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Abstract. This paper presents an investigation on mechanism  of the inclined 1 

cone penetration test (CPT) using the numerical discrete element method (DEM). 2 

A series of penetration tests with the penetrometer inclined at different angles 3 

(i.e., 0°,15°, 30°, 45° and 60°) were numerically performed under µ=0.0 and 4 

µ=0.5, where µ is the frictional coefficient between the penetrometer and the soil. 5 

The deformation patterns, displacements of soil particles adjacent to the cone tip, 6 

velocity fields, rotations of the principal stresses and the averaged pure rotation 7 

rate (APR) were analyzed. Special focus was placed on the effect of friction. The 8 

DEM results showed that soils around the cone tip experienced complex 9 

displacement paths at different positions as the inclined penetration proceeded, 10 

and the friction only had significant effects on the soils adjacent to the 11 

penetrometer side and tip. Soils exhibited characteristic velocity fields 12 

corresponding to three different failure mechanisms and the right side was easier 13 

to be disturbed by friction. Friction started to play its role when the tip approached 14 

the observation points, while it had little influence on rotation rate. The 15 

normalized tip resistance (qc= f /σv0) increased with friction as well as inclination 16 

angle. The relationship between qc and relative depth (y/R) can be described as qc 17 

=a×(y/R)
-b

, with parameters a and b dependent on penetration direction. The 18 

normalized resistance perpendicular to the penetrometer axis qp increases with the 19 

inclination angle, thus the inclination angle should be carefully selected to ensure 20 

the penetrometer not to deviate from its original direction or even be broken in 21 

real tests. 22 

Keywords: Inclined cone penetration; Distinct element method; Tip resistance; 23 

Stress rotation; Particle rotation. 24 

 25 
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1. Introduction 26 

The cone penetration test (CPT) is a reliable, fast and relatively economical in-situ 27 

test to obtain information about soil stratification and mechanical properties. 28 

When the cone-shaped penetrometer is pushed into the ground, the soil 29 

experiences the compression, shear deformation and plastic flow, thus making the 30 

mechanism of CPT complicated. Many investigations have been performed on the 31 

CPT mechanism in the past and they can be attributed to three methods in general: 32 

(1) analytical methods: the bearing capacity theory [1-3] and the cavity expansion 33 

theory [4,5]; (2) experimental methods: laboratory chamber calibration tests [6,7] 34 

and centrifuge methods [8]; (3) numerical analysis methods: small strain finite-35 

element method [9], large strain finite-element method [10,11], strain path method 36 

[12] and the distinct element method (DEM) [13,14]. Nevertheless, these studies 37 

focus on the vertical CPT as an axisymmetric boundary problem. 38 

In the in-situ test, due to the presence of existing buildings and 39 

infrastructures or lack of access, the CPT technique cannot always be performed 40 

in the vertical orientation, thus an inclined CPT is necessarily performed instead. 41 

However, it is unclear whether the penetration mechanism of an inclined CPT still 42 

keeps the same way in which the vertical penetration behaves. Therefore, a few 43 

studies have been performed on the non-vertical penetration mechanism. Among 44 

them, Broere [15] performed the CPTs horizontally and vertically in a 2 m rigid 45 

wall calibration chamber using a 36-mm cone and showed evident differences 46 

between horizontal and vertical CPT measurements. Wei et al. [10, 11] used a 47 

large-strain finite element method to analyze the effect of soil anisotropy on the 48 

inclined CPT in normally consolidated cohesive soils. The results showed that the 49 
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tip resistance increases with increasing inclination angle as the coefficient of earth 50 

pressure at rest (K0) below 1.0. 51 

The study on the inclined CPT still remains insufficient, especially its 52 

mechanism considering the interaction between the soil and penetrometer. 53 

Therefore, the purpose of the current paper is to present the numerical analyses on 54 

the mechanism of an inclined CPT with the focus on the effect of friction. The 55 

penetration mechanism was discussed in terms of deformation pattern, velocity 56 

field, stress rotation and APR under different penetrometer-soil friction, where the 57 

penetration angle was specified to be 30°. Then the relationship between the 58 

normalized tip resistance and the inclination angle was examined with two values 59 

of coefficient of friction. Another four values of inclination angles (i.e., 0°, 15°, 60 

45°, and 60°) were considered. 61 

2. DEM modeling of CPT 62 

2.1 Ground characteristics 63 

The granular ground is simulated in the current study, which is composed of ten 64 

types of disks with a grain size distribution shown in Fig. 1. The maximum and 65 

minimum diameter of soil particles are 9 mm and 6 mm respectively. It has an 66 

average grain diameter d50 = 7.6 mm and uniformity coefficient d60/d10 = 1.3.  67 

The macro mechanical behavior of the ground material, which consists of 68 

24000 particles with planar void ratio of 0.27, was investigated using the 69 

simulations of biaxial tests under a compression rate of 10%/min and confining 70 

pressures of 50 kPa, 100 kPa and 200 kPa. Fig. 2 illustrates the basic mechanical 71 

properties of the granular ground. The material shows typical characteristics of a 72 
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loose ground and the peak internal friction angle of the material has found to be 73 

15.37°.  74 

2.2 Model setup 75 

The dimension of the penetrometer and ground in the simulations needs to be 76 

carefully selected in order to minimize the boundary effect and obtain rational 77 

results in a DEM model with the minimum particle number. Bolton et al.[16] 78 

pointed out that the cone diameter D should be at least 20 times greater than the 79 

mean grain size, and in such simulation the possible error in qc (tip resistance) is 80 

at most 10%. Meanwhile Jiang et al [13] suggested that there should be no less 81 

than 13 particles contacting with the tip face in order to get a steady qc. Based on 82 

these two findings the cone diameter was set as 0.16 m in the current study. 83 

Hence, the value of D/d50=21.05>20 and the penetrometer size can ensure that the 84 

tip can be always in contact with about 13 particles and thus can provide 85 

acceptable resistance values. The penetrometer was composed of rigid walls. The 86 

frictional coefficient µ  between the penetrometer and the soil was chosen to be 0.0 87 

to simulate a perfectly smooth condition and 0.5 for comparison. The parameters 88 

of the granular ground material adopted in the current simulations are presented in 89 

Table 1. 90 

Bolton et al [16] also suggested that no apparent increase in qc (tip 91 

resistance) for a test done with W / R ≥ 40, where R and W are the cone radius and 92 

the width of the ground, respectively. Therefore the ground was set to be 5.0 m in 93 

width and 1.626 m in depth，resulting in a value of W / R=62.5, which satisfied 94 

the aforementioned criterion.  95 

The multilayer under-compaction method (UCM) proposed by Jiang et al 96 

[17] was employed here to ensure homogeneity of ground sample before 97 
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consolidation under gravity. Thus, five equal layers of particles were generated in 98 

a sequential way, with each layer containing 30000 particles and randomly 99 

deposited into a rectangular container to form the granular ground shown in Fig. 100 

3(a). To achieve the target planar void ratio of 0.27, the accumulated layers of 101 

particles were compacted to an intermediate void ratio which is slightly higher 102 

than the target void ratio when each new layer was added. According to the under-103 

compaction criterion proposed by Jiang et al.
 
[17], the intermediate void ratios for 104 

the accumulated layers were; ep(1)=0.29, ep(1+2)=0.289, ep(1+2+3)=0.284, 105 

ep(1+2+3+4)=0.276 and ep(1+2+3+4+5)=0.27. During the generation process, the wall-106 

particle is frictionless in order to improve the homogeneity, while inter-particle 107 

frictional coefficient is chosen to be 1.0 in order to produce a loose packing of 108 

particles. 109 

After the sample was generated, it was subjected to an amplified gravity field 110 

of 20g similar to the centrifuge modeling. When the equilibrium of the entire 111 

system was achieved, the penetrometer was generated at a distance of 3.0 m from 112 

the left boundary of the ground in horizontal direction and driven downward along 113 

an inclined direction at a constant rate of 1 m/s, as shown in Fig.3 (a). The relative 114 

high penetration rate was used to reduce the computational time and would not 115 

have a significant influence on the CPT results [18]. The configuration of CPT 116 

model after consolidation is illustrated in Fig. 3(a) and the layout of selected 117 

observation points accompanied by two measurement circles is illustrated in Fig. 118 

3(b). 119 
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2.3 Features of the ground 120 

The distribution of initial horizontal and vertical stresses as a function of depth is 121 

illustrated in Fig. 4. As known in geo-mechanics, ground density can be 122 

calculated as:  123 

= (1 ) / (1 )
S

w eρ ρ + +
                            (1) 124 

Where w  is the water content and w = 0 in the current study as only dry soils 125 

are considered; 
S

ρ is the particle density and 
S

ρ = 2600 kg/m
3
. Therefore, given 126 

the void ratio, the ground density can be obtained as 2047 kg/m
3
. Thus the 127 

relationship between the initial vertical stress and the corresponding depth can be 128 

written as  129 

 0 (20 ) 32097 ( / )
v

g y y Rσ ρ= = ×                   (2) 130 

The measurement circles were adopted to calculate the average stress from 131 

the contact forces between particles with centroids located within the 132 

measurement circle. Two factors were considered when arranging the 133 

measurement circles: a) the measurement circle should not be too small in size so 134 

as to include enough particles to reduce the statistical error; b) the measurement 135 

circle should not be too big otherwise the localized characteristics will be 136 

smoothed and cannot be clearly discovered. Therefore the diameter of the 137 

measurement circle in the current study was chosen to be 0.18 m, which can meet 138 

the aforementioned requirements. The vertical and horizontal stresses as obtained 139 

in the measurement circles are shown in Fig. 4. It can be seen that the vertical 140 

stress increases linearly with depth from 0 to 600 kPa, and the relationship 141 

between initial vertical stress and relative depth is σv0 = 32693 ( / )y R× , which is 142 

in good agreement with the theoretical solution in Eq.(2). The horizontal stress 143 

was observed to keep a constant ratio over the vertical stress, i.e. K0=0.58 when 144 
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y/R<27. However, it begins to deviate slightly from its initial linearity when 145 

y/R>27. This is possibly due to the kinematic constraint by the bottom boundary 146 

and similar phenomenon can also be found on retaining walls for a finite media by 147 

several researchers (e.g. [19]).The overall ground can still be assumed as a half-148 

infinite media, though there is a slight deviation from the theoretical K0 condition. 149 

3 Simulation results  150 

3.1 Deformation pattern 151 

3.1.1 Grid deformation 152 

The painted grid method proposed by Jiang et al [13] is employed here to 153 

investigate the grid deformation. The gird size should be carefully chose in order 154 

to capture the high gradients of variables in the soil near the penetrometer and 155 

capable of representing a ‘continuum element’ from the viewpoint of micro-and-156 

macro mechanics. Hence, the width and height of grid was set close to R, which 157 

can meet the two aforementioned demands. The grid deformation in the 158 

conditions of µ=0.0 and µ=0.5 with inclination of 30° is illustrated in Fig. 5. Here, 159 

the inclination angle was defined as the vertical direction to the central axis of 160 

penetrometer. Fig. 5 shows that when the tip is driven into the ground, the 161 

penetration results in heaving of the ground surface, which is more remarkable on 162 

the left side than on the right side. The grids were stretched vertically on the left 163 

side and horizontally on the right side, which indicates that the soils on the left 164 

side underwent dilation, while the soils on the right side mainly underwent 165 

compaction. Similar phenomenon can be observed for µ=0.5, however, the grids 166 

adjacent to the penetrometer and the tip were distorted severely and the initial 167 
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shape can hardly be recognized in the process of penetration. It can be concluded 168 

that the effect of friction is particularly evident in the soils adjacent to the 169 

penetrometer and the tip. Such case cannot be simulated well by the finite element 170 

method, which is only capable of dealing with small deformation problem. 171 

Therefore, the CPT simulation using by the distinct element method is of great 172 

advantage. 173 

3.1.2 Particle trajectories 174 

The trajectories of 48 particles were recorded until the relative depth y/R=13.5 175 

was reached as shown in Fig. 6. In the case of µ=0.0, the particles on the left side 176 

mainly move outwards and then upwards at y/R=1.5. The particles close to the 177 

penetrometer move downwards then outwards,  while other particles move 178 

outwards and then upwards at y/R =5.5, 9.5. However, the particles near the tip 179 

(y/R=13.5) only move outwards with few vertical movements. Contrasting to the 180 

movements on the left side, particles on the right side all move downwards and 181 

then outwards. These phenomena indicate that the soil on the left side tends to 182 

heave and expand laterally as observed on the ground, while the soil on the right 183 

side experience compression. This is in good agreement with the grid deformation 184 

as shown in Fig. 5. For a further comparison, the final positions of particles in the 185 

two cases were plotted together in Fig.7 to investigate the effect of friction. Figure 186 

7 shows that the friction has little influence on soil compaction on the right side. 187 

The particles close to penetrometer were dragged down due to the drag force 188 

produced by friction and this influence is only significant along the penetrometer. 189 

3.2 Velocity fields 190 

The evolution of maximum particle velocity is shown in Fig. 8, where each datum 191 

plotted represents the maximum particle velocity in the granular ground at the 192 
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time when the tip reaches specific relative depth during the penetration. Fig. 8 193 

shows that when the tip was initially pushed into the ground, the soil particles 194 

started to move from a static state, which resulted in an abruptly increase in 195 

velocity followed by fluctuations around a steady value, indicating a stable state 196 

of penetration. The particles were able to move along with the penetrometer due 197 

to the frictional drag force in the case of µ=0.5, where the maximum velocity 198 

approached the speed of penetrometer (1m/s). However, in a perfectly smooth 199 

case, the maximum velocity was only 0.63 m/s. 200 

Normalized by the corresponding maximum velocity in each case (values can 201 

be found in Fig. 8), all velocities of particles were divided into seven groups of 202 

magnitudes and rendered with different colors as shown in Fig. 9.The velocity 203 

vectors described by different colors represent the sliding lines of particles, which 204 

in turn can reflect the failure mechanism. Fig. 9(a) to Fig. 9(c) shows that the 205 

maximum velocity group appears near the tip of the penetrometer, while the 206 

particles next to both sides of the penetrometer all move at relative low velocity. 207 

The zone of the maximum velocity group on the left side is larger than that on the 208 

right side. As illustrated in Fig. 9, the velocity fields at different relative depths 209 

show different shapes. Previous research on the vertical CPT [20] demonstrated 210 

that these velocity fields can be classified as three typical failure mechanisms [1, 211 

21-24], as illustrated in Fig. 10. By comparing the velocity fields near the tip in 212 

the perfectly smooth case as shown in Fig. 9(a) to Fig. 9(c) with the sliding lines 213 

in Fig. 10, it can be found that soils in the inclined CPT also experience three 214 

failure mechanisms successively as the depth increases, i.e., Terzaghi mechanism 215 

for shallow penetration followed by Biarez and Hu mechanism for medium 216 

penetration, and finally Berezantev and Vesic mechanism for deep penetration. 217 

All the three mechanisms are observed on the left side, while only the second and 218 
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third mechanisms are captured on the right side, as seen from Fig. 9(a) to Fig. 219 

9(c), since the right-half of the tip disturbs deeper soils than the left-half. In 220 

contrast to the perfectly smooth case, particles adjacent to both sides of the 221 

penetrometer exhibit relative high velocities due to the effect of friction, while 222 

only a very small region is influenced by the penetration. The failure mechanism 223 

on the right side retains the same as that in the case of µ=0, while on the left side, 224 

Terzaghi mechanism remains for the shallow penetration and then only 225 

Berezantev and Vesic mechanism is observed at the medium and deep 226 

penetration.  227 

3.3 Stress rotation and APR 228 

Two measurement circles as shown in Fig. 3(b) were arranged to investigate the 229 

stress rotation of soil. Three factors were considered in determining the position: 230 

1) the observation points should be placed at a depth when the penetration gets 231 

steady; 2) the position should be close enough to the central axis in order to 232 

capture the features of the stress variation of soils adjacent to the penetrometer; 3) 233 

the area covered by the measurement circles should be guaranteed not to be 234 

overlapped by the penetrometer when it passes by. As mentioned before, the 235 

penetration reached stable soon after the tip is pushed into the ground, thus the 236 

locations of the measurement circles at a relative depth y/R=13.5 can ensure a 237 

steady penetration before the tip approaches that depth. The other two factors 238 

were checked to be reasonable in the simulation process. 239 

Fig. 11 provides the inclination angles of the major principal stresses with 240 

respect to the vertical direction as measured in the measurement circles 29 and 32 241 

during penetration. The initial orientation of the major principal stress is in the 242 

vertical direction, i.e. inclination angle = 0°. A positive angle represents an 243 
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anticlockwise stress rotation and vice versa. Both frictional case and smooth case 244 

are considered in Fig. 11.  245 

Fig.11 shows that in the case of µ=0, the principal stresses in both 246 

measurement circles undergo large rotations with values of over 180° on the left 247 

side and nearly 180° on the right side. Before the penetration started, the major 248 

principal stresses all head vertically as K0=0.58. When the tip was initially pushed 249 

into the ground, the soil along the central axis line of penetrometer contacted 250 

tightly because of compaction, and the principle stresses on both sides of 251 

penetrometer tended to be parallel to penetration direction. Therefore, the major 252 

principal stress moved from the vertical to the compaction direction. That's why 253 

the two observation points initially rotated clockwise when penetration occurred 254 

at shallow depth. When the tip approached the two observation points, the 255 

influence of the tip face became significant. The principle stress at the observation 256 

points tended to become perpendicular to the tip face, as a result, the principal 257 

stress at the left observation point continually rotated clockwise, while the 258 

principal stress at the right observation point began to rotate counterclockwise. 259 

When the tip passed over the two observation points, the penetrometer side began 260 

to take effect instead of tip, thus resulting in an apparent leap. After that, the stress 261 

rotation tends to be constant, especially on the right side. From these observations 262 

it can be inferred that the effect of side friction on the stress rotation of the soil 263 

adjacent to penetrometer is constant once penetration gets steady. This 264 

phenomenon is almost the same in the case of µ=0.5 except more rotation on the 265 

right side. 266 

Fig.12 presents the average pure rotation rates (APR) within the 267 

measurement circles 29 and 32 during penetration. 12. APR is denoted by 3

c
w and 268 

defined in [25] as 269 
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where the summation is over the Nc particle contacts in a measurement circle. 271 
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r
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+
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APR is a microscopic kinematic variable to describe the rotation features of 276 

particles, which is important but neglected in continuum mechanics. Fig. 11 277 

shows that friction has no apparent effect on the rotation rate. Therefore, only two 278 

APRs in perfectly smooth penetration are investigated here. It is interesting to 279 

note that the sign of APRs are generally the same with the principal stress rotation 280 

angles. Moreover, the magnitudes of APRs are closely associated with the rotation 281 

angle of the principal stresses. These observations indicate that the continuum-282 

based qualities such as the principal stress direction may be related to the micro-283 

scale particle behavior to a certain extent, which is worth further study. 284 

3.5 Normalization of tip resistance in the inclined penetration 285 

For geotechnical engineers, the tip resistance qc in a typical CPT is of great 286 

interest since qc is important and useful in determining the bearing capacity and 287 

relative density of a ground. In addition to the previous simulations with an 288 

inclination angle of 30°, the study is extended further to examine the effect of the 289 

inclination angle with values of 0°, 15°, 45° and 60°. Every penetration was 290 

performed with two different coefficients of friction between penetrometer and 291 

particles. The tip resistance qc is obtained by the summation of the contact force 292 
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components exerted on the tip parallel to the central axis of the penetrometer 293 

divided by the penetrometer diameter or a half. For convenience in the analysis, 294 

normalized tip resistance was adopted in this paper in our post process, as shown 295 

in Eqs. (5)-(7): 296 

                         . .c left c right

c

vo

f f
q

D σ

+
=

⋅
                         (5) 297 
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.
( / 2)

c left

c left

vo

f
q

D σ
=

⋅
                        (6) 298 

                         .
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f
q

D σ
=

⋅
                       (7) 299 

where .c left
f and .c right

f  correspond to the summation of the contact force 300 

components exerted on the tip parallel to the central axis of the penetrometer, 301 

respectively. D is the cone diameter and σv0 is the initial vertical stress in the 302 

ground, as shown in Fig. 4. 303 

Fig.13 provides the relationship between the normalized resistance and the 304 

relative depth (y/R) in different penetration directions for the two values of 305 

friction. In each figure, the resistances on both sides together with resultant 306 

resistance are included. It is shown in the figure that similar to the field tests, the 307 

resistances in the simulations are quite fluctuating. The resistances on both sides 308 

show similar developing trend and are virtually equal in vertical penetration due 309 

to the symmetric stress condition. On the contrary, qc,right tends to be larger than 310 

qc,left at shallow depth when inclined penetration occurs and this phenomenon is 311 

more significant as inclination angle increases. Further investigation shows that 312 

the tip resistances on both sides finally approach a same value at a relatively deep 313 

depth. This may be explained in view of stress conditions in which the side 314 

experienced: when the inclined CPT initially began, the stress condition was quite 315 

different where the stress was larger on the right side and this resulted in a higher 316 
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resistance as shown in Figure 13. As penetration continued, the stress difference 317 

tended to be smaller and the resistances then grew synchronously. Same as qc,right, 318 

qc also decays with penetration depth in a decreasing rate. Fitting curves are 319 

proposed in the form of qc =a×(y/R)
-b

, where a and b are two parameters varying 320 

with penetration direction. At the same penetration depth, qc gradually increases 321 

as the penetration direction changes gradually from a vertical direction to 60°. 322 

These observations are consistent with the investigation described in [15], where 323 

the tip resistance measured in the horizontal direction is about 20% larger than 324 

that in the vertical. The similar phenomenon observed in DEM simulation and 325 

chamber tests can be explained by the soil stress state K0=0.58, i.e. the vertical 326 

stress is higher than the horizontal stress. Nevertheless, it is evident in the figure 327 

that the friction results in higher tip resistance, which can be easily explained as 328 

that more energy is required to compensate the work done by the frictional force. 329 

Curves shown in Fig. 14 were given to compare the evolution trend, from 330 

which it can be easily found that the difference of normalized tip resistance tends 331 

to decrease with increasing depth regardless of friction. The relationship between 332 

parameters (a,b) and inclination angles is shown in Fig. 15. In the smooth 333 

condition, parameter a has an evident increase as the penetration direction 334 

changes from 0° to 60° while in the case of µ=0.5, the value in vertical penetration 335 

show some inconsistency. Parameter b also exhibits increasing trend, but on a 336 

smaller scale in both cases, also accompanied by inconsistency in the case of 337 

vertical penetration when µ=0.5. 338 

In addition to the force aligned along the axis of the penetrometer, there is 339 

also a force perpendicular to the penetrometer axis as soon as the test is inclined, 340 

which is always ignored in the analysis of traditional cone penetration tests as the 341 

forces are balanced in axisymmetric condition. However, this force in an inclined 342 
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CPT is of great importance from a practical view as it may deviate or even break 343 

the penetrometer in real tests. Therefore, the evolution of the normalized 344 

resistance perpendicular to the penetrometer axis, which is denoted qp in this 345 

paper, is also investigated. Its definition is as follow: 346 

          . .

3

2

p left p right

p

vo

f f
q

D σ

+
=

⋅ ⋅

                          (8) 347 

Where .p left
f

and .p right
f

 correspond to the summation of the contact force 348 

components exerted on the tip perpendicular to the central axis of the 349 

penetrometer, respectively. D is the cone diameter and σv0 is the initial vertical 350 

stress in the ground, as shown in Fig. 4. 351 

Fig. 16 shows the relationship between the normalized resistance 352 

perpendicular to the penetrometer axis qp and the relative depth (y/R) in different 353 

penetration directions for the two values of friction. As shown in the figure, qp 354 

approximately equals zero when performed in vertical direction as the two sides 355 

of tip experienced equal and opposite reaction. However, it increases significantly 356 

with the inclination angle at shallow depth in the same way as the normalized 357 

resistance qc. One apparent difference between qc and qp lies in the deep 358 

penetration where equal values on both sides do not appear in normalized 359 

resistance qp. The unbalanced force applied perpendicular to the penetrometer axis 360 

may deviate the cone from its desired penetration direction. The phenomenon 361 

described here is limited to the cone tip which should be the same to the 362 

penetrometer side, thus qp on both sides of penetrometer is not included in this 363 

paper. Based on the above analysis, when performing inclined cone penetration 364 

tests, the inclination angle should be carefully selected to ensure the penetrometer 365 

not to deviate from its original direction or even be broken in real tests. Same as 366 
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the normalized resistance qp, higher friction results in higher normalized 367 

resistance qp.. 368 

5. Discussions 369 

The material used in the simulations has quite different internal friction from 370 

the real materials. The internal friction angle considered in this paper is only 371 

15.37° and corresponds to a typical loose sample with low relative density. Such a 372 

small value is normal with models that ignore the possibility of particle rolling 373 

resistance at contacts [26, 27]. There are two available approaches in DEM 374 

analyses which can increase the friction angle for the material considered: The 375 

first approach is to use irregular grains such as clustered disks/spheres, 376 

polygon/polyhedron or ploy-ellipsoids etc. This may significantly increase the 377 

internal friction angle but require more computational time in contact detection, 378 

making it difficult to apply to large-scale boundary value problem. Alternately, 379 

the rolling resistance may be preferred without considering the details at the 380 

particle scale such as the particle shape. However, it can simultaneously satisfy 381 

the demand of improving internal friction angle and computational efficiency 382 

[26]. In addition, there have been many researches investigating the relationship 383 

of tip resistance and relative density [16, 28, 29] or internal friction angle [30-32] 384 

and several empirical formulas have been proposed. Thus results obtained from 385 

the low internal friction angle material may be used to predict the responses of 386 

more frictional material once the relative density or internal friction angle are 387 

given. 388 

In this paper, we mainly focused on the tip resistance as previous works [32-389 

34] have shown that the sleeve friction is small compared to the tip resistance, 390 

only around 10% or even smaller. Besides, the friction effect on sleeve friction 391 
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has been investigated in our previous papers [13, 20] hence only the tip resistance 392 

is included in our analysis for simplicity. 393 

Cone penetration is actually a three-dimensional problem however it is 394 

simulated in plane-strain conditions in the current study. It is obvious that a two-395 

dimensional simulation cannot accurately represent a three-dimensional deposit of 396 

a granular material that consists of spherical particles. However, there is no 397 

intention in this paper to link the result of numerical simulations to field CPT 398 

quantitatively. The results presented herein will be analyzed strictly from a 399 

mechanism point of view. In terms of investigating the mechanism of inclined 400 

CPT, 2D DEM is still a reasonable option for our analysis. This is because: (a) 401 

Both 2-D and 3-D assemblies are a type of mechanical system, they must obey 402 

and share basic laws. It is these laws that would enhance understanding the 403 

behavior of natural soils and subsequently establishing their practical macro-404 

constitutive models. Hence, the mechanism of particle movement obtained from a 405 

two-dimensional simulation is expected to be similar to that from a three-406 

dimensional simulation. (b) To simulate large-scale boundary-value problems in 407 

geotechnical engineering using current PCs, the size effect and boundary effect 408 

must be reduced to the minimum, which requires an extremely large number of 409 

particles hence possible by 2D DEM for current PCs. (c) 2D DEM has been 410 

proved to be efficient in describing soil behavior qualitatively with numbers of 411 

studies.  412 

Therefore, the soil in 3D simulations should also experience dilation and 413 

compression during the penetration as observed in this paper. However, 414 

quantitative comparison of failure mechanisms is impossible in this paper, since 415 

rigid plasticity is assumed in the three typical failure mechanisms proposed by 416 

Terzaghi, Biarez and Berezantev etc.[1,21-24], but it is not true for granular 417 
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materials in the simulations. The stress rotation described in this paper is 418 

restricted to in-plane while the out-of-plane rotation is not considered. Besides, 419 

the out-of-plane constraint necessary to enforce a state of plane strain is not 420 

present in 2D DEM and this may results somewhat different tip resistance. For 421 

those reasons, the stress rotation and tip resistance measured in 2D DEM should 422 

be properly modified when extrapolated to 3D problems. Alternatively, three-423 

dimensonal problem like CPT maybe reduced to a particular 2-dimensonal case 424 

by limiting the size of the media domain as has been introduced in [35]. 425 

6. Concluding remarks 426 

The distinct element method was used to investigate the effect of friction on the 427 

inclined cone penetration mechanism in this paper. Based on the numerical 428 

simulations, the following conclusions can be made:  429 

(1) Soils on the left side of the inclined penetration experience dilation, while on 430 

the right side undergo compaction. The effect of friction is particularly evident in 431 

the region adjacent to the penetrometer and the tip.  432 

(2) Soils experience three different failure mechanisms successively during the 433 

penetration as the depth increases. The friction mainly affects the failure 434 

mechanism on the left side of the tip.  435 

(3) The principal stresses of soils around the cone tip undergo large rotation 436 

accompanied by apparent particle rotations, and this rotation is nearly independent 437 

on friction.  438 

(4) The normalized tip resistance increases with friction as well as inclination 439 

angle. The relationship between the normalized resistance (qc= qc /σv0) and 440 

relative depth (y/R) can be described by qc =a×(y/R)
-b

, with parameters a and b 441 

dependent on the penetration direction. 442 
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(5) The inclination angle should be carefully selected to ensure the penetrometer 443 

not to deviate from its original direction or even be broken in real tests. 444 
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