability leads to time­
symmetry breaking and an overwhelming favoring of 
those multifractal attractor states which obey the second 
law ofthermodynamics [4]. 

The phase-space attractors and repellors for these 
problems typically display the equilibrium value of the 
Hausdorff dimension together with a substantially re­
duced, relative to equilibrium, information or Lyapunov 
dimension, so that the probability of selecting an unstable 
repellor state, violating the second law of thermodynam­
ics, is exactly zero. 

Through the efforts of mathematicians [12,13], this 
simple topological interpretation of thermodynamic ir­
reversibility is being put on a rigorous basis, at least for 
some simple one- and two-body systems. Intuitive argu­
ments suggest that, because (i) dissipation is extensive, 
S=71t2 V IT, for a small-strain-rate shear flow with strain 
rate t=dux Idy and shear viscosity 71, for instance, and 
because (ii) loss of dimension can be roughly estimated by 
dividing the dissipation rate by the maximum Lyapunov 
exponent (which is intensive, corresponding to a micro­
scopic collision rate), the loss of dimension persists for 
large macroscopic systems. A numerical estimate sug­
gests, for instance, that the phase-space dimensionalit·~' 
loss in water is negligible at strain rates of order 1 Hz, 
but becomes of the same order as the total dimensionality 
at typical shockwave strain rates of order 1012 Hz. 

At the simplest intuitive level, a loss of occupied 
phase-space dimensionality I:::..D is quite sensible. Any 
effective constraint on the time development of a dynami­
cal system reduces the dimensionality of phase-space 
states available to the system. All solutions of 
Hamilton's equations of motion lie on phase-space sur­
faces of constant energy. Constraining the kinetic tem­
perature, rather than the energy, of a selected set of v de­
grees of freedom, e=vkT-l:.p 2Im =0, likewise re­
stricts the phase-space states, permitting only states on 
the momentum hypersphere given by the constraint con­
dition. A second constraint, de I dt were it indepen­
dent of the first, would further increase the dimensionali­
ty loss I:::..D from 1 to 2. The second derivative d 2e Idt 2 

could lead to a further reduction. Thus it is quite plausi­
ble that the steady-state requirement, that e, as well as all 
its time derivatives, be zero, could lead to an extensive 
loss of dimensionality I:::..D ~D. In a nonequilibrium 
driven system, for which the energy could vary with time, 
the set of constraints {d IlE I dt n =0) could likewise lead 
to an extensive loss of phase-space dimension, relative to 
the equilibrium distribution. 

The twofold geometric explanation of irreversibility, as,~ 
being due first to the zero probability of multifractz' 
states and second to the relative mechanical instability or 
nearby time-reversed states, is appealing in its simplicity. 
But it contradicts a second appealing notion: the ex­
istence of a nonequilibrium analog of Gibbs's equilibrium 
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entropy, SGibbs - k (Inf). Because such a nonequili­
brium entropy would be a casualty of a singular phase­

~,pace distribution function f(q,p, ... )~ 00, there is 
dOme reluctance to accept the simple multifractal 
geometric picture of second-law irreversibility. In dis­
cussing these ideas, a test was formulated. 

The test begins with a homogeneously thermostated 
nonequilibrium steady state, for which the very interest­
ing exact sum rule of Sarman, Evans, and Morriss must 
hold. In the homogeneous case, the dissipation rate S 
and the dimensionality loss tlD must both be extensive. 
Then, as the thermostat is made progressively less in­
trusive, by reducing the number of directly affected de­
grees of freedom, and as the system size is increased, 
changes in the phase-space dimensionality loss can be 
monitored. If!lD becomes smaller under these condi­
tions this could mean that the drop in dimension is not 
extensive. On the other hand, a steady, or increasing, 
dimensionality drop tlD would strongly suggest that the 
simple picture of reduced dimensionality persists for 
macroscopic systems. We take up this test, in the present 
work, for two types of non equilibrium systems. 

There are conceptual difficulties in considering large 
nonequilibrium systems. These are best known in two di­
mensions, where there isa relatively widespread opinion 
that "transport coefficients diverge." Because this diver­
gence is thought to be logarithmic in the system size, 
there are severe conceptual difficulties in defining the 
non equilibrium analog of the large-system "thermo­

~Klynamic limit" in two dimensions. Even in three dimen­
"..-sions, any fixed and finite velocity gradient leads, for 

large enough systems, to divergent boundary velocities, 
as well as to turbulence, rather than to nonequilibrium 
steady states. 

Both these twin difficulties, divergence and turbulence, 
can be avoided by using homogeneous thermostats. In 
both the two- and the three-dimensional cases, deter­
ministic time-reversible thermostats, developed in order 
to carry out nonequilibrium computer simulations, pro­
vide a natural definition of a large-system nonequilibrium 
limit analogous to the large-system equilibrium "thermo­
dynamic limit." We elaborate on this idea in the follow­
ing section, and then devote the remainder of the paper 
to numerical tests of the extensive nature of tlD for two 
types of relatively simple two-dimensional nonequilibri­
um systems. 

II. LARGE-SYSTEM LIMIT 
FOR NONEQUILIBRIUM SYSTEMS 

The "extensive" natures of the energy and free energies 
of thermodynamic systems, with "extensive" meaning 
proportional to system size, are familiar consequences 
(neglecting gravity) of sufficiently repulsive short-ranged 
forces along with the overwhelming tendency for gra­
dients to dissipate. Once reached, thermodynamic equi­

"7'oibrium, for a large number of bodies N, exhibits negligi­
t;_ ble fluctuations of order N 1I2 about the mean values, of 

order N, of the extensive energies. The mathematical ap­
proach to statistical mechanics incorporates an idealized 
thermodynamic limit in which system properties are tru­

ly extensive and in which surface effects and fluctuations 
can be ignored. 

At equilibrium time is unimportant. Nothing interest­
ing happens. Negligibly small fluctuations, of order N l12, 

come and go. Away from equilibrium time must be con­
sidered. In a system with sidelength L, gradients dissi­
pate in a diffusion time proportional to L 2. Thus, in gen­
eral, nonequilibrium properties involve the past history of 
the system, for a time of order L 21D, where D is a 
diffusive transport coefficient. For macroscopic systems 
these times are so large that the concept of equilibration 
is more mathematical than physical. An "isolated" cubic 
meter of water would only reach mechanical "equilibri­
um," through the diffusion of momentum and energy, in 
a time on the order of years. 

Long equilibration times are not the only undesirable 
feature of large systems. Boundary values for large sys­
tems with fixed gradients diverge. Even small gradients 
can lead to unpredictable chaotic behavior. At a modest 
strain rate, say 1 Hz for liquid water, the flow becomes 
turbulent once the system size exceeds a few centimeters. 
The idealizations of the linear flow relations-Fick's law 
for diffusion, Newtonian viscosity, and Fourier's law for 
heat conduction-can only be realized in small systems. 

Nonequilibrium steady states, with stationary bound­
ary conditions involving only composition and tempera­
ture, can become independent of their initial conditions 
once the necessary diffusion times have passed. But be­
cause these times are unphysically large, for macroscopic 
systems, and reach no useful large-system limit, a simpler 
limit concept is welcome. The main problem is describ­
ing the boundaries themselves. Steady-state boundaries 
cannot obey Hamiltonian mechanics (because dissipated 
heat has to be extracted at the boundaries). Occam's ra­
zor (of fewest assumptions), combined with Gauss's prin­
ciple (of least constraint), suggests that the simplest 
means of thermostating is a global homogeneous one, in 
which each degree of freedom in the system has an addi­
tional constraint force op - {;p designed to maintain the 
temperature or the internal energy [2]. Temperature is a 
more appealing independent variable than is energy be­
cause temperature is a directly measurable quantity. The 
mechanical definition of temperature, based on an ideal­
gas thermometer enclosed in a semipermeable membrane, 
has recently been discussed [14]. But, for technical 
reasons, an energy-sensitive ergostat turns out to be more 
useful than a temperature-sensitive thermostat. This is 
because the ergostat, unlike a thermostat, need do noth­
ing in the equilibrium situation. Thus near-equilibrium 
states require relatively small thermostat activity. 

At equilibrium it is known that an isokinetic Gaussian 
constraint force on the momenta provides Gibbs's canon­
ical distribution for the coordinates [15]. For a local­
equilibrium description of a nonequilibrium shear state, 
characterized by temperature, density, and strain rate, 
for instance, the same thermostat idea seems to be a natu­
ral choice. But eliminating temperature fluctuations, by 
constraining the kinetic energy, results in an undesirable 
artificial stiffness, even in the equilibrium case. This 
stiffness in the equilibrium dynamics can be avoided by 
using an ergostat, which plays no role whatsoever in the 
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equilibrium case, and remains relatively small in non­
equilibrium states sufficiently close to equilibrium. 

Simple homogeneous thermostats or ergostats can be 
readily relaxed, modified, or amplified whenever more lo­
cal information is available concerning local properties of 
the globally restricted nonequilibrium system. It is 
straightforward to include space- and time-dependent 
constraints fixing components of the stress tensor, the 
magnitude of the heat flux, or the rate of heating, for in­
stance. In nonequilibrium systems the addition of such 
constraints plays the same role as does the acquisition 
and implementation of "information" in Jaynes's ap­
proach [16] to statistical mechanics. 

In the equilibrium case the occupied phase volume can 
be reduced by decreasing the volume accessible to the 
particles or by decreasing their total energy. In the none­
quilibrium case it appears that, rather than reducing the 
occupied phase volume, the dimensionality of the occu­
pied phase space is itself reduced. Thus the nonequilibri­
um driving and constraints associated with the nonequili­
brium independent valiables such as strain rate and field 
strength are more far-reaching constraints than are the 
equilibrium state variables. 

It seems intuitively evident that a global homogeneous 
thermostat or ergostat, applied equally to all degrees of 
freedom, is less intrusive than a local one applied to only 
a few. It is plausible that, "other things being equal," an 
inhomogeneous thermostat results in a larger dimen­
sionality loss A.D than the limiting homogeneous ther­
mostat. At equilibrium, for instance, a single thermostat­
ed variable in an N-body system would need to undergo 
very large constraint forces, of order N l/2 , while the al­
ternative, global constraint forces, applied to all degrees 
of freedom, in such a system, would have a negligible am­
plitude, of order N- l12• 

Thus a hydrodynamic limit analogous to the equilibri­
um thermodynamic limit can be defined for systems in 
near-equilibrium steady nonequilibrium states. The pro­
totypical limiting case is based on global ras opposed to 
local-boundary) thermostats (or barostats or ergostats). 
The corresponding control variables were first introduced 
in molecular-dynamics simulations in order to speed the 
equilibration of atypical initial conditions [1 Later, we 
will discuss specific formulations of these control vari­
ables developed based on ensemble theory. The Nose­
Hoover thermostat fof which Gauss's simpler version, 
used much earlier, is a special case) allows temperature to 
be specified, for a selected set of degrees of freedom, in a 
way which is exactly consistent with Gibbs's equilibrium 
ensembles. 

Such thermostats can also be applied to nonequilibri­
urn systems either ho.t::1ogeneously or in specified local 
boundary regions. From the logical standpoint a :::lone­
quilibrium steady state s,abilized by a global thermostat, 
applied to degrees of freedom throughout the system. has 
much to recommend ie. I: is exactly consistent with the 
Green-Kubo equilibriuffi fluctuation theory of transpon. 
It provides well-define;:: ;:lonlinear transport coefficients. 
It stabilizes systems the long-wavelength fiucrua­
tions which generate mrbdence. It can be easily incor­
porated into the BolcZITl3.l1Il equation so that ;:he 

Chapman-Enskog procedure can be applied to the 
analysis of far-from-equilibrium states of dilute gases, the 
only class of nonequilibrium problem so far accessible tr­
exact theoretical treatment at the atomistic level. For ai, 
these reasons we believe that globally controlled homo­
geneous nonequilibrium steady states are a uniquely well­
suited basis for nonequilibrium statistical mechanics. We 
investigate these states, in the present work, for a simple 
model force law, chosen to minimize computational 
difficulties, and described in the following section. 

III. MODEL SYSTEMS 

The simplest homogeneous nonequilibrium steady state 
is obtained when two species are accelerated by an exter­
nal field in opposite directions, but at constant tempera­
ture or at constant internal energy. Provided that the 
field is not too strong and the density is not too low, a 
homogeneous nonequilibrium steady state, fully con­
sistent with the Green-Kubo theory of conduction, re­
sults [18]. Despite the more measurable nature of tem­
perature, it is better, computationally, to constrain the 
internal energy, for this minimizes the task of the corre­
sponding control variable (the "friction coefficient" ?;). 

In the present work we investigate two-dimensional 
systems with up to 100 particles. Similar investigations, 
for 8-particle systems, were recently carried out by Sar­
man, Evans, and Morriss [10]. All these system sizes are 
small enough that the complete Lyapunov spectrum ca~ 
be generated. Here we use a smooth (three continuol 
derivatives) pair potential with a finite range (j, 

solving the equations of motion with fourth-order 
Runge-Kutta integration, in order to reduce computa­
tional errors. In reporting our results we choose the po­
tential parameters (j and £, as well as the particle mass m, 
all equal to unity. A careful study of the size dependence 
of the largest Lyapunov exponent for equilibrium systems 
(with N ,62,82, ••• ,162) at an internal energy E=N 
indicated a limiting value of the largest exponent 
A1=3.0. 

We evaluated the entire nonequilibrium coefficient 
spectrum for two different system sizes N =62 and 102 

with a few additional simulations at N=42• The different 
system sizes allowed us to gauge the dependence of the 
dimensionality reduction A.D on the total number of par­
ticles N as well as the number of ergostated particles N •e
We followed the (36- or 100·) particle motion in the full 
044- or 400-) dimensional phase space, solving the 
(144 X 145 or 400 X401) ordinary differential equations 
required to characterize the time-averaged growth and 
decay rates in that space-the set of (144 or 400) 
Lyapunovexponents. We varied the total number of er­
gostated particles in the system while keeping the totaf~ 
integral energy of the system fixed. Thus the equations 0),' 

motion for the diffusive model (choosing an atomic mass 
m of unity, a field strength Fex!' and unity for the two po­
tential parameters £ and (j) are 



49 SECOND-LAW IRREVERSIBILITY AND PHASE-SPACE ... 1917 

dxldt=px, dyldt 

where the Gaussian friction coefficient ;, which keeps the 
internal energy fixed, is given by the expression 

~ [±Px1 / ~' [p;+p;l . 

The current sum, in the numerator, includes all the parti­
cles (half with plus signs and half with minus signs) and 
the primed sum, in the denominator, includes only those 
which make up the ergostat. This form for the control 
parameter; makes explicit the number dependence of the 
constraint forces through the number of degrees of free­
dom participating in the constraint. An alternative pro­
cedure, which we have not followed here, would thermo­
stat the kinetic energy or internal energy of only a select­
ed group of particles. This seems to us less interesting be­
cause such a choice would include phase-space states ly­
ing off the equilibrium internal energy surface of the total 
system. In such a case both the numerator and denomi­
nator sums would include only contributions from that 
group. Our diffusive flow results appear in Table I. In 
addition to the dissipative current, :!±Px , we display the 
largest Lyapunov exponent, the smallest Lyapunov ex­
ponent, the loss in phase-space dimensionality IlD, and 
the sum of all the Lyapunov exponents, equal to - k 
times the overal dissipation rate dS Idt a series of 36- and 
1DO-particle simulations. 

For a homogeneous periodic shear, with strain rate 
E dux Idy, it is usual to define the peculiar momenta 
[Px,Py}, relative overall shear flow (ux,uy (Ey,O). The 
"Sllod" motion equations (so named because of their rela­
tionship to the Doll's tensor algorithm) then become 

TABLE I. Results for N-particle two-dimensional color­
conductivity simulations. Ne particles are ergostated. The suc­
cessive columns list field strength, sumJ.led velocity contribu­
tions to the dissipative current, maximum and minimum 
Lyapunov exponents, the sum of a}l~xponents, and the phase­
space dimensionality loss. The 36: and lOO-particle results are 
averages over at least 2000 and 200 time units. The statistical 

for IlD is about 

N Ne Fext .I (±px) Al IlD 
x 

36 0.00 0.00 3.08 -3.08 0.00 0.00 
36 36 0.25 1.16 3.07 -3.08 -0.41 0.13 
36 36 0.50 2.32 3.06 -3.09 -1.65 0.45 
36 36 1.00 4.79 3.02 -3.11 -6.79 2.20 
36 24 0.25 1.16 3.07 -3.08 -0.41 0.13 
36 24 0.50 2.39 3.06 -3.08 -1.72 0.56 
36 24 1.00 4.84 3.01 -3.12 -7.03 2.28 
36 12 0.25 1.04 3.06 -3.06 -0.40 0.13 
36 12 0.50 2.41 3.06 -3.09 -1.80 0.58 
36 12 1.00 4.59 3.02 -3.12 -7.32 2.38 

100 100 0.25 4.3 3.07 -3.08 -1.5 0.50 
100 100 0.50 7.9 3.05 -3.07 -5.6 1.84 
100 100 1.00 18.2 2.97 -3.10 -25.4 

dxldt=Px+EY, dyldt=py, 

dPx1dt=Fx-EPy-;PX' dpyldt 

where the Gaussian ergostating variable; is given by the 
relation 

;=-E~[YFx+PxPyl/ ~'[p;+p;l. 

With periodic boundaries the yFx contributions to the 
single-particle sum can be combined in pairs to give 
terms of the form yijFiJ . Thus the sum in the numerator 
is just Pxy V, proportional to the shear stress. 

With periodic boundaries the center of mass can drift, 
even if all the particles are ergostated. But the x and y 
momentum sums, as well as the kinetic energy, are all 
constant, so that the N-particle motion takes place in a 

TABLE II. Results for N-particle two-dimensional shear­
flow simulations. Ne particles are ergostated. The successive 
columns list strain rate E, the xy component of the shear stress 
- Pxy , the maximum and minimum Lyapunov exponents, the 
sum of all exponents, and the phase-space dimensionality loss. 
For the lowest shear rate e=0.25 the length of the simulation 
runs varies between 20000 time units (4 million time steps) for 
N = 16, and 1200 time units (240000 time steps) for N = 100. 
The ensuing statistical uncertainty for IlD is better than 2%. 
For higher shear rates the length of the simulation runs was 

half as in uncertainties for IlD of about 

16 
16 
16 
16 
16 
16 
16 

16 
16 
16 
12 
12 
6 

0.00 
0.25 
0.50 
1.00 
0.25 
0.50 
0.25 

0.00 
0.30 
0.59 
1.09 
0.30 
0.58 
0.30 

3.06 
3.05 
3.02 
2.94 
3.05 
3.01 
3.03 

-3.06 
-3.11 
-3.25 
-3.80 
-3.11 
-3.23 
-3.10 

0.0 
1.77 

-7.0 
-27.9 

1.82 
-7.3 
-2.03 

0.00 
0.57 
2.21 
8.17 
0.59 
2.30 
0.66 

25 
25 
25 

25 
17 
9 

0.25 
0.25 
0.25 

0.31 
0.31 
0.31 

3.06 
3.05 
3.05 

-3.12 
-3.11 
-3.11 

-2.85 
-2.86 
-3.13 

0.91 
0.93 
1.01 

36 
36 
36 
36 
36 
36 
36 
36 
36 

36 
36 
36 
24 
24 
24 
12 
12 

0.00 
0.25 
0.50 
1.00 
0.25 
0.50 
1.00 
0.25 
0.50 

0.00 
0.31 
0.62 
1.14 
0.31 
0.61 
1.13 
0.31 
0.61 

3.08 
3.06 
3.03 
2.95 
3.05 
3.03 
2.99 
3.05 
3.06 

-3.08 
-3.11 
-3.26 

3.83 
-3.11 

3.27 
-4.02 
-3.11 

3.32 

0.00 
-4.11 

-16.4 
-63.7 
-4.16 

-17.0 
-75.3 
-4.43 

-20.4 

0.00 
1.33 
5.20 

19.0 
1.35 
5.37 

22.0 
1.43 
6.43 

64 
64 
64 

64 
42 
22 

0.25 
0.25 
0.25 

0.32 
0.32 
0.31 

3.08 
3.07 
3.07 

3.13 
3.13 

-3.13 

-7.37 
-7.53 
-7.62 

2.37 
2.42 
2.46 

100. 
100 
100 
100 
100 

100 
100 
66 
66 
34 

0.25 
1.00 
0.25 
1.00 
0.25 

0.32 
1.16 
0.32 
1.14 
0.31 

3.07 
3.00 
3.09 
3.07 
3.08 

3.14 
-3.90 
-3.15 
-4.03 
-3.14 

11.43 
-176.7 
-11.60 

-203.0 
11.84 

3.68 
53.1 

3.73 
60.4 

3.81 
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FIG. 1. Complete spectrum of 143 Lyapunov exponents for a 
two-dimensional color-conductivity simulation with field 
strength equal to 1.0. All 36 particles are ergostated and the 
phase-space energy surface has 143 dimensions. Three ex­
ponents vanish. The arithmetic means of the Smale pairs of the 
exponents are indicated by open circles. 

(4N-3)·dimensional subspace of phase space. In the local­
ly ergostated case, both the center of mass and the 
momentum associated with it drift, so that the subspace 
is (4N-l) dimensional. It is desirable to remove, from 
time to time, components of the offset vectors perpendic­
ular to the constant-internal-energy surface [19]. Because 
this step is inexpensive, we have carried it out at every 
time step. 

Results for the shear-flow Lyapunov exponents and 
dimensionality reduction appear in Table II. Typical 
complete Lyapunov spectra characteristic of both system 

4 r--.---.---.-----,---, 

3 :::::~..... ...............
-.......:;::.­
2 

___ t..........--............... . = 0 

, ·~1........ 
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FIG. 2. Complete spectra of 143 Lyapunov exponents for 
two-dimensional shear-flow simulations with strain rates 

/dy equal to 0.0 (equilibrium) and 1.0. All 36 particles 
are ergostated and the phase-space internal energy surface has 
143 dimensions. Three exponents vanish. The arithmetic 
means of the Smale pairs of the exponents are indicated by open 
symbols. 

types, diffusive and shear, appear in Figs. 1 and 2. Our 
conclusions regarding the loss of phase-space dimen­
sionality, based on the results tabulated here, are de- i~ 
scribed in the following two sections. " 

IV, RESULTS 

Tables I and II include long-term averages for the dis­
sipation, the corresponding loss of phase-space dimension 
aD, and the overall dissipation rate ~A= -8 Ik at fixed 
energy, for a varying number of ergostated particles. The 
fraction of these particles can be varied considerably 
without changing the topological laminar nature of the 
flow. 

We have chosen to concentrate on moderate field 
strengths and strain rates in our numerical work. These 
choices provide a non-negligible dimensionality reduction 
Il.D in the corresponding diffusive and viscous phase­
space strange attractors. All these results lie sufficiently 
close to the regime of linear irreversible thermodynamics 
to make that theory meaningful in analyzing them. 

The differential equations have been integrated with 
the classic fourth-order Runge-Kutta method. The 
Lyapunov spectra were generated using methods based 
on Benettin's ideas, which have been thoroughly and re­
peatedly discussed in the recent literature [6,7]. 

The numerical data presented here are fully in accord 
with the theoretically based expectation that the dissipa­
tion is approximately quadratic in the departure from .-' 
equilibrium. Thus the shear viscosities (stress a xy divid­
ed by strain rate tidy) for 16 ergostated particles 
show no significant dependence on strain rate up to t"'" 1. 
Symmetry suggests quartic strain-rate deviations from the 
quadratic prediction of irreversible thermodynamics. 
The deviations found here are nearly negligible. For this 
reason, we believe that the implications of our results 
from these simple systems have far-reaching significance. 
In the next section, we discuss and interpret our results. 

V. DISCUSSION AND INTERPRETATION 

Frederikson et ai. provided a useful way to estimate 
the information dimension of phase-space attractors [20J . 
They called their estimate the "Lyapunov dimension." 
We adopt that terminology here. From this standpoint, 
the steady-state attractor is dimensionally larger than all 
those phase-space objects which grow in time and dimen­
sionally smaller than all those objects which shrink. In 
the steady state the attractor neither grows nor shrinks. 
Any phase-space object of D dimensions, followed in 
time, grows or shrinks according to the sign of the sum of 
the largest D Lyapunov exponents. 

By (the generally accepted) definition, a "chaotic sys­
tem" possesses at least one positive Lyapunov exponent. 
Accordingly, for a chaotic system the one-dimensional ~ 
object defined by the phase-space line linking two nearby 
trajectories grows, exponentially fast, at a rate given by 
A\. By (our own) definition, the phase-space volume oc­
cupied by a dissipative system shrinks with time. For a 
chaotic dissipative system, with time-reversible Gauss or 
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Nose-Hoover equations of motion, the comoving phase­
space volume with the complete dimensionality of the 

,- phase space necessarily shrinks [3-9] so that the com­
plete sum of exponents ~iAi has to be negative. 
Frederikson et al. defined the "Lyapunov dimension" es­
timate of the information dimension by finding the num­
ber of exponents required for the incomplete sum ~'iAi 
to vanish. Figure 3 shows typical variations of the 
steady-state dimensionality loss with the degree of depar­
ture from equilibrium. 

For a fixed value of the non equilibrium flux (a mass, 
momentum, or energy current) the dissipation predicted 
by linear irreversible thermodynamics is extensive and, 
near equilibrium, is also approximately quadratic in the 
flux. We have verified this prediction numerically by 
considering several fields and strain rates, as detailed in 
the tables. Our numerical work verifies that for small 
(but by no means infinitesimal) gradients the dissipation 
remains nearly quadratic in the gradients. The Lyapunov 
exponents themselves reflect dynamic bifurcations in the 
many-body phase space. The magnitudes of the largest 
coefficients are of the order of a collision frequency. The 
distributions of the coefficients, for fluids or for solids, are 
relatively featureless, simpler in structure than the vibra­
tional spectra characterizing solids. Because the sign of 
the strain rate is irrelevant to aD, the Lyapunov ex­
ponents likely vary quadratically with the deviation from 
equilibrium, but the fact that symmetry is broken sug­
gests that a linear law is also possible. 

~1 In equilibrium a homogeneous ergostat does not affect 
",v the system at all. It is intuitively plausible, even in none­

quilibrium states, that it provides the least severe 
modification necessary to keep the energy constant and 
hence the least possible dissipation. Our numerical inves­
tigations have confirmed this idea. A conjectured varia­
tional principle, that homogeneous constraints are the 
least intrusive, could join with many predecessors (see, for 
instance, Ref. [21]) and might also join them in prompt­
ing counterexamples. Nevertheless, our computational 
results so far bear the conjecture out. 

As we decrease the number of degrees of freedom being 
ergostated the dissipation increases smoothly, at least un­
til the disparity between the constrained and Newtonian 
particles becomes sufficiently large to lead to a structural 
change. The data in the tables support the view that any 
such structural change occurs relatively far from equilib­
rium. 

Thus our numerical data support the views (at least 
sufficiently close to equilibrium) that the dissipation is 
quadratic in the gradients and extensive, that the 
Lyapunov spectrum varies no more than linearly with the 
deviation from equilibrium, and that the dimensionality 
drop, for non equilibrium steady states, is minimum for 
homogeneous constraints. These three results together 
support the tentative conclusion that the fractional loss 
of phase-space dimensionality on a nonequilibrium 

~I strange aitractor is a pure number, characterizing the 
~;_ 	 material in question, and that the deviations which arise, 

farther from equilibrium, are at least linear in the devia­
tion from equilibrium. 

I:J..D ID "",,8 INkA! +o(gradient) . 

0.06 liN 

FIG. 3. Shows the variation of the steady-state dimensionali­
ty loss, AD =Dequilibrium - D, as a function of the number Ne of 
ergostated particles and of the inverse total number of particles, 
liN, for a strain rate £=0.25. The (AD /ElN) surface was gen­
erated by smoothing the respective data listed in Table II. It 
can be readily extrapolated to the hydrodynamic limit lIN-+O 
which demonstrates the extensivity of the dimension of the un­
derlying strange attractor. Within the numerical uncertainty 
the limit limN_"AD /EN=d is even independent of the number 
of ergostated degrees of freedom (proportional to Ne ). Since 
AD IN varies almost linearly with liN for fixed Ne IN, our nu­
merical results suggest that the many-particle limit of !:J.D is ap­
proached according to AD = a +dN, where a (NeIN) depends 
only on the relative number of ergostated particles. For the 
homogeneous ergostat, Ne =N, a(1) is negative. a eventually be­
comes positive if the relative number of ergostated degrees of 
freedom is reduced. 

This means that the many-particle distribution functions, 
away from equilibrium but sufficiently close to it, are 
indeed multi fractal in character, just as they are in small­
er systems, so that the nonequilibrium Gibbs's entropy 
does indeed diverge. 

VI. CONCLUSION 

Because the near-equilibrium phase-space dimensional­
ity loss is insensitive to the fraction of constrained parti­
cles and appears to be minimized when all degrees of 
freedom are similarly constrained, we have strong evi­
dence that the phase-space attractor dimensionality 
reduction is real, persisting for large systems. The result 
of Sarman, Evans, and Morriss, for the homogeneous 
case, is fundamental to this demonstration and suggests 
as well that the large-system homogeneously thermostat­
ed nonequilibrium state provides the hydrodynamic-limit 
analog of the equilibrium thermodynamic limit. 
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